
Biolearn is a general package for applying probabilistic graphical models to biological 
applications. Biolearn release 1.0 is concentrated on structure learning for bayesian 
networks; future releases are expected to include other types of graphical models, support 
inference applications, and allow plug-and-play addition of new types of probability 
distributions, scoring functions and search algorithms. 
 
Biolearn is implemented in java, and distributed as a jar. It is compiled in java version 
1.6.0, and therefore requires java version 1.6.0 or later. In addition to the biolearn jar, the 
distribution also includes four jars from open-source providers that are used for specific 
functions of biolearn: jung-1.7.6.jar, provided by the JUNG Framework Development 
team at http://jung.sourceforge.net/; commons-collections-3.2.jar, provided by the 
Apache Commons project at http://commons.apache.org/collections/; colt.jar, provided 
by the Colt project at http://acs.lbl.gov/~hoschek/colt/ (these three jars are used for the 
graphical visualization of bayesian networks); and Jama-1.0.2.jar, provided by NIST at 
http://math.nist.gov/javanumerics/jama/, and used for implementing the 
MeanSquareError scoring function. 
 
Invoking the biolearn structure-learning application 
 
The biolearn structure learning application reads observation data on the nodes of a 
bayesian network, optionally performs discretization on the data, and then applies a 
search algorithm for finding an optimal network structure. The user can choose among 
several possible search algorithms and several possible scoring functions. The application 
can be invoked to run just one structure-learning search on the data, or to run any number 
of structure-learning searches using random samples of the data and perform model 
averaging. The results are output as text files, and optionally also visualized graphically. 
 
The distribution includes four command files that can be used to invoke the biolearn 
structure-learning application; two windows bat files and two UNIX sh files. For each 
system there is one command file that invokes the application as a command-line utility, 
running non-interactively and providing its output only as a text output file; and one 
command file that invokes the application as a graphic interactive application, providing 
its output both as a text output file and through graphic visualization. 
 
A run of the application is guided by a specification file, a text file specifying the input 
data, the choice of algorithm, scoring function and discretization methods, and other user-
controlled options. The command files accept between one and three command-line 
arguments:  

• The first, mandatory argument is the directory containing the five jar files. 
• The second, optional argument is the name of the specification file. If the second 

argument is omitted, the application by default searches for a file named 
biolearn.spec.txt in the current directory. The command-line version of the 
application fails if it cannot find the specification file; the interactive version, if it 
cannot find the specification file, opens a file chooser window to let the user find 
the specification file interactively. 

• The third, optional argument is for specifying the starting point of the search. It is 



discussed below in the search starting point section. 
 
The Biolearn specification file 
 
Each line in the specification file specifies the user's choice for one of the user-controlled 
options for the run. In a non-interactive invocation, the input data and all options for the 
run must be specified in the specification file; in an interactive run, the input data and 
some of the options can be specified or changed interactively. 
 
Input data 
 
The biolearn structure-learning application expects to receive input data in one or more 
files in tabular form, with each line in the file consisting numerical values separated by 
tabs. There two possible arrangements of the input data files: 

 
1. One data point per line, with each column representing one variable. In this 
arrangement the first line provides the names of the variables, with each subsequent line 
providing the values, in the specified variable order, for one of the data points. For 
example, a file with four data points and three variables with this format might look as 
follows: 
 

A B C 
0.74 0.03 0.04 
0.66  0.09 
0.73 0.6 1.11 
0.77 0.88 1.07 

 
2. One variable per line, with each column representing one data point. In this 
arrangement (often used for gene expression data), each line contains the name of the 
variable, followed by the values for that variable. The variable name may be in either the 
first of second column of each line; if it is in the second column, the first column is 
ignored (this accommodates Affymetrix files, in which the first column contains the 
gene’s ORF and the second column contains its name). In the first line either the first or 
second field should be “Name” or “GeneName”, to indicate which column contains the 
variable name; and the following fields specify names for the data points. For example, 
the data from the example above, in the variable-per-line format, would look as follows: 
 

Name DP1 DP2 DP3 DP4 
A 0.74 0.66 0.73 0.77 
B 0.03  0.6 0.88 
C 0.04 0.09 1.11 1.07 
 

or 
 

ORF Name DP1 DP2 DP3 DP4 
YDR1 A 0.74 0.66 0.73 0.77 



YAR5 B 0.03  0.6 0.88 
YOR3 C 0.04 0.09 1.11 1.07 

 
Both arrangements allow missing values (for example the example above has a missing 
value for B in DP2); a missing value is represented by an empty cell (i.e. nothing between 
the two tab characters) or by any string that is not a number, such as a space, a question-
mark, or the string "NaN". 
 
Different data files may have different but overlapping sets of variables. The structure 
search is constrained so that for any variable, there must always be at least one data file 
with data for that variable and all its parents. 
 
