
Resource
Single-Cell Trajectory Detection
Uncovers Progression and Regulatory
Coordination in Human B Cell Development
Sean C. Bendall,1,2,7 Kara L. Davis,1,3,7 El-ad David Amir,4,7 Michelle D. Tadmor,4 Erin F. Simonds,1 Tiffany J. Chen,1,5,6

Daniel K. Shenfeld,4 Garry P. Nolan,1,8,* and Dana Pe’er4,8,*
1Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
2Department of Pathology, Stanford University, Stanford, CA 94305, USA
3Hematology and Oncology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
4Department of Biological Sciences, Department of Systems Biology, Columbia University, New York, NY 10027, USA
5Program in Biomedical Informatics, Stanford University, Stanford, CA 94305, USA
6Department of Computer Science, Stanford University, Stanford, CA 94305, USA
7Co-first authors
8Co-senior authors

*Correspondence: gnolan@stanford.edu (G.P.N.), dpeer@biology.columbia.edu (D.P.)

http://dx.doi.org/10.1016/j.cell.2014.04.005
SUMMARY

Tissue regeneration is anorchestratedprogressionof
cells froman immature state to amature one, conven-
tionally represented as distinctive cell subsets. A
continuum of transitional cell states exists between
these discrete stages. We combine the depth of sin-
gle-cell mass cytometry and an algorithm developed
to leverage this continuumby aligning single cells of a
given lineage onto a unified trajectory that accurately
predicts the developmental path de novo. Applied to
human B cell lymphopoiesis, the algorithm (termed
Wanderlust) constructed trajectories spanning from
hematopoietic stem cells through to naive B cells.
This trajectory revealed nascent fractions of B cell
progenitors and aligned them with developmentally
cued regulatory signaling including IL-7/STAT5 and
cellular events such as immunoglobulin rearrange-
ment, highlighting checkpoints across which regula-
tory signals are rewired paralleling changes in cellular
state. This study provides a comprehensive analysis
of human B lymphopoiesis, laying a foundation to
apply this approach to other tissues and ‘‘corrupted’’
developmental processes including cancer.
INTRODUCTION

Most complex organisms start as a single cell that matures

through coordinated stages of development into a diverse set

of transitional and terminal cell types, many of which have yet

to be defined. There is a continuous relationship between

maturing cell subsets: more potent cells divide and differentiate

into more functionally restricted cells. The challenge is to devise

approaches that analyze and order the cells of these complex
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tissues to reveal their developmental relationships, behavior,

and the mechanisms that govern their differentiation.

One technique that has been used to effectively determine im-

mune system hierarchies is fluorescence-activated cell sorting

(FACS) which traditionally relies on surface antigen expression

for purifying cells of a given population (Hardy et al., 1984).

One drawback of this technology is the limited number of simul-

taneously assayed markers (generally <12) which confines ex-

periments to isolating a narrow ‘‘slice’’ of the overall cellular

pool, thereby restricting the ability to characterize transitional

populations and the relationships between them. Emerging sin-

gle-cell technologies (Bendall et al., 2011; Jaitin et al., 2014),

however, can measure a large number of simultaneous features

in individual cells with unprecedented resolution. Mass cytome-

try (Bendall et al., 2011) can now quantify more than 40 features

simultaneously in thousands to millions of individual cells per

experiment. Thus, an opportunity exists to assay nearly all cell

types, from the earliest to themost mature within a given system,

and by simultaneously measuring a sufficient number of identi-

fying markers in a single sample, enable direct inference of a

continuous developmental trajectory of primary cells in situ.

A case in point is the early development of human B lympho-

cytes. Early B cells originate from the hematopoietic stem cell,

followed by a common lymphoid progenitor cell, pro-B cell,

pre-B cell, and finally an immature B cell, which migrates out

of the marrow (LeBien and Tedder, 2008). While these early

developmental hallmarks have been described in the mouse

(Rolink et al., 1999), the exact nature of cell types and timing of

critical events such as Immunoglobulin heavy chain (IgH) rear-

rangement and clonal expansion remain elusive in human B lym-

phopoiesis. As hematopoiesis is both continuous and asynchro-

nous throughout life, the full spectrum of cell types exists in a

single sample of bone marrow from a healthy individual. It was

reasoned that by combining mass cytometry with computation,

we could construct a putative B-lineage trajectory (an ordering of

cells according to their most likely developmental chronology)

representing in vivo development, from primary human bone
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Figure 1. Developmental Trajectory Detec-

tion

(A) Nonlinear relationships between developmen-

tally related cells. Markers ‘‘A’’ and ‘‘B’’ represent

sequentially expressed phenotypic epitopes on

cells in a developing system (inset). The red line

shows the expected developmental trajectory

from the earliest (cell ‘‘X’’) to the more mature cell

type (cell ‘‘Y’’). Developmentally, the distant cell

types can be close in Euclidean space.

(B) Determining the shortest path through a graph

of the data reflects temporal distance between

cells (solid red line between early [cell ‘‘X’’] and

target [cell ‘‘Y’’]) better than standard metrics (e.g.,

Euclidian norm or correlation). Short circuits

(dashed red line) impede a naive shortest path-

based algorithm.

(C) Description of the Wanderlust algorithm. The

input data are single cells in N-dimensional space

(top left). Wanderlust transforms the data into an

ensemble of graphs and selects random way-

points (purple). Each graph is independently

analyzed (single graph, red box) where a user-

defined starting cell (red) is used to calculate an

orientation trajectory. The orientation trajectory is

iteratively refined using the waypoint cells. The

final trajectory is an average over all graphs. To

examine trends, the trace of each marker can be

plotted according to trajectory position.

See also Figure S1 for evaluation of Wanderlust on

simulated data.
marrow. Then, this trajectory could be used to characterize the

order of key molecular and cellular events during development.

B cell centric, 44 parameter single-cell mass cytometry data

were collected from human bone marrow, simultaneously

measuring multiple cellular features, including phenotypic pro-

teins, transcription factors, regulatory enzymes, cell-state indi-

cators, and activation of regulatory signaling molecules. Suffi-

cient cells were measured to encompass a complete spectrum

of B cell lymphopoiesis that could be reassembled into a contin-

uous progression from a single sample. Experimental design

was tailored to maximize physiologic interpretability of the data

by allowing for minimal ex vivo manipulation. The resulting

high-dimensional data were ordered using a graph-based trajec-

tory detection algorithm, Wanderlust, that orders cells to a

unified trajectory based on their maturity, thus predicting the

developmental path de novo, whichwas subsequently validated.

