
Biolearn is a general package for applying probabilistic graphical models to biological
applications. Biolearn release 1.0 is concentrated on structure learning for bayesian
networks; future releases are expected to include other types of graphical models, support
inference applications, and allow plug-and-play addition of new types of probability
distributions, scoring functions and search algorithms.

Biolearn is implemented in java, and distributed as a jar. It is compiled in java version
1.6.0, and therefore requires java version 1.6.0 or later. In addition to the biolearn jar, the
distribution also includes four jars from open-source providers that are used for specific
functions of biolearn: jung-1.7.6.jar, provided by the JUNG Framework Development
team at http://jung.sourceforge.net/; commons-collections-3.2.jar, provided by the
Apache Commons project at http://commons.apache.org/collections/; colt.jar, provided
by the Colt project at http://acs.lbl.gov/~hoschek/colt/ (these three jars are used for the
graphical visualization of bayesian networks); and Jama-1.0.2.jar, provided by NIST at
http://math.nist.gov/javanumerics/jama/, and used for implementing the
MeanSquareError scoring function.

Invoking the biolearn structure-learning application

The biolearn structure learning application reads observation data on the nodes of a
bayesian network, optionally performs discretization on the data, and then applies a
search algorithm for finding an optimal network structure. The user can choose among
several possible search algorithms and several possible scoring functions. The application
can be invoked to run just one structure-learning search on the data, or to run any number
of structure-learning searches using random samples of the data and perform model
averaging. The results are output as text files, and optionally also visualized graphically.

The distribution includes four command files that can be used to invoke the biolearn
structure-learning application; two windows bat files and two UNIX sh files. For each
system there is one command file that invokes the application as a command-line utility,
running non-interactively and providing its output only as a text output file; and one
command file that invokes the application as a graphic interactive application, providing
its output both as a text output file and through graphic visualization.

A run of the application is guided by a specification file, a text file specifying the input
data, the choice of algorithm, scoring function and discretization methods, and other user-
controlled options. The command files accept between one and three command-line
arguments:

• The first, mandatory argument is the directory containing the five jar files.
• The second, optional argument is the name of the specification file. If the second

argument is omitted, the application by default searches for a file named
biolearn.spec.txt in the current directory. The command-line version of the
application fails if it cannot find the specification file; the interactive version, if it
cannot find the specification file, opens a file chooser window to let the user find
the specification file interactively.

• The third, optional argument is for specifying the starting point of the search. It is

discussed below in the search starting point section.

The Biolearn specification file

Each line in the specification file specifies the user's choice for one of the user-controlled
options for the run. In a non-interactive invocation, the input data and all options for the
run must be specified in the specification file; in an interactive run, the input data and
some of the options can be specified or changed interactively.

Input data

The biolearn structure-learning application expects to receive input data in one or more
files in tabular form, with each line in the file consisting numerical values separated by
tabs. There two possible arrangements of the input data files:

1. One data point per line, with each column representing one variable. In this
arrangement the first line provides the names of the variables, with each subsequent line
providing the values, in the specified variable order, for one of the data points. For
example, a file with four data points and three variables with this format might look as
follows:

A B C
0.74 0.03 0.04
0.66 0.09
0.73 0.6 1.11
0.77 0.88 1.07

2. One variable per line, with each column representing one data point. In this
arrangement (often used for gene expression data), each line contains the name of the
variable, followed by the values for that variable. The variable name may be in either the
first of second column of each line; if it is in the second column, the first column is
ignored (this accommodates Affymetrix files, in which the first column contains the
gene’s ORF and the second column contains its name). In the first line either the first or
second field should be “Name” or “GeneName”, to indicate which column contains the
variable name; and the following fields specify names for the data points. For example,
the data from the example above, in the variable-per-line format, would look as follows:

Name DP1 DP2 DP3 DP4
A 0.74 0.66 0.73 0.77
B 0.03 0.6 0.88
C 0.04 0.09 1.11 1.07

or

ORF Name DP1 DP2 DP3 DP4
YDR1 A 0.74 0.66 0.73 0.77

YAR5 B 0.03 0.6 0.88
YOR3 C 0.04 0.09 1.11 1.07

Both arrangements allow missing values (for example the example above has a missing
value for B in DP2); a missing value is represented by an empty cell (i.e. nothing between
the two tab characters) or by any string that is not a number, such as a space, a question-
mark, or the string "NaN".