Specifying input data 
 
In an interactive run, the specification file must contain the line 
 

dataformat format 
 
where format is one of "DataPointPerLine" or "VariablePerLine". The input files 
themselves are specified by the user interactively, as described in the graphic user 
interface section. 
 
In a non-interactive run, the specification file has to specify the actual input data. If the 
data consists of only one input file, it is specified as: 
 

data format input-file-name 
 
If there are sevarl input files, they can either be listed directly: 
 

data MultipleInputFiles format input-file-name-1 input-file-name-2 ... 
 
or by providing a file containing a list of the file names 
 

data MultipleInputFiles format list-file-name 
 
The name of the list file must contain the string “.filelist”. Each line in the list file 
contains the name of one input file, and optionally also lists intervention information. 
 
Interventions 
 
The input data can optionally contain interventions on some of the variables, setting their 
values independently of their parents in the network (for an explanation of interventions, 
and how they can be used in a bayesian network structure-learning search, see "Bayesian 
Network Analysis of Signaling Networks: A Primer", Dana Pe'er, Science STKE 2005). 
 
If input files are specified in a list file, it can be used to specify interventions; a line in the 



list file (other than the first, fixed line) is of the format 
 

file-name intervened-variable-name intervened-variable-name ... 
 
or 
 

file-name suppress intervened-variable-name intervened-variable-name ... 
 
listing the variables, if any, on which there are interventions in the data of this input file. 
When calculating scores during the structure-learning search, the values of this variable 
in data points from this data file are assumed to be independent of the variable's parents 
in the network. If the keyword "suppress" is specified, the values of this variable are 
assumed to always be the lowest possible value for this variable, and the actual values 
specified in the data file are ignored; if the keyword "suppress" is not specified, the actual 
data values for this variable are used. 
 
When the application is run interactively, the interventions in each data files can also be 
specified interactively, as described in the graphic user interface section. 
 
Variable status 
 
Each variable in the input data has a status that is one of the following: 
 
• Normal - this is the default status 
 
• Ignore - the variable is not part of the bayesian network, and is ignored. This is 

useful if the data is read from input files that contains information about 
extraneous entities the user is not interested in. 

 
• Alias - this variable should be treated as an alternate name for another variable, 

and the data under these two names should be treated as belonging to the same 
variable. This is useful if different input data files refer to the same entity by 
different names. The user should choose one of these name's as the variable's 
main name (and give it a status of "Normal", "Root" or "Leaf"); and give all the 
other names the status of "Alias". 

 
• Root - incoming edges into this variable are not allowed in the network. 
 
• Leaf - outgoing edges out of this variables are not allowed in the network. 
 
The user can provide a file listing the status for each variable. The file is specified in the 
specification file with the line: 
 

VariableStatusFile status-file-name 
 
Each line in the status file lists one variable followed by its status; if the status is "Alias", 



this is followed by the variable's main name. A variable that is not listed in the status file 
is given the status "Normal"; if there is no status file, all variables have status "Normal". 
 
In an interactive run of the application, the interface allows the user to interactively 
change variable status, and to write a new version of the status file for future runs, as 
described in the graphic user interface section. 
 
data sampling 
 
The application can either read all the data and use it in calculating scores during the 
search (the default option); or it can take a random sample of the data points. 
 
A random sample of the data is specified with the line 
 

Sample N [NoReplacement] 
 
The application takes N data points at random from each of the input data files. By 
default, the random sampling is done with replacement (i.e. the same data point may be 
included in the sample more than once); if the "NoReplacement" parameter is specified, 
the random sampling is without replacement. If "NoReplacement" is specified, each data 
file must have at least N data points. 
 
Output 
 
The name of the network is specified in the specification file in the line: 
 

DefaultNetworkName network-name 
 
This name is used to create the names of the application's output files. By default, the 
application runs one structure-learning search, and writes its results in a file named 
network-name.network1.  
 
The output file contains three sections. 
 

• A header consisting of lines beginning with the # character and containing 
information on the run parameters. This information includes a listing of the input 
data files used in the search, and the interventions in each file; the discretization 
parameters if discretization was used (see discretization section below); and the 
various run parameters specified either in the specification file or interactively, as 
described in the sections below. This header is designed to help users keep track 
of the various outputs produced by biolearn and the data and parameters that 
resulted in each one. 

• Depending on the scoring function used, a section listing the CPD of each 
variable in the network. If BDe scoring was used (see the scoring functions 
section below) this section is omitted. If NormalGamma scoring was used, this 
section lists a regression tree for each variable; if MeanSquareError scoring was 



used, this section lists a linear regression formula for each variable. 
• A list of the network’s edges. Each edge is written in the form  

 
variable1 --- variable2 

 
or 

 
variable1 --> variable2 

 
depending on whether the edge is directed or not. 