Wanderlust generated remarkably consistent trajectories

across multiple individuals that were largely congruent with prior

knowledge. Using the trajectory, we determined the timing and

order of key molecular and cellular events across development,

including identifying previously unrecognized subsets of B cell

progenitors that pinpoint the timing of DJ and V(D)J recombina-

tion of the IgH. Surveying the dynamic changes in cellular

expression across the Wanderlust trajectory, we identified ‘‘co-

ordination points,’’ where rewiring of the signaling network oc-

curs concurrently with the rise and fall of multiple proteins. These
coordination points and their characteristic signaling were

further aligned with cell-cycle status, apoptosis, and germline

IgH locus rearrangement, together forming a deeply detailed

map of human B lymphopoiesis. By exploiting the cellular het-

erogeneity of the human system while monitoring both single-

cell identity and behavior, a holistic model ordered by develop-

mental chronology was created.

RESULTS

Aligning Cells to a Developmental Trajectory
Primary human tissues are a rich source of cellular diversity as

they contain both multipotent progenitors and mature special-

ized cells. Previously, it has been shown that the transitional

co-occurrence of an extended suite of phenotypic markers,

measured simultaneously in individual cells, can be used to

roughly order cells along a developmental hierarchy (Bendall

et al., 2011; Qiu et al., 2011; Amir et al., 2013). However, previous

approaches were limited, either by false assumptions of linearity

(Figure 1A) or by stochastic partitioning of cell populations into

overly coarse clusters, losing directionality and single-cell resolu-

tion, and thus the ability to accurately order cellular relationships

(see Supplemental Information). To address these limitations, we

developed a robust algorithm that uses high-dimensional single-

cell data tomap individual cells onto a trajectory representing the

chronological order of development in fine detail.
Cell 157, 714–725, April 24, 2014 ª2014 Elsevier Inc. 715



Several assumptions are made regarding the data. First, the

sample includes cells representative of the entire developmental

process, including most transient and rare populations. Second,

the developmental trajectory is nonbranching: cells are placed

along a one-dimensional path. Third, changes in protein expres-

sion are gradual during development. Ordering single cells onto

a trajectory is based on continuous tracking of the progressive

rise and fall of phenotypic markers during development. This tra-

jectory provides a framework to infer the order and transition be-

tween additional key molecular and cellular events.

A fundamental challenge to constructing an accurate trajec-

tory is that the relationships between markers cannot be

assumed to be linear. Thus, determining the distance between

two individual cells using standard metrics based on marker

levels (e.g., Euclidian norm or correlation) results in poor mea-

sures of their chronological distance in development, except in

the case of very similar cells. Figure 1A demonstrates the nonlin-

earity that manifests from using only two markers; while cells X

and Y are close based on Euclidian distance, they are quite

distant in terms of developmental chronology. The complexity

of such nonlinear behavior only increases as more instances

occur in high dimensions.

A graph-based representation of the data overcomes such

problemsandhelpsconstruct adistancemetric that corresponds

to developmental chronology (Figure 1B). In the graph, each cell

is represented as a node connected to its neighbors—the cells

most similar to it—by a series of edges. Conversion into this

graph structure represents a new geometry for the data: dis-

tances between cells are defined as shortest paths on the graph

(Figure 1B), composed of steps (edges) between neighbors,

where each step traverses similar cells that are likely adjacent

in their developmental chronology.Moreover, because themodel

is based on similarity between cells, rather than relationships be-

tween parameters, it can more naturally handle the nonlinearity.

Wanderlust, a Robust Graph-Based Trajectory
Detection Algorithm
We developed Wanderlust, a graph-based trajectory detection

algorithm that receives multiparameter single-cell events as

input and maps them onto a one-dimensional developmental

trajectory (Figure 1C). Cells are ordered along a trajectory that

represents their most likely placement along a developmental

continuum. A key challenge for any such algorithm is that most

data are rife with noise from biological and technical sources.

Wanderlust determines a cell’s position based on steps between

neighboring cells, but noise accumulates with each step, so

longer paths (a series of steps) are less reliable than shorter

paths. To construct a more accurate trajectory, Wanderlust in-

corporates random waypoint cells, each of which helps refine

estimations for the positions of nearby cells. An initial estimation

of each cell’s position, including the waypoint cells, is set to its

distance from a prechosen ‘‘early cell.’’ Next, each cell’s position

is refined using its distance to nearby waypoint cells. Since the

refinement affects the positions of waypoint cells themselves,

it is repeated iteratively until each cell’s position converges

(Figure 1C).

The most harmful effect of noise is short circuits (Figure 1B):

i.e., spurious edges between developmentally distant cells that
716 Cell 157, 714–725, April 24, 2014 ª2014 Elsevier Inc.
nevertheless have similar marker measurements. Even a single

short circuit in a graph of thousands of cells can impede con-

struction of a correct trajectory, as all shortest paths will ‘‘cut

through’’ this short circuit. Wanderlust overcomes short circuits

by building an ensemble of graphs (Figure 1C). The exact set of

neighbors varies between each graph, so any randomly occur-

ring short circuit appears in very few graphs in the ensemble. A

trajectory is constructed separately for each graph in the

ensemble and the final trajectory is found by taking the average

over the positions from all graphs, thus averaging out the influ-

ence of short circuits in the final trajectory. Full details of the

Wanderlust algorithm can be found in the Supplemental Informa-

tion section.

Wanderlust’s performance was initially evaluated using syn-

thetic data (see Supplemental Information). Wanderlust faithfully

recovered the correct trajectory (r = 0.97), even under increasing

magnitude of noise, including noise levels that exceed those

typically found in biological data (Figure S1A available online).

To emulate the short circuits that render biological data chal-

lenging, false edges were randomly added between distant

points across the entire synthetic data set following graph con-

struction. The algorithm successfully detected the solution

trajectory, even in the increasing presence of short circuits (Fig-

ure S1B). In summary, Wanderlust robustly recovered the cor-

rect trajectory from synthetic data, despite increasing noise

and short circuits, providing confidence in the trajectories it de-

rives from real data.