Different data files may have different but overlapping sets of variables. The structure
search is constrained so that for any variable, there must always be at least one data file
with data for that variable and all its parents.

Specifying input data

In an interactive run, the specification file must contain the line

dataformat format

where format is one of "DataPointPerLine" or "VariablePerLine". The input files
themselves are specified by the user interactively, as described in the graphic user
interface section.

In a non-interactive run, the specification file has to specify the actual input data. If the
data consists of only one input file, it is specified as:

data format input-file-name

If there are sevarl input files, they can either be listed directly:

data MultipleInputFiles format input-file-name-1 input-file-name-2 ...

or by providing a file containing a list of the file names

data MultipleInputFiles format list-file-name

The name of the list file must contain the string “.filelist”. Each line in the list file
contains the name of one input file, and optionally also lists intervention information.

Interventions

The input data can optionally contain interventions on some of the variables, setting their
values independently of their parents in the network (for an explanation of interventions,
and how they can be used in a bayesian network structure-learning search, see "Bayesian
Network Analysis of Signaling Networks: A Primer", Dana Pe'er, Science STKE 2005).

If input files are specified in a list file, it can be used to specify interventions; a line in the

list file (other than the first, fixed line) is of the format

file-name intervened-variable-name intervened-variable-name ...

or

file-name suppress intervened-variable-name intervened-variable-name ...

listing the variables, if any, on which there are interventions in the data of this input file.
When calculating scores during the structure-learning search, the values of this variable
in data points from this data file are assumed to be independent of the variable's parents
in the network. If the keyword "suppress" is specified, the values of this variable are
assumed to always be the lowest possible value for this variable, and the actual values
specified in the data file are ignored; if the keyword "suppress" is not specified, the actual
data values for this variable are used.

When the application is run interactively, the interventions in each data files can also be
specified interactively, as described in the graphic user interface section.

Variable status

Each variable in the input data has a status that is one of the following:

• Normal - this is the default status

• Ignore - the variable is not part of the bayesian network, and is ignored. This is

useful if the data is read from input files that contains information about
extraneous entities the user is not interested in.

• Alias - this variable should be treated as an alternate name for another variable,

and the data under these two names should be treated as belonging to the same
variable. This is useful if different input data files refer to the same entity by
different names. The user should choose one of these name's as the variable's
main name (and give it a status of "Normal", "Root" or "Leaf"); and give all the
other names the status of "Alias".

• Root - incoming edges into this variable are not allowed in the network.

• Leaf - outgoing edges out of this variables are not allowed in the network.

The user can provide a file listing the status for each variable. The file is specified in the
specification file with the line:

VariableStatusFile status-file-name

Each line in the status file lists one variable followed by its status; if the status is "Alias",

this is followed by the variable's main name. A variable that is not listed in the status file
is given the status "Normal"; if there is no status file, all variables have status "Normal".

In an interactive run of the application, the interface allows the user to interactively
change variable status, and to write a new version of the status file for future runs, as
described in the graphic user interface section.

data sampling

The application can either read all the data and use it in calculating scores during the
search (the default option); or it can take a random sample of the data points.

A random sample of the data is specified with the line

Sample N [NoReplacement]

The application takes N data points at random from each of the input data files. By
default, the random sampling is done with replacement (i.e. the same data point may be
included in the sample more than once); if the "NoReplacement" parameter is specified,
the random sampling is without replacement. If "NoReplacement" is specified, each data
file must have at least N data points.

Output

The name of the network is specified in the specification file in the line:

DefaultNetworkName network-name

This name is used to create the names of the application's output files. By default, the
application runs one structure-learning search, and writes its results in a file named
network-name.network1.

The output file contains three sections.

• A header consisting of lines beginning with the # character and containing
information on the run parameters. This information includes a listing of the input
data files used in the search, and the interventions in each file; the discretization
parameters if discretization was used (see discretization section below); and the
various run parameters specified either in the specification file or interactively, as
described in the sections below. This header is designed to help users keep track
of the various outputs produced by biolearn and the data and parameters that
resulted in each one.

• Depending on the scoring function used, a section listing the CPD of each
variable in the network. If BDe scoring was used (see the scoring functions
section below) this section is omitted. If NormalGamma scoring was used, this
section lists a regression tree for each variable; if MeanSquareError scoring was

used, this section lists a linear regression formula for each variable.
• A list of the network’s edges. Each edge is written in the form

variable1 --- variable2

or

variable1 --> variable2

depending on whether the edge is directed or not.