 
The user can specify running several searches, and doing model averaging, by using the 
line: 
 

NumRuns N 
 
The application will then perform N searches, and write their results into files named 
network-name.network1, network-name.network2, ... network-name.networkN. If random 
sampling of the data was specified, each run is done with a different random sample. 
 
When running several searches, the program also creates a file named network-
name.confidences, listing network edges that have appeared in a majority of the search 
results and for each one the percentage of search results in which it appeared. By default, 
an edge will appear in the confidences file if it appears in the results of more than half the 
searches; the user can specify a different threshold with the line 
 

ConfidenceThreshold  N 
 
An edge will then appear in the confidences file if it appears in the results of more than 
N% of the searches. 
 
The confidences file also starts with the run-parameters header like the individual 
network files. 
 
In an interactive run, the network name and the number of runs can be changed 
interactively, and in addition to the output files the program also displays a graphic 
visualization of the results. This is described in the graphic user interface section. 
 
Scoring functions 
 
The application provides a choice of three scoring functions that can be used in the 
structure-learning search; each scoring function is associated with a different type of 
probability distribution on the variables. 
 
• BDe scoring function, using conditional probability tables for the probability 

distributions on the variables. This is specified in the specification file with the 



line: 
 

Score BDe [phantom-data-size] 
 

The default phantom data size is 5. 
 
• Normal Gamma scoring function, using regression trees for the probability 

distributions on the variables. This is specified in the specification file with the 
line: 

 
Score NormalGamma [alpha=alpha-value] [gamma=gamma-value] 
[minSplit=min-split-size] 
 

Default parameters are 1 for both alpha and lambda. Each leaf in a regression tree must 
always have at least min-split-size data points; default min-split-size is 5. If this scoring 
function is used, the second section of the output file lists the regression tree for each 
node. 
 
• Mean Square Error as the scoring function, using linear gaussian probability 

distributions on the variables. 
 

Score MeanSquareError 
 
If this scoring function is used, all nodes are assumed to have a linear gaussian 
probability distribution with a standard deviation of 1, and the linear formula for the 
mean is obtained by linear regression on the data values of the node and its parents. The 
second section of the output file lists the linear regression formula for each node.  
 
For a non-interactive run, exactly one Score line must appear in the specification file, and 
the application uses the specified scoring function. For an interactive run, the user 
chooses interactively among the three available scoring functions, as described in the 
graphic user interface section; the specification file can contain any or none of the 
possible Score lines, in order to specify non-default parameter values for the scoring 
functions. 
 
Edge and split penalties 
 
The user may specify a score penalty on adding edges to the network. This is specified by 
the line 
 

Prior EdgePenalty N 
 
During the search process, N is subtracted from the score for each edge in the network. 
(Effectively, an edge will be added to the network only if it improves the score of the 
main scoring function by more than N).  
 



The appropriate value for N will often be hard to decide on, and will be different for 
different scoring function used. To deal with this difficulty, an alternative way to specify 
the edge penalty is 
 

Prior EdgePenalty Fraction F 
 
F is a small number, usually between 0 and 1. When the edge penalty is specified in this 
way, biolearn examines all possible single edge additions, discards those that worsen the 
score, and for those that improve the score (not taking the edge penalty into account) 
finds the median score improvement; the edge penalty is then set at this median score 
improvement multiplied by F. 
 
Note that the BDe and NormalGamma scoring functions may be useful with or without 
an edge penalty, but the MeanSquareError scoring function requires an edge penalty to be 
useful; without an edge penalty it is very likely to result in a fully connected network. 
 
When using the NormalGamma scoring function, the user may also specify a penalty on 
splits in a regression tree, using the line 
 

Prior SplitPenalty N 
 

or 
 

Prior SplitPenalty Fraction F 
 
During the search process, N, or the median single-edge improvement multiplied by F, is 
subtracted from the score for each split in each regression tree CPD. 
 
If both the edge penalty and the split penalty are specified, then when splitting a 
regression tree with a new parent both penalties are subtracted from the score; when 
splitting a regression tree with an existing parent, which has already been used in other 
splits on this regression tree, only the split penalty is subtracted from the score. 
 
Discretization 
 
The NormalGamma and MeanSquareError scoring functions are suitable for dealing 
directly with continuous input data. The BDe scoring function, however, requires discrete 
input data; if the BDe scoring function is used and the input data is continuous, it is 
automatically discretized. In an interactive run, the form of discretization can be specified 
interactively, as described in the graphic user interface section; in a non-interactive run, 
it has to be specified in the specification file, as described below. 
 