Constructing a Trajectory for B Cell Lymphopoiesis
B cell lymphopoiesis, a nonbranching process occurring entirely

within bone marrow, represented an ideal test case for Wander-

lust. Mass cytometry was applied to a cohort of healthy primary

human marrow aspirates (lineage-negative bone marrow mono-

nuclear cells [BMMC]) using a B cell centric marker panel (Table

S1). Forty-four markers were simultaneously measured for each

individual cell, including both phenotypic surface markers and

internal functional proteins involved in signaling, cell cycle,

apoptosis, and genome rearrangement. Both surface and intra-

cellular markers were chosen based on prior indications of their

utility in defining developmental states in B cell maturation. Not

all markers were used to construct the trajectory. Certain

markers were used to validate stages in the trajectory or to

discover new principles in the maturation process that had

been previously obscured.

BMMCwere enriched for B cells or their precursors, resulting in

�200,000 cells for analysis from each individual (Experimental

Procedures). Wanderlust was applied to each marrow indepen-

dently, using a ‘‘starting position’’ of hematopoietic progenitors

(Lin�CD34+CD38�) and the expression of 17 phenotypic markers

(Table S1) to order all cells along a one-dimensional trajectory. To

characterize marker trends over the course of this trajectory, we

used a sliding window over slices of cells, as ordered byWander-

lust; themedianmarker level, for eachmarker,wascomputedover

all cells in each window (Extended Experimental Procedures).

To evaluate the resulting trajectory, we examined the expres-

sion of canonical markers of B cell development as they align

with expected cell populations (Figure 2A). The rise and fall of

phenotypic markers along the resulting trajectory matched prior
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Figure 2. Wanderlust Confirms Known

Hallmarks of Human B Cell Development

and IsConsistent acrossHealthy Individuals

(A) The Wanderlust trajectory is fixed to an arbi-

trary scale where the most immature cells are at

0 and themostmature cells at 1. The traces (based

on median marker levels within a sliding window)

demonstrate the relative expression patterns of

CD34, CD38, CD10, CD19, IgH (s)urface, and

CD20 across development. The approximate

position of progenitors and B cell fractions is

indicated.

(B and C) Biaxial plots (B) demonstrate the

two-dimensional progression of cellular marker

expression (red arrow) across the Wanderlust

trajectory taken in segments of 0.1. (C) Distribution

of marker expression across the trajectory for

CD24, TdT, and CD10. The green line indicates the

relative standard deviation across the trajectory.

(D) Marker traces across the trajectory for four

different samples (denoted a to d) aligned using

cross-correlation. Pearson’s r > 0.9 between the

trajectories of different samples. The red box de-

marcates the expression of CD24, which bisects

the TdT expression prior to CD10 expression

across all four healthy individuals.

See also Figure S2 for traces on full marker panel

and additional robustness analysis.
knowledge, starting with CD34, followed by CD38, CD10 (the

earliest canonical Pro-/Pre-B cell marker), CD19, CD20, and

ending with IgH expression, indicative of immature B cells ready

to leave the marrow. Developmental ordering was further cross-

checked using biaxial plots. Examining ten percentile slices of

cells, as ordered across the trajectory, demonstrated the ex-

pected progression (red arrows) of phenotypic markers CD34/

38, CD10/19, and CD20/IgH, respectively (Figure 2B, biaxial

plots). Together, these observations indicate that, from a starting

point of hematopoietic stem cells, the primary phenotypic land-

marks of B cell lymphopoiesis were correctly reconstructed and

ordered. This was accomplished de novo and without ex vivo

manipulation or synchronization in a single primary sample.

The Wanderlust Trajectory Is Robust across Parameter
Choice
Thealgorithm’s sensitivity to the user-defined initial cell is a crucial

feature. To evaluate this feature, initiating cells selected from
Cell 157, 714–7
evenly spaced points along the entire tra-

jectory were each used to seed an inde-

pendent trajectorydeterminationby theal-

gorithm. Wanderlust’s iterative approach

correctly detected the trajectory, even

when using more mature starting points

(FigureS1C). For example, using a starting

point of 0.3 on the trajectory results in a

correlation of r = 0.98 with the original tra-

jectory. With mature cells, the trajectory

reverses, but remains congruent, with a

correlation of r = �0.98 between the for-

ward and reverse trajectory (Figure S1C).
To test the robustness of the algorithm to the selection of

phenotypic features used to map the trajectory, Wanderlust

was run removing one marker at a time, and the correlation

with the original trajectory was assessed. Exclusion of any one

individual marker had little effect on the overall trajectory as evi-

denced by the strong correlation (r > 0.97) with the original

model, except HLA-DR (Figure S2A). Wanderlust was then run

removing all of six key B cell markers (CD19, CD20, IgM-i,

IgM-s, CD79b, and CD10), and the correlation with the original

trajectory remained (r > 0.95, Figure S2B). Thus even without

canonical markers, Wanderlust was able to correctly order the

events and phenotypic progression of B cell lymphopoiesis.

Note that only three of the seven markers in this trace were actu-

ally used for the Wanderlust analysis (Figures S2C and S2D).

Additionally, we tested the algorithm’s robustness by varying

all free parameters. We compared trajectories generated inde-

pendently over a wide range of parameter values to our original

model, constructed using default parameters, and found a
25, April 24, 2014 ª2014 Elsevier Inc. 717



correlation of (r > 0.99) between trajectories (See Supplemental

Information). In conclusion, the Wanderlust algorithm constructs

a remarkably consistent trajectory and is robust to variation in

the parameters used for its construction.

Importantly, not only do the median marker levels follow ex-

pected trends over the trajectory, variation in marker expression

within each window was remarkably low (Figures 2C and S2E).

This tightness is especially apparent with TdT, which was not

used as input to the algorithm. At any given point, the distribution

of B cell centric epitopes was tight around themedian, indicating

the algorithm’s ability to leverage multidimensional information

to create a highly organized trajectory of cellular development

in silico. Thus, the quality of the trajectory is demonstrated by

its robustness and marker tightness.