The user can specify running several searches, and doing model averaging, by using the
line:

NumRuns N

The application will then perform N searches, and write their results into files named
network-name.network1, network-name.network2, ... network-name.networkN. If random
sampling of the data was specified, each run is done with a different random sample.

When running several searches, the program also creates a file named network-
name.confidences, listing network edges that have appeared in a majority of the search
results and for each one the percentage of search results in which it appeared. By default,
an edge will appear in the confidences file if it appears in the results of more than half the
searches; the user can specify a different threshold with the line

ConfidenceThreshold N

An edge will then appear in the confidences file if it appears in the results of more than
N% of the searches.

The confidences file also starts with the run-parameters header like the individual
network files.

In an interactive run, the network name and the number of runs can be changed
interactively, and in addition to the output files the program also displays a graphic
visualization of the results. This is described in the graphic user interface section.

Scoring functions

The application provides a choice of three scoring functions that can be used in the
structure-learning search; each scoring function is associated with a different type of
probability distribution on the variables.

• BDe scoring function, using conditional probability tables for the probability

distributions on the variables. This is specified in the specification file with the

line:

Score BDe [phantom-data-size]

The default phantom data size is 5.

• Normal Gamma scoring function, using regression trees for the probability

distributions on the variables. This is specified in the specification file with the
line:

Score NormalGamma [alpha=alpha-value] [gamma=gamma-value]
[minSplit=min-split-size]

Default parameters are 1 for both alpha and lambda. Each leaf in a regression tree must
always have at least min-split-size data points; default min-split-size is 5. If this scoring
function is used, the second section of the output file lists the regression tree for each
node.

• Mean Square Error as the scoring function, using linear gaussian probability

distributions on the variables.

Score MeanSquareError

If this scoring function is used, all nodes are assumed to have a linear gaussian
probability distribution with a standard deviation of 1, and the linear formula for the
mean is obtained by linear regression on the data values of the node and its parents. The
second section of the output file lists the linear regression formula for each node.

For a non-interactive run, exactly one Score line must appear in the specification file, and
the application uses the specified scoring function. For an interactive run, the user
chooses interactively among the three available scoring functions, as described in the
graphic user interface section; the specification file can contain any or none of the
possible Score lines, in order to specify non-default parameter values for the scoring
functions.

Edge and split penalties

The user may specify a score penalty on adding edges to the network. This is specified by
the line

Prior EdgePenalty N

During the search process, N is subtracted from the score for each edge in the network.
(Effectively, an edge will be added to the network only if it improves the score of the
main scoring function by more than N).

The appropriate value for N will often be hard to decide on, and will be different for
different scoring function used. To deal with this difficulty, an alternative way to specify
the edge penalty is

Prior EdgePenalty Fraction F

F is a small number, usually between 0 and 1. When the edge penalty is specified in this
way, biolearn examines all possible single edge additions, discards those that worsen the
score, and for those that improve the score (not taking the edge penalty into account)
finds the median score improvement; the edge penalty is then set at this median score
improvement multiplied by F.

Note that the BDe and NormalGamma scoring functions may be useful with or without
an edge penalty, but the MeanSquareError scoring function requires an edge penalty to be
useful; without an edge penalty it is very likely to result in a fully connected network.

When using the NormalGamma scoring function, the user may also specify a penalty on
splits in a regression tree, using the line

Prior SplitPenalty N

or

Prior SplitPenalty Fraction F

During the search process, N, or the median single-edge improvement multiplied by F, is
subtracted from the score for each split in each regression tree CPD.

If both the edge penalty and the split penalty are specified, then when splitting a
regression tree with a new parent both penalties are subtracted from the score; when
splitting a regression tree with an existing parent, which has already been used in other
splits on this regression tree, only the split penalty is subtracted from the score.

Discretization

The NormalGamma and MeanSquareError scoring functions are suitable for dealing
directly with continuous input data. The BDe scoring function, however, requires discrete
input data; if the BDe scoring function is used and the input data is continuous, it is
automatically discretized. In an interactive run, the form of discretization can be specified
interactively, as described in the graphic user interface section; in a non-interactive run,
it has to be specified in the specification file, as described below.

Continuous data is discretized by dividing the range of values into a number of buckets;
the BDe score is calculated using joint counts, which are obtained by counting the data
points that have values in each bucket. The number of buckets can be any number
between 2 and 6, or it can be 10, 15 or 20.