Continuous data is discretized by dividing the range of values into a number of buckets; 
the BDe score is calculated using joint counts, which are obtained by counting the data 
points that have values in each bucket. The number of buckets can be any number 
between 2 and 6, or it can be 10, 15 or 20. 



 
The boundaries between buckets can be either hard or soft. If the boundary is hard, it 
consists of one threshold value; if the value of a variable in any data point is less than the 
threshold, it is counted as being in the lower bucket; if the value is larger than or equal to 
the threshold, it is counted as being in the higher bucket. 
 
If the boundary is soft, it consists of two threshold values. If the value of a variable in any 
data point is less than the lower threshold, it is counted as being in the lower bucket; if 
the value is larger than or equal to the higher threshold, it is counted as being in the 
higher bucket; if the value is between the two thresholds, it is counted partly in each 
bucket, in proportion to its distance from the two thresholds. For example, is the soft 
threshold is 0.9:1.1 and the variable at a given data point has a value of 0.95, it adds .75 
to the count for the lower bucket and .25 to the count for the higher bucket. 
 
The user can either specify the boundaries between buckets as absolute numbers, or have 
biolearn choose them automatically based on the values of each variable. The boundaries 
are specified as absolute numbers with the line: 
 

DiscretizationDefault boundary1 boundary2 ... 
 
Each boundary is either a single number to specify a hard boundary, or of the form low-
number:high-number to specify a soft boundary. 
 
Automatic calculation of the bucket boundaries is specified with the line: 
 

DiscretizationBuckets N boundary_type division_method 
 
Where N is the number of buckets, boundary_type is either "Hard" or "Soft", and 
division_method is either "ByDistance" or "BySize". Division by distance means that the 
range of values of the variable is divided into N equal sub-ranges, so that the difference 
between the upper boundary and the lower boundary is equal for each bucket. Division 
by size means that the set of values of the variable in the data is divided into N sets of 
equal size, so that for every variable the number of values in the data in each bucket is the 
same. When automatically setting a soft boundary, the distance between the low and high 
thresholds is set to be 40% of the size of a full bucket. 
 
If there is no line in the spec file to specify default discretization, the default 
discretization parameters are 3 buckets with hard boundaries divided by distance. 
 
The user may also specify the discretization boundaries separately for specific variables, 
using the line: 
 

Discretization variable1 variable2 ... : boundary1 boundary2 ... 
 
The specification file may contain any number of Discretization lines, as long as any 
variable is mentioned in at most one such line. Variables not mentioned by name in a 



Discretization line are discretized according to the default parameters specified in the 
DiscretizationDefault or DiscretizationBuckets line. 
 
Search algorithms 
 
The application provides a choice of several search algorithms used in searching for the 
optimal structure. The specification file must contain a line specifying the choice of 
algorithm (in an interactive run, the choice of algorithm still needs to to be specified in 
the specification file and cannot be changed interactively). 
 
The available algorithms are as follows: 
 
• Greedy Hill Climbing - this is likely to be the most useful algorithm for most 

applications. It is an enhanced version of the classic greedy hill climbing 
algorithm, using random restarts to avoid getting stuck too easily in a local 
maximum, and using tabu search to search plateaus (i.e. regions of the search 
space in which a single step leaves the score unchanged). 

 
To use the greedy hill climbing algorithm, the specification file should contain the line: 
 

Algorithm GreedyHillClimbing [restarts=N] [plateauMax=M] [searchLog=L] 
 
N is the number of random restarts. Default is 0 (i.e. simple greedy hill climbing without 
random restarts). 
 
M is the maximum number of search steps that can be taken in a plateau. If M steps have 
been taken and no step has been found yet to increase the score, the search is ended. 
Default is no limit (i.e. any plateaus completely until a step is found to increase the score 
or until the entire plateau has been explored). To completely turn off searching of 
plateaus, specify "plateauMax=0". 
 
If the “searchLog” parameter is specified, biolearn writes a log of the search to the 
standard error stream; at each step it records the step that was taken, the improvement 
that step made to the score, and compares it to all other edges that could have been added 
to the same variable and their effect on the score. This log can be used to get a better 
understanding of the workings of the scoring function, and to help in deciding on 
appropriate values for future runs for the edge or split penalties. L is the maximum 
number of lines in the log; biolearn stops producing the log when L lines have been 
printed. 
 
By default, when using the BDe or MeanSquareError scoring functions, a single step in 
the search consists of adding, removing or reversing a single edge. 
 
When using the NormalGamma scoring function, a single step in the search consists of 
either splitting a leaf in one node's regression tree or of unsplitting an existing split. In 
some cases such a step changes the node's set of parents, and thus causes an edge to be 



added or removed in the network; in other cases (for example if we split using a parent 
that's already been used in other splits in the same regression tree) the edges of the 
network do not change. 
 