The Trajectory Is Consistent across Individuals
Having demonstrated Wanderlust’s robustness when applied to

a single healthy bone marrow sample, we investigated whether

the trajectory of human B cell development is consistent across

independent human samples. Altered proportions of cell sub-

types due to outside factors (genetics, exposure to pathogens,

etc.) could lead to scaling discrepancies between the output tra-

jectories, yet we expected to see the general shape, order, and

coexpression of given markers maintained. To account for the

scaling variations expected due to subpopulation frequency dif-

ferences, we used cross-correlation (see Experimental Proce-

dures) to compare the trajectories of four independent bone

marrow samples (using the same experimental procedures).

The four trajectories were completely overlaid (Figures 2D and

S2D), demonstrating that Wanderlust consistently recapitulates

the developmental trajectory across independent samples

despite distinct genotypes and environmental backgrounds.

In addition, we observed qualitative agreement on the order of

molecular events. Focusing on the less-characterized emerging

B cell populations at the beginning of the trajectory, Wanderlust

revealed that CD24 consistently bisected the wave of terminal

deoxynucleotidyl transferase (TdT)—an enzyme that partici-

pates in rearrangement of the IgH locus (Figure 2D). Both

CD24 and TdT were reliably expressed earlier than expected,

before the rise of CD10, a canonical surface marker believed

to be the earliest identifying surface marker of emerging human

B cells committed to the lineage.

Ordering of Emerging B Cell Precursors
The Wanderlust trajectory guided the identification of distinct,

early populations, and determined their relative ordering across

development. The expression of both TdT and CD24 increased

prior to the expression of any canonical B cell surface markers

(i.e., CD10 or CD19) in every bone marrow sample examined

(Figure 2D). Given TdT’s defining role in mammalian B cell emer-

gence, we hypothesized that TdT, in combination with CD24 and

other progenitor markers, could serve as a novel set of identifiers

to dissect early populations of human B cells in the marrow. We

used Wanderlust to guide the selection of a series of biaxial

gates based on CD34, CD38, CD24, and TdT, revealing four

distinct populations of cells (Figure 3A). According to Wander-

lust, these were early cellular fractions sequentially occupying

populations labeled II-V (Figure 3A, S3A). Additional phenotypic
718 Cell 157, 714–725, April 24, 2014 ª2014 Elsevier Inc.
markers, including l5 (CD179b), vPreB, CD10 and intracellular

IgH protein (Figure 3B), were used to support the determined

progression of these populations and their identity as definitive

early B cells. Thus, the Wanderlust trajectory of these popula-

tions (II-V) is confirmed by protein coexpression patterns typical

of B-lineage development.

VH(D)JH Recombination Confirms Ordering of Novel
Early Human B Cell Populations
To independently confirm the developmental ordering of the

hypothesized early B cell fractions, we used the rearrangement

of the germline IgH locus, the molecular target of TdT, as a mea-

sure of developmental stage and B cell identity. A quantitative

polymerase chain reaction (qPCR) assay was developed to

quantify the relative proportions of DJH and VH(D)JH arranged

cells and validated by assaying mixtures of cells containing

known proportions of mature (fully rearranged) B cells (Figures

S3B–S3C). FACS was then used to isolate populations II–V (Fig-

ure S3D) from BMMC preparations of two additional subjects.

Genomic DNAwas extracted from each fraction, and the relative

IgH rearrangement status of each fraction was quantified using

the qPCR assay.

As anticipated, relative to population II, there was a progres-

sive rearrangement of the IgH locus toward population V. Most

cells had detectable DJH rearrangement upon reaching popula-

tion IV and VH(D)JH rearrangement upon reaching population V

(Figures 3C and 3D). This was consistent with the observation

that virtually all cells in fraction V displayed intracellular expres-

sion of IgH protein (Figure 3B, asterisk [*]). Establishing the pro-

gressive rearrangement of IgH in these populations confirmed

that the Wanderlust trajectory not only facilitated the identifica-

tion of the earliest human B lymphocytes, but also accurately

ordered their developmental timing, all from the analysis of a sin-

gle human marrow, without synchronization or manipulation.

This ability to identify and order cells was particularly notable

given the sparsity of cells in these early fractions. Figure 3E high-

lights the rarity of these early B cell populations relative to total

BMMCs. In particular, population III comprised only 0.007% of

total BMMCs. The fact that population III occurs prior to CD19

expression (Figures 2A–2B), in combination with inconsistent

expression of CD10 (Figure 3B), suggests why these populations

had not been described previously.

pSTAT5 Response to IL-7 Is Confined to Rare B Cell
Precursors
Mass cytometry allows simultaneous measurement of surface

markers, as well as internal functional proteins and their modifi-

cations, in the same cells. To functionally characterize early B

cells and how they respond to stimuli, data were collected

following multiple cellular signaling perturbations, including the

cytokine IL-7 (Table S2). The activation of STAT5 by IL-7 via its

phosphorylation site has a critical regulatory role in mouse lym-

phopoiesis (Corfe and Paige, 2012): disruption of this pathway

results in arrest of B cell maturation at the pro-B cell stage (Malin

et al., 2010). However, in human, the precise developmental

timing of this pathway and its regulatory role remain unclear.

Investigation of signaling response to IL-7 across the four early

B cell populations II–V revealed that cells within population III
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Figure 3. Wanderlust Uncovers Rare B Cell Progenitors prior to the Expression of CD10 or CD19

(A) Wanderlust trace showing the expression of CD24, CD34, CD38, and TdT (upper left). Density plots of four distinct TdT and CD24 populations defined within

the CD34+CD38+ fraction (right). A histogram overlay of the Wanderlust values for cells contained in population I-V (dark blue boxes). The median Wanderlust

values are indicated.

(B) Expression of the surrogate light chain of the pre-B cell receptor, l5, and VpreB (top), and CD10 and IgH (i)ntracellular (bottom) across populations I though V.

Asterisk (*) denotes the uniform expression of IgHi in population V.

(C and D) Relative to population II, the amount of (C) IgH DJ and (D) IgH V(D)J rearrangement by qPCR of genomic DNA from prospectively isolated cells from

populations II-V. Triplicate analysis of two biological replicates. Error bars are standard deviation. Asterisk (*) denotes uniform IgHi expression implying complete

IgH V(D)J rearrangement.