The boundaries between buckets can be either hard or soft. If the boundary is hard, it
consists of one threshold value; if the value of a variable in any data point is less than the
threshold, it is counted as being in the lower bucket; if the value is larger than or equal to
the threshold, it is counted as being in the higher bucket.

If the boundary is soft, it consists of two threshold values. If the value of a variable in any
data point is less than the lower threshold, it is counted as being in the lower bucket; if
the value is larger than or equal to the higher threshold, it is counted as being in the
higher bucket; if the value is between the two thresholds, it is counted partly in each
bucket, in proportion to its distance from the two thresholds. For example, is the soft
threshold is 0.9:1.1 and the variable at a given data point has a value of 0.95, it adds .75
to the count for the lower bucket and .25 to the count for the higher bucket.

The user can either specify the boundaries between buckets as absolute numbers, or have
biolearn choose them automatically based on the values of each variable. The boundaries
are specified as absolute numbers with the line:

DiscretizationDefault boundary1 boundary2 ...

Each boundary is either a single number to specify a hard boundary, or of the form low-
number:high-number to specify a soft boundary.

Automatic calculation of the bucket boundaries is specified with the line:

DiscretizationBuckets N boundary_type division_method

Where N is the number of buckets, boundary_type is either "Hard" or "Soft", and
division_method is either "ByDistance" or "BySize". Division by distance means that the
range of values of the variable is divided into N equal sub-ranges, so that the difference
between the upper boundary and the lower boundary is equal for each bucket. Division
by size means that the set of values of the variable in the data is divided into N sets of
equal size, so that for every variable the number of values in the data in each bucket is the
same. When automatically setting a soft boundary, the distance between the low and high
thresholds is set to be 40% of the size of a full bucket.

If there is no line in the spec file to specify default discretization, the default
discretization parameters are 3 buckets with hard boundaries divided by distance.

The user may also specify the discretization boundaries separately for specific variables,
using the line:

Discretization variable1 variable2 ... : boundary1 boundary2 ...

The specification file may contain any number of Discretization lines, as long as any
variable is mentioned in at most one such line. Variables not mentioned by name in a

Discretization line are discretized according to the default parameters specified in the
DiscretizationDefault or DiscretizationBuckets line.

Search algorithms

The application provides a choice of several search algorithms used in searching for the
optimal structure. The specification file must contain a line specifying the choice of
algorithm (in an interactive run, the choice of algorithm still needs to to be specified in
the specification file and cannot be changed interactively).

The available algorithms are as follows:

• Greedy Hill Climbing - this is likely to be the most useful algorithm for most

applications. It is an enhanced version of the classic greedy hill climbing
algorithm, using random restarts to avoid getting stuck too easily in a local
maximum, and using tabu search to search plateaus (i.e. regions of the search
space in which a single step leaves the score unchanged).

To use the greedy hill climbing algorithm, the specification file should contain the line:

Algorithm GreedyHillClimbing [restarts=N] [plateauMax=M] [searchLog=L]

N is the number of random restarts. Default is 0 (i.e. simple greedy hill climbing without
random restarts).

M is the maximum number of search steps that can be taken in a plateau. If M steps have
been taken and no step has been found yet to increase the score, the search is ended.
Default is no limit (i.e. any plateaus completely until a step is found to increase the score
or until the entire plateau has been explored). To completely turn off searching of
plateaus, specify "plateauMax=0".

If the “searchLog” parameter is specified, biolearn writes a log of the search to the
standard error stream; at each step it records the step that was taken, the improvement
that step made to the score, and compares it to all other edges that could have been added
to the same variable and their effect on the score. This log can be used to get a better
understanding of the workings of the scoring function, and to help in deciding on
appropriate values for future runs for the edge or split penalties. L is the maximum
number of lines in the log; biolearn stops producing the log when L lines have been
printed.

By default, when using the BDe or MeanSquareError scoring functions, a single step in
the search consists of adding, removing or reversing a single edge.

When using the NormalGamma scoring function, a single step in the search consists of
either splitting a leaf in one node's regression tree or of unsplitting an existing split. In
some cases such a step changes the node's set of parents, and thus causes an edge to be

added or removed in the network; in other cases (for example if we split using a parent
that's already been used in other splits in the same regression tree) the edges of the
network do not change.