When using the BDe or MeanSquareError scoring functions, the user may enhance the 
possible steps to also allow parent exchange. A parent exchange consists of removing an 
edge A->B and adding a new edge C->B. To allow parent-exchange steps in the search 
(in addition to edge addition, removal or reversal), the user should include in the 
specification file the line 
 

Modifier AddRemoveReverse WithExchangeParent 
 
This will cause the program to run slightly longer, since there are more possibilities to 
check at each step. It is especially useful if using the RequiredPath constraint (described 
below in the constraints section). Note that adding the exchange-parent step is not 
allowed if using the NormalGamma scoring function. 
 
• Sparse Candidate. 
 
The Sparse Candidate algorithm is designed for structure learning in very large networks. 
It is described in Learning Bayesian network structure from massive datasets: The 
“sparse candidate” algorithm, Friedman, Nachman and Pe'er, Proceedings of the 15th 
Conference on Uncertainty in Artificial Intelligence 1999, 206-215. As a rule of thumb, if 
the search involves more than 50 variables, use of the sparse candidate algorithm is likely 
to be necessary. 
 
To use the sparse candidate algorithm, the specification file should contain the line: 
 

Algorithm SparseCandidate P GreedyHillClimbing [restarts=N] [plateauMax=M] 
[searchLog=L] 
 

Where P is the size of the candidate sets.  
 
The sparse candidate algorithm incorporates the greedy hill-climbing algorithm, and so 
has all of the same parameters. It uses the same search steps, and also allows use of the 
"Modifier AddRemoveReverse WithExchangeParent" line to allow parent exchange as a 
search step. 
 
• Exhaustive search - this algorithm is prohibitively expensive except in very small 

networks; but when the network is very small, it is guaranteed to find the optimal 
structure. It exhaustively checks all possible network structures, and outputs the 
one with the highest score. 

 
To use the exhaustive search algorithm, the specification file should contain the line: 
 

Algorithm ExhaustiveSearch 



 
The exhaustive search algorithm can be used with the BDe or MeanSquareError scoring 
functions, but not with the NormalGamma scoring function. 
 
• Best Forest - this algorithm searches specifically for a forest-form network, i.e. a 

network in which each node can have at most one incoming edge. It finds the 
optimal such network using a variation on the classical minimum-spanning-tree 
algorithm. 

 
The best forest algorithm can be used in two ways. It can be used as the main search 
algorithm, with the application producing the optimal forest-form network as its output; 
to do that, the specification file should contain the line: 
 

Algorithm BestForest 
 

Alternatively, the best forest algorithm can be used to create a starting-point for the 
search; the application starts the search by applying the BestForest algorithm, and then 
uses this optimal forest-form network as the starting point for a search using the greedy-
hill-climbing or the sparse-candidate algorithm; in some cases this will help the search 
find better structures than if it started from an empty network. To use the best-forest 
algorithm in this way, the specification file should contain the "Algorithm 
GreedyHillClimbing" or the "Algorithm SparseCandidate" line, as described above, and 
also contain the line 
 

InitialStructure BestForest 
 

In the current version, the implementation of the BestForest algorithm is not compatible 
with setting any variables to a status of "Root" or "Leaf" (see the variable status section 
above). It is also not compatible with specifying any constraints with the exception of 
ParentMaximum (see the constraints section below). If any other constraints are 
specified, or if any variables are given a status of "Root" or "Leaf", the BestForest 
algorithm cannot be used. 
 
Search starting point 
 
When using the greedy hill-climbing or sparse candidate algorithms, the search starts 
from a given point in the search space. By default the search starts from an empty 
network; biolearn provides the option for the user to specify the starting point. This can 
be useful if the user has reason to believe some specific combination of edges should be 
in the network. The heuristic search starting from the empty network may end up missing 
this combination of edges and never trying it; by starting the search with an initial 
network containing this combination of edges, the user makes sure this combination is 
tried. 
 
In an interactive run, the user can specify the starting network interactively, as described 
in the graphic user interface section. 



 
In a non-interactive run, the user specifies the starting network as an optional third 
command-line argument, pointing to a file containing the input network, as described in 
the Invoking the biolearn structure-learning application section. 
 
In this version, non-empty starting points work only with the BDe scoring function. The 
input network must be either the output of a run with the BDe scoring function, or a 
manually edited list of edges. The first section of biolearn output, containing run-
parameters information, is optional in the input and is ignored. 
 
Specifying a starting point is meaningful only if the greedy hill-climbing or the sparse-
candidate search algorithm is being used. 
 
Constraints 
 
There several types of constraints that the user can specify over the structure of the 
network. Constraints are specified in the specification file (they cannot be changed 
interactively). The specification file may contain any number of lines specifying 
constraints; the application will issue an error if there is no possible network that can 
satisfy all specified constraints. 
 