(E) Pie charts summarizing the cellular contribution of human BMMCs. The purple pie denotes CD34+CD38+ cells. Percentages are relative to all BMMCs. RBC,

red blood cell; PMN, polymorphonuclear cell; MNC, mononuclear cell.

See also Figure S3 for supporting data.
displayed an almost exclusive�5-fold induction of STAT5 phos-

phorylation versus basal (Figure 4A)—a striking observation

considering population III represents seven in 10,000 cells in

the marrow (Figure 3E). Moreover, this pinpointed response

was consistent across seven distinct marrows from independent

human subjects. We note that pSTAT5 and other functional

markers were not used to construct the Wanderlust trajectory

and therefore this pattern of pSTAT5 induction was not enforced

by the algorithm, but rather was revealed due to its precise

phenotypic ordering of cells.

STAT5 Network Rewiring Occurs during
Immunoglobulin Rearrangement
Since the IL-7/STAT5 response was limited to a specific fraction,

STAT5 regulation was further characterized relative to adjacent

cell fractions across the developmental progression. We used

the JAK inhibitor Tofacitinib, combined with IL-7 stimulation, to

confirm a Janus kinase mediated mechanism of STAT5 control
(Johnson et al., 2005). As expected, within population III,

STAT5 activation was attenuated by treatment with Tofacitinib,

indicating a JAK mediated mechanism (Figures 4B and S4A).

Populations III’s induction of pSTAT5 coincides with the cells

gaining expression of the IL-7 receptor (CD127), where all

CD127-positive cells of population III strongly induce pSTAT5

in response to IL-7 (Figure S4B). IL-7 receptor levels continue

to rise in populations IV and V (Figure 4C), yet ex vivo IL-7 stim-

ulation no longer induces pSTAT5 in these later populations (Fig-

ure S4B). However, cells occupying population IV display a

higher basal level of pSTAT5 (Figure 4C). To test if pSTAT5 levels

are saturated in later populations, the pan tyrosine phosphatase

inhibitor pervanadate (PVO) was tested. In the presence of

PVO, the levels of pSTAT5 rose in all CD34+ progenitor B cell

fractions, across biological replicates (Figure 4B and S4A). Addi-

tionally, cells in populations III and partially IV yielded a similar

STAT5 phosphorylation pattern in response to thymic stromal

lymphoprotein (TSLP) (Figures 4B and S4A), a ligand that shares
Cell 157, 714–725, April 24, 2014 ª2014 Elsevier Inc. 719



A

B

C

D

Figure 4. Regulatory Signaling Rewires

across Development

(A) Compared to basal control, the IL-7 induction

of pSTAT5 in populations I through V. Population III

(CD34+CD38+TdT+) had consistently the largest

induction across seven replicate BM. Induction is

arcsinh difference versus basal, scaled individu-

ally. Maximum differences were 0.8, 2.2, 1.7, 1.3,

0.3, 0.8, and 1.8 for A to G, respectively.

(B) The effect of TSLP, tofacitinib (JAK1/3i), and

pervanadate (PVO) on induction of pSTAT5 across

populations I to V in the same individual versus the

basal. The maximum difference is 1.3.

(C) Early Wanderlust trace (trajectory 0–0.5)

showing expression of IL-7ra (CD127), TdT, and

IgHi. The green heat bar indicates relative pSTAT5

phosphorylation in the basal sample. Relative po-

sitions of populations I to V and IgH V(D)J re-

arrangement are indicated.

(D) Network rewiring between population III and IV.

The schematics show proposed regulatory net-

works of pSTAT5; population III activates in a

ligand and JAK-dependent manner whereas

population IV becomes ligand independent, but

maintains a high pSTAT5 level in the absence of

stimulation. See also Figure S4 and Table S2 for

additional perturbations and full distributions rep-

resenting the IL-7 perturbation.
the IL-7ra chain (CD127) and activates STAT5 (Kang and Der,

2004).

Together these observations illustrate a STAT5 network

rewiring over the development of B cell precursors (Figure 4D).

STAT5 phosphorylation is initially dependent upon an exoge-

nous ligand (i.e., IL-7, TSLP or others) in a JAK-mediated mech-

anism (population III). Then, despite continued expression of the

IL-7 receptor, STAT5 phosphorylation becomes ligand indepen-

dent (population IV–V), yet remains basally high relative to devel-

opmentally adjacent cells.

Previous studies in mouse have implicated the IL-7-depen-

dent STAT5 induction in the initiation of genomic rearrangement

(Malin et al., 2010). The peak expression of TdT (Figure 4C) indi-

cated that cells in population IV are actively rearranging the IgH

locus of the immunoglobulin gene (Figures 3C and 3D). There-

fore, the switch in regulation of STAT5 activation overlaps with

germline gene rearrangement, a cell state in which successful

outcome requires careful monitoring by the cell. Thus, when cells

were organized into a progression, we observed the coordinated

rewiring of the regulatory signaling network in the rare, early B

cell populations (Figure 4D).

Derivative Analysis of the Trajectory Reveals
Coordination Points in B Cell Development
The coordinated expression of phenotypic markers coupled with

rewiring of regulatory signaling suggested that these events coa-

lesced around developmental checkpoints controlling the pro-

gression of B cell lymphopoiesis. Because this highly multi-

plexed data set, combined with the developmental ordering

revealed by Wanderlust, allows examination of the concurrent

timing of protein expression across B cell development, we

used derivative analysis to determine the rates by which given
720 Cell 157, 714–725, April 24, 2014 ª2014 Elsevier Inc.
markers changed at each point along the trajectory. The first de-

rivative for each marker along the Wanderlust trajectory was

approximated using a sliding window (Figure 5A).

The derivatives were examined to see if multiple phenotypic

features changed in a coordinated fashion. Clustering the pa-

rameters based on the absolute value of their derivative across

the trajectory uncovered several striking coordination points

where the changes in expression of multiple proteins coalesced

across B cell development (Figure 5B). At least four major coor-

dination points were identified across the trajectory (Figure 5B,

dashed boxes) and were consistent across samples from inde-

pendent human subjects (Figure S5). The first (Figures 5B and

5C, red) coincides with population III, the ligand-dependent

pSTAT5 cells (Figure 4), representing cells at the early pro-B

cell stage of development just prior to IgH locus rearrangement.