When using the BDe or MeanSquareError scoring functions, the user may enhance the
possible steps to also allow parent exchange. A parent exchange consists of removing an
edge A->B and adding a new edge C->B. To allow parent-exchange steps in the search
(in addition to edge addition, removal or reversal), the user should include in the
specification file the line

Modifier AddRemoveReverse WithExchangeParent

This will cause the program to run slightly longer, since there are more possibilities to
check at each step. It is especially useful if using the RequiredPath constraint (described
below in the constraints section). Note that adding the exchange-parent step is not
allowed if using the NormalGamma scoring function.

• Sparse Candidate.

The Sparse Candidate algorithm is designed for structure learning in very large networks.
It is described in Learning Bayesian network structure from massive datasets: The
“sparse candidate” algorithm, Friedman, Nachman and Pe'er, Proceedings of the 15th
Conference on Uncertainty in Artificial Intelligence 1999, 206-215. As a rule of thumb, if
the search involves more than 50 variables, use of the sparse candidate algorithm is likely
to be necessary.

To use the sparse candidate algorithm, the specification file should contain the line:

Algorithm SparseCandidate P GreedyHillClimbing [restarts=N] [plateauMax=M]
[searchLog=L]

Where P is the size of the candidate sets.

The sparse candidate algorithm incorporates the greedy hill-climbing algorithm, and so
has all of the same parameters. It uses the same search steps, and also allows use of the
"Modifier AddRemoveReverse WithExchangeParent" line to allow parent exchange as a
search step.

• Exhaustive search - this algorithm is prohibitively expensive except in very small

networks; but when the network is very small, it is guaranteed to find the optimal
structure. It exhaustively checks all possible network structures, and outputs the
one with the highest score.

To use the exhaustive search algorithm, the specification file should contain the line:

Algorithm ExhaustiveSearch

The exhaustive search algorithm can be used with the BDe or MeanSquareError scoring
functions, but not with the NormalGamma scoring function.

• Best Forest - this algorithm searches specifically for a forest-form network, i.e. a

network in which each node can have at most one incoming edge. It finds the
optimal such network using a variation on the classical minimum-spanning-tree
algorithm.

The best forest algorithm can be used in two ways. It can be used as the main search
algorithm, with the application producing the optimal forest-form network as its output;
to do that, the specification file should contain the line:

Algorithm BestForest

Alternatively, the best forest algorithm can be used to create a starting-point for the
search; the application starts the search by applying the BestForest algorithm, and then
uses this optimal forest-form network as the starting point for a search using the greedy-
hill-climbing or the sparse-candidate algorithm; in some cases this will help the search
find better structures than if it started from an empty network. To use the best-forest
algorithm in this way, the specification file should contain the "Algorithm
GreedyHillClimbing" or the "Algorithm SparseCandidate" line, as described above, and
also contain the line

InitialStructure BestForest

In the current version, the implementation of the BestForest algorithm is not compatible
with setting any variables to a status of "Root" or "Leaf" (see the variable status section
above). It is also not compatible with specifying any constraints with the exception of
ParentMaximum (see the constraints section below). If any other constraints are
specified, or if any variables are given a status of "Root" or "Leaf", the BestForest
algorithm cannot be used.

Search starting point

When using the greedy hill-climbing or sparse candidate algorithms, the search starts
from a given point in the search space. By default the search starts from an empty
network; biolearn provides the option for the user to specify the starting point. This can
be useful if the user has reason to believe some specific combination of edges should be
in the network. The heuristic search starting from the empty network may end up missing
this combination of edges and never trying it; by starting the search with an initial
network containing this combination of edges, the user makes sure this combination is
tried.

In an interactive run, the user can specify the starting network interactively, as described
in the graphic user interface section.

In a non-interactive run, the user specifies the starting network as an optional third
command-line argument, pointing to a file containing the input network, as described in
the Invoking the biolearn structure-learning application section.

In this version, non-empty starting points work only with the BDe scoring function. The
input network must be either the output of a run with the BDe scoring function, or a
manually edited list of edges. The first section of biolearn output, containing run-
parameters information, is optional in the input and is ignored.

Specifying a starting point is meaningful only if the greedy hill-climbing or the sparse-
candidate search algorithm is being used.

Constraints

There several types of constraints that the user can specify over the structure of the
network. Constraints are specified in the specification file (they cannot be changed
interactively). The specification file may contain any number of lines specifying
constraints; the application will issue an error if there is no possible network that can
satisfy all specified constraints.