The possible constraints are as follows: 

 
Constraint ParentMaximum N [variable1 variable2 ...] 

 
The named variables are limited to an in-degree of N. If no variable names are given, all 
variables in the network are limited to an in-degree of N. 

 
Constraint RequiredEdge var1 var2 

 
The edge var1->var2 must be in the network. 

 
Constraint RequiredPath var1 var2 

 
A path from var1 to var2, direct or indirect, must be in the network. 

 
Constraint NoEdge var1 var2 

 
The edge var1->var2 is not allowed in the network. 

 
Constraint NoPath var1 var2 

 
Any path from var1 to var2, direct or indirect, is not allowed in the network. 

 
Constraint SplitMaximum N 

 



If using the NormalGamma scoring function, the regression tree of any node is limited to 
N splits. This constraint has no effect when used with the BDe or MeanSquareError 
scoring functions. 
 

Constraint MissingValuesMaximum P 
 
P must be a number between 0 and 1. If more than a P fraction of the values of a variable 
are missing, it cannot be be a parent in the network; if P is 0, any variable with any 
missing values is forbidden from being a parent in the network. When using the BDe or 
MeanSquareError scoring functions, the restriction is on the fraction of missing values in 
the entire data (so any variable with more than P fraction of missing values cannot have 
any outgoing edges); when using the NormalGamma scoring function, the restriction is 
on the fraction of missing values in the data for the leaf that is being split. 
 
In general, all available scoring functions and all available algorithms can be used with 
any of the constraints. There are, however, some specific restrictions: 
 

• If the NormalGamma scoring function is used, the RequiredEdge and 
RequiredPath constraints cannot be used. 

 
• If the BestForest search algorithm is being used, the only allowed constraint is 

ParentMaximum (specifying this constraint makes no sense when using 
BestForest as the main algorithm, since the result is already constrained to an in-
degree of 1 for all nodes; but it may be useful when BestForest is used for 
creating the initial structure). Other constraints cannot be used. 

 
Probability of specific network features 
 
When using the exhaustive search algorithm, the application provides the option of 
specifying certain features of the network - the presence of specific edges, or conditional 
independence of pairs of variables given some subset of the other variables – and 
calculating their probability. If the specification file contains one or more feature 
specifications, and the exhaustive search algorithm is used, then in addition to producing 
the optimal network as output the application also writes to the standard output the 
probability of each feature. The probability of a feature is the sum of the probabilities of 
all possible networks that have this feature; the probability of a network is e to the power 
of the network’s score, normalized so that the sum of probabilities of all possible 
networks is 1. 
 
In this version, calculation of feature probabilities is handled entirely non-interactively. 
In an interactive run, features still have to be specified in the specification file, and their 
probabilities are still written to the standard output. 
 
Since calculation of feature probabilities requires use of the exhaustive search algorithm, 
it is only possible on very small networks, and only with the BDe of MeanSquareError 
scoring functions, not with the NormalGamma scoring functions. 



 
Each feature is identified by a feature number. The two types of basic features are the 
presence of an edge or the conditional independence of two variables; these are specified 
by the following lines: 
 

Feature N Edge variable1 variable2 [undirected] 
 
N is the feature number. If “undirected” is not specified, the feature is the presence of the 
edge variable1->variable2; if “undirected” is specified, the feature is the presence of an 
edge connecting variable1 and variable2, in either direction. 
 

Feature N CI variable1 variable2 variable3 … 
 
N is the feature number. The number of variables listed in the line must be three or more; 
the feature is the conditional independence of variable1 and variable2 given the other 
listed variables.  
 
A Feature may be a conjunction of one or more basic features, specified by one or more 
lines with the same feature number. The specification file may list any number of 
different features with different feature numbers, and the application outputs the 
probability of each of them. 
 
Note that if you run several search runs using exhaustive search, with model averaging, 
and also specify a list of features, the probability of the features will be output for each of 
the search runs. The probabilities in the different runs may be different, depending on the 
random sample taken of the data in each run. 
 
Graphic User Interface 
 
In the preceding sections we described capabilities available in both interactive and non-
interactive runs of the applications. This section described the additional capabilities 
provided by the application’s graphical user interface, when the application is invoked 
interactively. 
 
The graphical user interface is limited in the number of variables that it can handle. It will 
not work for data that involves a very large number of variables; as a rule of thumb, do 
not use the graphical user interface for network searches dealing with more than 50 
variables. 
 
When the application is invoked interactively, after reading the specification file, it 
displays the following window: 
 



 
 
Network name 
 
The “network name” text field provides that name that will be used as the network name 
in creating the output files, as described above in the output section. The user can choose 
the file names by changing this text field. 
 