The second (Figures 5B and 5D, blue) is consistent with cells that

are passing through the pre-B cell stage and are preparing to re-

arrange the light-chain locus of the immunoglobulin (Cobaleda

and Sánchez-Garcı́a, 2009).

Light-chain rearrangement is crucial to the latter two coordina-

tion points. The first of these (Figures 5B and 5E, purple) coin-

cides with kappa light-chain protein expression, which mirrors

the trajectory of CD20, signifying that the expression of CD20

occurs in concert with BCR light-chain rearrangement and

expression. Cells that do not successfully express kappa switch

to lambda light chain, both consistent with the known biology

and correctly ordered by Wanderlust (Figure 5B, asterisk [*],

and E). The last coordination point (Figures 5B and 5F, black)

cements the emerging cells as naive, immature B cells preparing

to enter peripheral lymphoid organs.

In summary, Wanderlust successfully organized a dynamically

asynchronous cellular system, providing a holistic view of the
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Figure 5. Coordination of Protein Expression across B Cell Development

(A) The first derivative was calculated in windows across the trajectory for each marker. These values are expressed as a heat map with red indicating a positive

slope (increasing expression) and blue indicating a negative slope (decreasing expression).

(B) Heat map summary of the first derivative analysis, rows aremarkers and columns the progression of the trajectory. Markers were hierarchically clustered using

absolute values of the first derivative. Asterisk (*) indicates decline in kappa light-chain expression coincident with increase in lambda light-chain expression.

Coordination points: (C) at �0.25 Wanderlust (red dashed line and box) rise in VpreB, l5, TdT, CD10, and CD24 and fall in CD117 expression; (D) 0.3–0.4 (blue

dashed line and box) drop in CD34 expression and increases in CD19, CD20, IgHi, and Pax5; (E) �0.6 (purple dashed line and box) showing increases in CD20,

kappa, and lambda light-chain protein expression. (F)�0.8 (black dashed line and box) with drop in CD38 expression and increases in CD40, IgD, and CD22. See

also Figure S5 for additional replicates.
coordination of a complex system, even for transient and rare

cell types. Derivative analysis reveals a closely coordinated se-

ries of regulatory and cellular events, suggesting coordination

points that might act as checkpoints between shifts in cellular

states and fate determinations.

Coordination Points Reveal a Checkpoint for B Cell
Developmental Progression
Using Wanderlust to overlay simultaneously measured indica-

tors of cell proliferation (Ki67) and apoptosis (cleaved poly ADP

ribose polymerase–cPARP) revealed a further level of functional

coordination across nascent human B cell populations (Fig-

ure 6A). The first coordination point (Figure 6A, red arrow) marks

a transition from a state of high to low proliferation, as assessed

by decreasing Ki67 expression (Figure 6A, background shade).

This drop in proliferation leads directly into population IV (Fig-

ure 6A), signifying the transition into pro-B cells, suggesting a

checkpoint that has never been clearly demonstrated in the

human.

As the cells pass through the second coordination point, which

occurs after the IgH locus has been completely rearranged, Ki67

levels show that the cells re-enter a state of proliferation, ex-
panding the pool of pre-B cells, which have productively formed

an IgH (Figure 6A, blue arrow). Just preceding this pre-B cell

expansion there is a discrete spike in cell death, indicated by

a surge in single cells with higher cPARP (Figure 6A, yellow

line), consistent with cells that could not form a productive IgH

rearrangement and thus were unable to pass through this

checkpoint.

In concert with expression of VpreB and l5, the newly ex-

pressed IgH now composes a complete pre-B cell receptor

(preBCR). Mapping cells following B cell receptor crosslinking

onto Wanderlust demonstrates that precisely paralleling the sur-

face expression of the IgH (IgHs), cells are able to induce

massive phospholipase C (PLC) gamma 2 phosphorylation (Fig-

ure 6B, red) as compared to the basal state (Figure 6B, black).

Thus, with pre-BCR on the surface of the cells, they have yet

again rewired their regulatory signaling and have become

responsive to receptor crosslinking (Figure 6B).

Ex Vivo Differentiation Assay Confirms Pro-B Cell
Checkpoint
To determine the role these checkpoints play in a cell’s develop-

mental progression, the earliest pro-B cell checkpoint was
Cell 157, 714–725, April 24, 2014 ª2014 Elsevier Inc. 721
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Figure 6. Regulatory Signaling Influences

Cell Fate Decisions in Developing B Cells

(A) Wanderlust traces of VpreB, l5, IgHi, and

cleaved PARP across the early trajectory (0.1–0.6).

The background is shaded for Ki67 (proliferative

antigen) expression. Indicated are the relative

positions of population II to V. The red and blue

arrows indicate putative timing of pro- and pre-B

cell coordination points, respectively.

(B) Wanderlust traces across the late trajectory

(0.3–0.9) showing IgH (i)ntracellular and (s)urface

expression with the basal and receptor cross-

linked levels of pPLCY2, an intermediary of B cell

receptor signaling. pPLCY2 induction in response

to crosslink shown in yellow.

(C) Using two human BM samples, B cell differ-

entiation cocultures were performed, following

lineage depletion, for 6 weeks on an OP-9 stromal

layer in the presence or absence of inhibitors.

After, cells were analyzed by flow cytometry for the

frequencies of populations II through IV.

(D) Frequency of populations II through IV, as a

proportion of CD34+CD38+ cells, after 6 weeks

of culture in the indicated condition. Each treat-

ment is normalized to the DMSO control for that

population. Two biological replicates analyzed

in quadruplicate cultures for each condition. Error bars are standard deviation. A two-tailed t test was performed to determine statistical significance

*p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S6 and Table S4 for supporting data.
interrogated using an ex vivo differentiation assay (Figure 6C,

Tables S3 and S4). The rewiring of STAT5 regulation across frac-

tions II to IV (Figure 4) suggests that a blockade of STAT5 phos-

phorylation could alter the progression of cells through the pro-B

checkpoint proposed here. To test this, Lin� human BMMCs

from two donorswere differentiated onOP-9 stromal cell feeders

for 6 weeks (Sanz et al., 2010), after which the relative propor-

tions of fractions II through IV were assessed.