The possible constraints are as follows:

Constraint ParentMaximum N [variable1 variable2 ...]

The named variables are limited to an in-degree of N. If no variable names are given, all
variables in the network are limited to an in-degree of N.

Constraint RequiredEdge var1 var2

The edge var1->var2 must be in the network.

Constraint RequiredPath var1 var2

A path from var1 to var2, direct or indirect, must be in the network.

Constraint NoEdge var1 var2

The edge var1->var2 is not allowed in the network.

Constraint NoPath var1 var2

Any path from var1 to var2, direct or indirect, is not allowed in the network.

Constraint SplitMaximum N

If using the NormalGamma scoring function, the regression tree of any node is limited to
N splits. This constraint has no effect when used with the BDe or MeanSquareError
scoring functions.

Constraint MissingValuesMaximum P

P must be a number between 0 and 1. If more than a P fraction of the values of a variable
are missing, it cannot be be a parent in the network; if P is 0, any variable with any
missing values is forbidden from being a parent in the network. When using the BDe or
MeanSquareError scoring functions, the restriction is on the fraction of missing values in
the entire data (so any variable with more than P fraction of missing values cannot have
any outgoing edges); when using the NormalGamma scoring function, the restriction is
on the fraction of missing values in the data for the leaf that is being split.

In general, all available scoring functions and all available algorithms can be used with
any of the constraints. There are, however, some specific restrictions:

• If the NormalGamma scoring function is used, the RequiredEdge and
RequiredPath constraints cannot be used.

• If the BestForest search algorithm is being used, the only allowed constraint is

ParentMaximum (specifying this constraint makes no sense when using
BestForest as the main algorithm, since the result is already constrained to an in-
degree of 1 for all nodes; but it may be useful when BestForest is used for
creating the initial structure). Other constraints cannot be used.

Probability of specific network features

When using the exhaustive search algorithm, the application provides the option of
specifying certain features of the network - the presence of specific edges, or conditional
independence of pairs of variables given some subset of the other variables – and
calculating their probability. If the specification file contains one or more feature
specifications, and the exhaustive search algorithm is used, then in addition to producing
the optimal network as output the application also writes to the standard output the
probability of each feature. The probability of a feature is the sum of the probabilities of
all possible networks that have this feature; the probability of a network is e to the power
of the network’s score, normalized so that the sum of probabilities of all possible
networks is 1.

In this version, calculation of feature probabilities is handled entirely non-interactively.
In an interactive run, features still have to be specified in the specification file, and their
probabilities are still written to the standard output.

Since calculation of feature probabilities requires use of the exhaustive search algorithm,
it is only possible on very small networks, and only with the BDe of MeanSquareError
scoring functions, not with the NormalGamma scoring functions.

Each feature is identified by a feature number. The two types of basic features are the
presence of an edge or the conditional independence of two variables; these are specified
by the following lines:

Feature N Edge variable1 variable2 [undirected]

N is the feature number. If “undirected” is not specified, the feature is the presence of the
edge variable1->variable2; if “undirected” is specified, the feature is the presence of an
edge connecting variable1 and variable2, in either direction.

Feature N CI variable1 variable2 variable3 …

N is the feature number. The number of variables listed in the line must be three or more;
the feature is the conditional independence of variable1 and variable2 given the other
listed variables.

A Feature may be a conjunction of one or more basic features, specified by one or more
lines with the same feature number. The specification file may list any number of
different features with different feature numbers, and the application outputs the
probability of each of them.

Note that if you run several search runs using exhaustive search, with model averaging,
and also specify a list of features, the probability of the features will be output for each of
the search runs. The probabilities in the different runs may be different, depending on the
random sample taken of the data in each run.

Graphic User Interface

In the preceding sections we described capabilities available in both interactive and non-
interactive runs of the applications. This section described the additional capabilities
provided by the application’s graphical user interface, when the application is invoked
interactively.

The graphical user interface is limited in the number of variables that it can handle. It will
not work for data that involves a very large number of variables; as a rule of thumb, do
not use the graphical user interface for network searches dealing with more than 50
variables.

When the application is invoked interactively, after reading the specification file, it
displays the following window:

Network name

The “network name” text field provides that name that will be used as the network name
in creating the output files, as described above in the output section. The user can choose
the file names by changing this text field.