Number of runs 
 
The “number of runs” text field allows the user to specify the number of search runs that 
will be done each time the “Run” button is clicked, and used for model averaging. 
 
Refresh specification 
 
Clicking the “refresh specification” button re-reads the specification file. Since in the 
current implementation there are some options (such as the choice of search algorithm, or 
constraints) that have to be specified in the specification file, this allows the user to 
change them during a run, by editing the specification file and then clicking the “refresh 
specification” button. 
 
Add data file 
 
As discussed above in the specifying input data section, in an interactive run the 
specification file only specifies the format of the input data. The input data files 
themselves have to be chosen interactively. 
 
To read in a new data file, the user clicks on the “add data file” button. This opens a file 
chooser window, and the user can either choose a single data file, or a list file, which the 
application then reads in, and updates the displayed count of data files loaded.  
 
Display data files 
 
Clicking on the “display data files” button opens a window displaying a list of the data 
files currently loaded, and the list of the variables in each one. Each variable is associated 
with a check-box which is checked if the data file has an intervention on that variable. 
 
For example, if you load the nine files listed in science2005.filelist, and then click on 
“display data files”, the following window will appear: 



 

 
 
The user can instruct biolearn to ignore some of the data files, by checking the “Ignore” 
check-box for the unwanted data files; or remove data files permanently by clicking on 
the “delete” button. The user can change the interventions in each file by checking or 
unchecking the boxes for intervened variables, and checking or unchecking the 
“suppress” checkbox, which is the equivalent of the “suppress” keyword in the list file 
(see the specifying input data section).  
 
Choose variable status 
 
Clicking the “choose variable status” button opens a window that lists all variables, with 
a choice menu for each one allowing the user to choose its status; for example: 
 

 
 
The status options are the ones discussed above in the section: Normal, Ignore, Alias, 
Root and Leaf. If Alias is chosen, another choice menu appears for choosing the 
variable’s main name for which this name is an alias. 
 
If the user clicks on the “save to file” button, the current choice of status for each variable 
is written into the status file, so future invocations of the application in the same directory 
will automatically be initialized to these status choices. 
 



Default discretization options 
 
The main window displays threes choice menus that allow the user to change the default 
discretization options, i.e. the discretization options to be used for variables that don’t 
have discretization boundaries specified separately. The user can choose the number of 
buckets, whether the division is by distance or by size, and whether the boundaries are 
hard or soft. 
 
These discretization options have an effect only if the input data is continuous and the 
BDe scoring function is chosen. If the input data is discrete, or if the user chooses the 
NormalGamma or MeanSquareError scoring functions, discretization options have no 
effect. 
 
Choose scoring function 
 
The user can choose the scoring function to be used by clicking the “choose scoring 
function” button. If the user does not click on the “choose scoring function” button, the 
default scoring function is BDe. 
 
If all data values in the input are whole numbers, and the range of different values for 
each variables is less than 20, then the data is considered discrete, and BDe is the only 
scoring function that can be used; clicking the “choose scoring function” button displays 
a message stating that the data is discrete. 
 
If input data is continuous, then clicking on the “choose scoring function” opens a 
window with three buttons, allowing the user to choose one of the three scoring 
functions. 
 
Specifying discretization on each variable 
 
If the data is continuous, and the user clicks on the “choose scoring function” button and 
then chooses BDe, this means that the data will have to be discretized. The application 
then opens a window for specifying the discretization options for each variable: 
 



 
 
This window contains for each variable three choice menus that allow the user to choose 
the number of buckets, the division method and the boundary type for that variable. It 
also displays the absolute boundary values for each variable (the absolute boundary 
values specified in the specification file, or, if none are specified, the values calculated 
using the default parameters). The user can change the number of buckets, the division 
method and/or the boundary type for a specific variable, and then click the “calculate 
boundaries” button to re-calculate the absolute values of the boundaries. The user can 
also manually change the absolute values of the boundaries, and then click the “apply 
manually entered values” button to cause these changes to take effect. 
 
In some cases, deciding on where to place the boundaries can be helped by viewing a 
histogram of the data values of each variable. If the user clicks on the “display 
histogram” button, the application displays such a histogram: 
 

 
 
The histogram divides the variable’s range of values into 60 equal-distance buckets, and 
displays a column for the number of values in each bucket; the histogram is divided into 



colors based on the variable’s discretization buckets. When the user moves the cursor 
over the histogram, the panel displays the range and height of the column to which the 
cursor is currently pointing. 
 
Writing discretized data 
 
An interactive run of the application provides the option of writing out a discretized 
version of the data, so future applications can read discrete data and need not do the 
discretization again. 
 