Both JAK inhibitors used, Ruxolitinib (JAK1/2 inhibitor) and

Tofacitinib (JAK1/3 inhibitor), restricted progression of cells

from population II through to population IV (Figure 6D), signifi-

cantly decreasing the frequency of cells in population IV, relative

to a DMSO control. At the same time, there was a significant

accumulation of cells in population II. The P38 inhibitor, did not

have a significant influence on the allocation of cells across the

three fractions, though it did promote significant, albeit compart-

ment independent, cellular expansion (Figure S6B). Collectively,

these ex vivo culture assays imply that STAT5 promotes the

developmental progression of early B cell precursors, where

the ligand-dependent phosphorylation in population III likely

represents a critical (pro-B cell) transition point for initiating

IgH V(D)J rearrangement and progression to later stages of

maturity.

DISCUSSION

By leveraging the massively multiplexed, single-cell analysis of a

complex primary sample, algorithmic ordering of cellular pro-

cesses can detect the underlying temporal element in the system

and be used for novel biological inquiries. The Wanderlust algo-

rithm described here is resilient to noise, consistent between

samples, and scalable to up to tens of millions of cells. It extracts
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a trajectory from a snapshot of the system rather than from time-

series data and only requires an approximate starting point as

prior information. The Wanderlust trajectory is continuous; in

addition tomapping stable cell states, it alsoprovides information

about the transitions between states. The combination of these

characteristics makes this an ideal approach for the exploration

of any system undergoing a continuous developmental process.

As single-cell measurements amass due to new technologies

such as mass cytometry and single-cell RNA-seq, researchers

are faced with the novel challenge of organizing this volume of

data. The solution most commonly used is clustering, but by

averaging cells into groups, this approach loses the richness of

single-cell resolution. Using the graph approach proposed

here, rather than assigning single cells to a group of similar cells,

each cell is mapped to a unique position in a graph structure that

can be easily navigated. This structure affords many of the ad-

vantages of clusteringwhile preservingmuch of the cell’s individ-

ual information. This graph-based representation of single-cell

data can be adapted to a wide range of additional applications.

Wanderlust determined the developmental trajectory of

human B cell emergence in bone marrow by simultaneously

examining the features of this primary tissue from progenitor to

maturity, requiring no cellular synchronization, purification, or

manipulation. The trajectory is consistent with the traditional un-

derstanding of this process. Furthermore, Wanderlust provides a

quantitative, high-resolution ordering of surface marker expres-

sion, signaling, and recombination events, including markers

whose timing and relevance were previously unappreciated.

The determined trajectory unifies virtually all relevant cellular fea-

tures and regulatory behaviors of early B cell development in the

human with discrete cell subsets that can now be demarcated

using conventional cytometric methods (Figure 3).



Figure 7. Summary of Phenotypic Marker

Expression, Regulatory Signaling, and IgH

Recombination Status and Proposed Pro-

and Pre-B Cell Checkpoints Aligned to Re-

ported Populations across Human B Cell

Development as Ordered by the Wanderlust

Trajectory

Under ‘‘Definition’’ (top) the expected marker

localization and expression is listed for subse-

quent cytometric characterization. ‘‘Bold type’’

markers are the minimum required to positively

select cells by cytometric analysis. ‘‘Regular type’’

markers are uniformly expressed on the surface.

‘‘Italic type’’ markers are intracellularly expressed.

Markers in parentheses ‘‘()’’ are only partially ex-

pressed on that fraction. Red and blue bars indi-

cate the pro- and pre- B cell coordination points,

respectively. For regulatory signaling and IgH

status (bottom), the gray bars indicate the devel-

opmental regions where cells are prone to the lis-

ted behaviors. See also Figure S7 for additional

replicates.
A Unifying Model of Mammalian B Cell Development
Because it is difficult to obtain and experimentally manipulate

human bone marrow, the understanding of mammalian B cell

development comes mostly from murine systems. The

Wanderlust trajectory identified a precise ordering of key

events and explicitly pinpointed the developmental hallmarks

of B cell development, previously assumed to exist based on

the murine system, in the human. A more precise overview

of human B cell development in the bone marrow is now

made possible by aligning phenotype with regulatory signaling

and key developmental events such as immunoglobulin rear-

rangements (Figure 7). Moreover, the progression identified

by Wanderlust is maintained across all donor bone marrow

specimens examined, such that the developmental timing of

key coordination points ordered by the Wanderlust trajectory
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are consistent across independent mar-

rows and analyses (Figure S7).

In addition, the Wanderlust trajectory

facilitated an in-depth examination of

rare and transient early stages of B cell

development: previously unrealized popu-

lations of B cell progenitors based on the

combined expression of CD34, CD38,

CD24, and TdT. Notably, the earliest of

these B cell precursors expressed neither

CD10 nor CD19, the earliest markers

conventionally used in human B cell iden-

tification (Cobaleda and Sánchez-Garcı́a,

2009). Previous experimental studies of

early B cells, which relied on identification

based on expression of CD10 or CD19,

would have entirely excluded the earlier

fraction of B cells highlighted here.

Moreover, the overlay of multiple

markers onto a single trajectory offered

a holistic picture of the coordination of a
complex system, even for transient and rare cell types; in partic-

ular, identifying regulatory signal rewiring of STAT5 regulation

across populations III through V. Remarkably, IL-7 induced acti-

vation of STAT5 was a limited regulatory state, only active in a

rare population of the cells. While population III comprises only

0.007% of the BMMCs, the results demonstrated that it serves

as a checkpoint to ensure successful initiation of IgH rearrange-

ment. Through this lens, coordination points appear as a hall-

mark of developmental progression.

A Discrete Versus Continuous Concept of Cellular
Development
Much effort has been devoted to the taxonomic characterization

of cellular populations across development in virtually all tissues,

with new cell subsets constantly being described based on
25, April 24, 2014 ª2014 Elsevier Inc. 723



increasingly complex patterns of expression. Although it is easy

to conceptualize this process as a series of discrete steps, in re-

ality, it is continuous and characterized by transitional stages. In

our approach, the trajectory captures expression as trends:

markers rise and fall in patterns that correspond to the cell’s

behavior, capturing transitional behavior. Applying Wanderlust

to high-dimensional single-cell data from a primary human tissue

determined a developmental ordering (trajectory) of cells without

any time-point experiments or genetic manipulations. Further-

more, as seen in Figure S1, the algorithm was able to begin

from a late cell and map the trajectory from a known finale

back to its beginning. This variation is relevant in the context of

nonhematopoietic development, where the stem cells are not

known but the mature cells are plentiful and easily identified,

such as in mesenchymal development.