Number of runs

The “number of runs” text field allows the user to specify the number of search runs that
will be done each time the “Run” button is clicked, and used for model averaging.

Refresh specification

Clicking the “refresh specification” button re-reads the specification file. Since in the
current implementation there are some options (such as the choice of search algorithm, or
constraints) that have to be specified in the specification file, this allows the user to
change them during a run, by editing the specification file and then clicking the “refresh
specification” button.

Add data file

As discussed above in the specifying input data section, in an interactive run the
specification file only specifies the format of the input data. The input data files
themselves have to be chosen interactively.

To read in a new data file, the user clicks on the “add data file” button. This opens a file
chooser window, and the user can either choose a single data file, or a list file, which the
application then reads in, and updates the displayed count of data files loaded.

Display data files

Clicking on the “display data files” button opens a window displaying a list of the data
files currently loaded, and the list of the variables in each one. Each variable is associated
with a check-box which is checked if the data file has an intervention on that variable.

For example, if you load the nine files listed in science2005.filelist, and then click on
“display data files”, the following window will appear:

The user can instruct biolearn to ignore some of the data files, by checking the “Ignore”
check-box for the unwanted data files; or remove data files permanently by clicking on
the “delete” button. The user can change the interventions in each file by checking or
unchecking the boxes for intervened variables, and checking or unchecking the
“suppress” checkbox, which is the equivalent of the “suppress” keyword in the list file
(see the specifying input data section).

Choose variable status

Clicking the “choose variable status” button opens a window that lists all variables, with
a choice menu for each one allowing the user to choose its status; for example:

The status options are the ones discussed above in the section: Normal, Ignore, Alias,
Root and Leaf. If Alias is chosen, another choice menu appears for choosing the
variable’s main name for which this name is an alias.

If the user clicks on the “save to file” button, the current choice of status for each variable
is written into the status file, so future invocations of the application in the same directory
will automatically be initialized to these status choices.

Default discretization options

The main window displays threes choice menus that allow the user to change the default
discretization options, i.e. the discretization options to be used for variables that don’t
have discretization boundaries specified separately. The user can choose the number of
buckets, whether the division is by distance or by size, and whether the boundaries are
hard or soft.

These discretization options have an effect only if the input data is continuous and the
BDe scoring function is chosen. If the input data is discrete, or if the user chooses the
NormalGamma or MeanSquareError scoring functions, discretization options have no
effect.

Choose scoring function

The user can choose the scoring function to be used by clicking the “choose scoring
function” button. If the user does not click on the “choose scoring function” button, the
default scoring function is BDe.

If all data values in the input are whole numbers, and the range of different values for
each variables is less than 20, then the data is considered discrete, and BDe is the only
scoring function that can be used; clicking the “choose scoring function” button displays
a message stating that the data is discrete.

If input data is continuous, then clicking on the “choose scoring function” opens a
window with three buttons, allowing the user to choose one of the three scoring
functions.

Specifying discretization on each variable

If the data is continuous, and the user clicks on the “choose scoring function” button and
then chooses BDe, this means that the data will have to be discretized. The application
then opens a window for specifying the discretization options for each variable:

This window contains for each variable three choice menus that allow the user to choose
the number of buckets, the division method and the boundary type for that variable. It
also displays the absolute boundary values for each variable (the absolute boundary
values specified in the specification file, or, if none are specified, the values calculated
using the default parameters). The user can change the number of buckets, the division
method and/or the boundary type for a specific variable, and then click the “calculate
boundaries” button to re-calculate the absolute values of the boundaries. The user can
also manually change the absolute values of the boundaries, and then click the “apply
manually entered values” button to cause these changes to take effect.

In some cases, deciding on where to place the boundaries can be helped by viewing a
histogram of the data values of each variable. If the user clicks on the “display
histogram” button, the application displays such a histogram:

The histogram divides the variable’s range of values into 60 equal-distance buckets, and
displays a column for the number of values in each bucket; the histogram is divided into

colors based on the variable’s discretization buckets. When the user moves the cursor
over the histogram, the panel displays the range and height of the column to which the
cursor is currently pointing.

Writing discretized data

An interactive run of the application provides the option of writing out a discretized
version of the data, so future applications can read discrete data and need not do the
discretization again.

A discretized version of the data is written out when the user clicks on the "write
discretized data" button. For each input data file, the application creates an output file
with a discretized version of the same data. All discretization parameters that the user has
specified (the default parameters as well as any boundaries separately specified for
individual variables) are used in the discretization. By default, a discretized output file
has the same name as the input data file with the suffix ".discretized" added; the user can
change the suffix in the "discretized output suffix" text field.