A discretized version of the data is written out when the user clicks on the "write 
discretized data" button. For each input data file, the application creates an output file 
with a discretized version of the same data. All discretization parameters that the user has 
specified (the default parameters as well as any boundaries separately specified for 
individual variables) are used in the discretization. By default, a discretized output file 
has the same name as the input data file with the suffix ".discretized" added; the user can 
change the suffix in the "discretized output suffix" text field. 
 
Writing out discretized data is not allowed if soft bucket boundaries have been specified. 
 
Discretized output data is always in DataPointPerLine format, even if the input was in 
VariablePerLine format. Variables that have a status of "Ignore" are omitted from the 
discretized output; a variable with several aliases appears in the output always under its 
main name. 
 
Choosing the search starting-point 
 
As discussed above in the search starting point section, the user may specify a network 
to serve as a starting-point for the search. In an interactive run, this is done by clicking on 
the “Choose Initial Network” button; biolearn opens a file chooser window which allows 
the user to specify a file containing the initial network. To change the choice of initial 
network, click on “Choose Initial Network” again and choose a different file; or to go 
back to the default starting point of an empty network, click on “Clear Initial Network”.  
 
Running structure-learning searches 
 
The main purpose of running the biolearn application is usually to run the structure-
learning search. Once all data has been loaded, and the desired scoring function and, if 
needed, the discretization parameters have been chosen, the user then clicks on the "Run" 
button to run the searches. 
 
The number of searches run is as specified in the "number of runs" text field. The 
window displays a message indicating how many searches have been completed so far. 
The search results are written into output file - a file for the network resulting from each 
search, and a confidences file for the results of model averaging - as discussed above in 
the output section. 



 
When all the runs are finished, the results are also displayed graphically: 
 

 
 
If several searches were run for model averaging, the graphic display shows the edges 
that had confidences above the threshold, with each one labeled with its confidence level 
(1.0 means the edge appeared in the results of all runs; .95 means it appeared in 95% of 
runs; etc.). If only one search was done, the graphic display shows the resulting network. 
The display indicates whether the edge is directed or not. Note that if the NormalGamma 
or MeanSquareError scoring functions are used, the network output files contain both the 
network's edges and probability distributions for each variable; the graphic display still 
shows only the network's edges. 
 
If a variable has no edges connecting to it in the network, either in or out, it does not 
appear in the graphical display. 
 
The application tries to lay out the nodes so as to make the network as readable as 
possible, but the layout is heuristic and is not always good; the user can use the mouse to 
move the nodes around to manually create a more readable layout. 
 



Displaying a previouly-created network 
 
The application can also be used to display a network or a confidences file that was 
created previously, either in this run or in a previous run of biolearn. When the user clicks 
on the "display network" button, the application opens a file chooser window that allows 
the user to choose a network or confidences file, and then graphically displays the edges 
in that file. This can be used either to display again the results of the current run, or to 
display the results from a previous run of biolearn. 
 
Calculating the score of a network 
 
The score of a network is normally used by the application only internally, to compare 
networks to each other during a search. In some cases, however, in order to better 
understand the results provided by biolearn, the user may wish to know the scoring 
results for specific networks. 
 
When the user clicks on the "compute score" button, the application opens a file chooser 
window that allows the user to choose a network file. The application then computes the 
score for the network, and displays the component score computed for each variable and 
the total score for the network. 
 
For all three scoring functions used, the component scores and the total network score are 
always negative numbers; a better network has a higher score, i.e. a negative score of 
smaller magnitude. 
 
The type of score used to compute the score of the network depends on the type of 
probability distribution contained in the network file. If the network file contains 
regression tree distributions, the score is computed using the NormalGamma scoring 
function; if the network file contains linear regression approximations, the score is 
computed using the MeanSquareError scoring function; if the network file contains only 
the network edges, the input data is discretized and the score is computed using the BDe 
scoring function. 
 
This function can be used to compute the score of a network created either by the current 
run or by a previous run (the user can also manually create network with the editor to 
check the score). The input data currently loaded must have the same variable names as 
the variable names used in the network. 
 
If the specification file specifies random sampling of the data (i.e. contains a "Sample" 
line), a new random sample of the data is taken each time the "compute score" button is 
clicked; it is therefore to be expected that several score computations on the same 
network would give slightly different results. If the specification file does not contain a 
"Sample" line, score computation is node using the entire input data, and so several score 
computations on the same network and with the same data will give precisely the same 
results. 
 



The component scores displayed for individual variables do not take the edge and split 
penalties into account; the total network score displayed does take these penalties into 
account. Thus if the specification file does not specify any edge or split penalties, the 
total score displayed is equal to the sum of the component scores; if there are edge or 
split penalties, the total score will be less than (i.e. of greater magnitude than) the sum of 
the component scores. 
 
Exiting the application 
 
Any number of search runs can be made during one interactive run, with the same input 
data or with different data. The application ends when the user clicks the "exit" button or 
closes the main window. 