A Foundation upon which to Understand Disease
Many human diseases can be considered corruptions of normal

development. Indeed, pathologic examination of tissues often

reports findings as the degree of divergence from normal tissue

architecture. However, our understanding of the underpinnings

of a disease is only as good as our understanding of the normal,

healthy condition. Wanderlust provides the ability to infer regula-

tory events across the healthy developmental trajectory, so it is

now possible to use the precise foundation of healthy tissue

ordering to further understand corrupted developmental disease

processes.

In the case of lymphopoiesis, as demonstrated here, the iden-

tification of coordination points across development coupled to

critical regulatory signaling that influence cell fate decisions

(including survival and proliferation), highlights specific develop-

mental periods of risk for malignant transformation. Understand-

ing the critical network configurations that surround these transi-

tions may provide important insight into disease, especially

when a developmental state may serve as an additional diag-

nostic or classification metric.

There are several possible extensions to the concepts pre-

sented here. Wanderlust assumes that the developmental pro-

cess is composed of a series of consecutive stages, with no

branching. Incorporation of a more sophisticated model that

allows forbranchingwill enable theanalysisofmore complex sys-

tems, such as the complete immune system. Given its flexibility

andminimal experimental requirements, this study lays the foun-

dation for applying these methods to other tissue types and cor-

rupted developmental processes, such as cancer, in the future.

EXPERIMENTAL PROCEDURES

Mass Cytometry Analysis

Processing of primary human bone marrow and mass cytometry analysis

including data preprocessing is as previously described (Bendall et al., 2011;

Fienberg et al., 2012; Finck et al., 2013; Kotecha et al., 2010; Amir et al., 2013).

Extended description of these methods can be found in the Supplemental

Information.

Analysis of Primary Human B Cells

Lin� BMMCs were stained for CD34, CD38, TdT, and CD24 and populations II

through V were collected on a FACS Aria (BD Bioscience). Unamplified

genomic DNA from the sorted cell populations was assessed for the level of
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IgH (D)J and V(D)J rearrangement using a qPCR approach adapted from

adapted from Van Dongen et al. (van Dongen et al., 2003). OP-9 progenitor

cell cocultures for B cell specification were performed as previously described

(Sanz et al., 2010). Extended description of these methods can be found in the

Supplemental Information.

The Wanderlust Algorithm

Input and Initialization

The Wanderlust trajectory detection algorithm receives as input the high-

dimensional sample data and a user-defined initial cell (for example, a stem

cell), referred to here as the ‘‘early’’ cell. The output is a continuous trajectory

score for each cell that provides the cell’s temporal positioning across devel-

opment; undifferentiated cells have low scores whereasmature cells have high

scores. Wanderlust is composed of two steps: initialization and trajectory

calculation, which is performed iteratively, see outline below. Please refer to

the Extended Experimental Procedures for a full and detailed description of

the Wanderlust algorithm.

Wanderlust Outline Description

Wanderlust receives as input the single-cell measurements and a user-defined

early cell. The algorithm begins with a two-step initialization step (Figure 1C,

top left). First, a set of cells is randomly chosen as waypoints. Then, the data

are transformed into a randomly generated ensemble of graphs. The algorithm

proceeds by calculating a trajectory separately in each graph. For each cell

(called a target), its position along the trajectory is first set to the shortest-

path distance from the early cell. The target’s position is refined according

to the shortest-path distance from each waypoint using a weighted average.

Waypoints closer to the target contribute more to its location as they are

less susceptible to the noise inherent in the shortest-path distance. However,

the waypoints are themselves targets. Therefore, their position will change

following this same refinement step. Since cell positions depend on waypoint

positions, the shift in waypoints might change the newly calculated positions.

Therefore, the refinement step is repeated with the newwaypoint positions un-

til the positions of all cells converge. Once the trajectory calculation step com-

pletes in all of the graphs, the output trajectory is set to the average over all

graph trajectories.

Simulated Data

We applied Wanderlust to a series of simulated data sets. Each data set

included the same curved, one-dimensional simulated trajectory that was

embedded in three dimensions. The simulated trajectory was generated by

starting at position (1, 1, 1) and randomly traversing the space for 10,000 steps.

After each step the current position was added to the trajectory as a point.

Seven additional dimensions of normally-distributed noise were added to

each data set. Themagnitude of the noise dimensions (defined as the standard

deviation divided by the range of the solution trajectory) varied between data

sets. Additionally, some data sets included short circuits; the number of short

circuits varied between data sets, and their distances were exponentially

distributed with mean again varying between data sets. Full details are avail-

able in the Extended Experimental Procedures.

Wanderlust Analysis

Wanderlust was run on 17 phenotypic markers in each sample using the

following parameters: nl = 20, dist = angular distance, ng = 20, k = 5, l =

30. The early cell was chosen as the cell expressing the highest level of

CD34. The output trajectory was normalized to the [0, 1] range by subtracting

the 5th percentile and dividing by the value of the 95th percentile minus the

5th percentile. We defined the trace of each marker as the median marker in-

tensity in overlapping windows across the trajectory. One hundred windows

were uniformly distributed across the [0, 1] range. Each window included all

cells whose trajectory score was within ± 0.08 of the center of the window.

Wanderlust Cross-Correlation between Individuals

Given a marker, for each sample, we calculated the cross-correlation between

the trace of the marker in the sample and its trace in an arbitrarily chosen sam-

ple (sample A). The trajectory was shifted such that the mean of all cross-

correlations was maximized.



Wanderlust Derivative Analysis

Given the trace of a marker tm over the Wanderlust trajectory w, we calculated

an approximation of the derivative of the trace at a given point p using:

t
0
mðpÞ=

tmðp+ 1Þ � tmðp� 1Þ
wp+ 1 �wp�1
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