Writing out discretized data is not allowed if soft bucket boundaries have been specified.

Discretized output data is always in DataPointPerLine format, even if the input was in
VariablePerLine format. Variables that have a status of "Ignore" are omitted from the
discretized output; a variable with several aliases appears in the output always under its
main name.

Choosing the search starting-point

As discussed above in the search starting point section, the user may specify a network
to serve as a starting-point for the search. In an interactive run, this is done by clicking on
the “Choose Initial Network” button; biolearn opens a file chooser window which allows
the user to specify a file containing the initial network. To change the choice of initial
network, click on “Choose Initial Network” again and choose a different file; or to go
back to the default starting point of an empty network, click on “Clear Initial Network”.

Running structure-learning searches

The main purpose of running the biolearn application is usually to run the structure-
learning search. Once all data has been loaded, and the desired scoring function and, if
needed, the discretization parameters have been chosen, the user then clicks on the "Run"
button to run the searches.

The number of searches run is as specified in the "number of runs" text field. The
window displays a message indicating how many searches have been completed so far.
The search results are written into output file - a file for the network resulting from each
search, and a confidences file for the results of model averaging - as discussed above in
the output section.

When all the runs are finished, the results are also displayed graphically:

If several searches were run for model averaging, the graphic display shows the edges
that had confidences above the threshold, with each one labeled with its confidence level
(1.0 means the edge appeared in the results of all runs; .95 means it appeared in 95% of
runs; etc.). If only one search was done, the graphic display shows the resulting network.
The display indicates whether the edge is directed or not. Note that if the NormalGamma
or MeanSquareError scoring functions are used, the network output files contain both the
network's edges and probability distributions for each variable; the graphic display still
shows only the network's edges.

If a variable has no edges connecting to it in the network, either in or out, it does not
appear in the graphical display.

The application tries to lay out the nodes so as to make the network as readable as
possible, but the layout is heuristic and is not always good; the user can use the mouse to
move the nodes around to manually create a more readable layout.

Displaying a previouly-created network

The application can also be used to display a network or a confidences file that was
created previously, either in this run or in a previous run of biolearn. When the user clicks
on the "display network" button, the application opens a file chooser window that allows
the user to choose a network or confidences file, and then graphically displays the edges
in that file. This can be used either to display again the results of the current run, or to
display the results from a previous run of biolearn.

Calculating the score of a network

The score of a network is normally used by the application only internally, to compare
networks to each other during a search. In some cases, however, in order to better
understand the results provided by biolearn, the user may wish to know the scoring
results for specific networks.

When the user clicks on the "compute score" button, the application opens a file chooser
window that allows the user to choose a network file. The application then computes the
score for the network, and displays the component score computed for each variable and
the total score for the network.

For all three scoring functions used, the component scores and the total network score are
always negative numbers; a better network has a higher score, i.e. a negative score of
smaller magnitude.

The type of score used to compute the score of the network depends on the type of
probability distribution contained in the network file. If the network file contains
regression tree distributions, the score is computed using the NormalGamma scoring
function; if the network file contains linear regression approximations, the score is
computed using the MeanSquareError scoring function; if the network file contains only
the network edges, the input data is discretized and the score is computed using the BDe
scoring function.

This function can be used to compute the score of a network created either by the current
run or by a previous run (the user can also manually create network with the editor to
check the score). The input data currently loaded must have the same variable names as
the variable names used in the network.

If the specification file specifies random sampling of the data (i.e. contains a "Sample"
line), a new random sample of the data is taken each time the "compute score" button is
clicked; it is therefore to be expected that several score computations on the same
network would give slightly different results. If the specification file does not contain a
"Sample" line, score computation is node using the entire input data, and so several score
computations on the same network and with the same data will give precisely the same
results.

The component scores displayed for individual variables do not take the edge and split
penalties into account; the total network score displayed does take these penalties into
account. Thus if the specification file does not specify any edge or split penalties, the
total score displayed is equal to the sum of the component scores; if there are edge or
split penalties, the total score will be less than (i.e. of greater magnitude than) the sum of
the component scores.

Exiting the application

Any number of search runs can be made during one interactive run, with the same input
data or with different data. The application ends when the user clicks the "exit" button or
closes the main window.

