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Understanding the effect of genetic sequence variation on phe-
notype is a major challenge that lies at the heart of genetics. We
developed GOLPH (GenOmic Linkage to PHenotype), a statistical
method to identify genetic interactions, and used it to characterize
the landscape of genetic interactions between gene expression
quantitative trait loci. Our results reveal that allele-specific inter-
actions, in which a gene only exerts an influence on the phenotype
in the presence of a particular allele at the primary locus, are
widespread and that genetic interactions are predominantly non-
additive. The data portray a complex picture in which interacting
loci influence the expression of modules of coexpressed genes
involved in coherent biological processes and pathways. We show
that genetic variation at a single gene can have a major impact on
the global transcriptional response, altering interactions between
genes through shutdown or activation of pathways. Thus, differ-
ent cellular states occur not only in response to the external
environment but also result from intrinsic genetic variation.

computational biology � gene regulation � molecular networks �
systems biology

Understanding the effect of genetic sequence variation on
phenotype is a major challenge that lies at the heart of

genetics. Recent technological advances in genotyping have now
made it possible to obtain a comprehensive view of genomewide
variation in a large number of individuals. However, association
studies involving tens of thousands of individuals (1) have, for
the most part, only been able to detect loci that collectively
account for 3% of the heritable phenotype. This finding suggests
that the connection between genotype and phenotype is more
complex than previously assumed and that more sophisticated
approaches are needed to interpret the data.

Quantitative trait mapping of gene expression abundances
[expression quantitative trait locus (eQTL)] has proved a pow-
erful model system for studying genetic traits in a number of
organisms (2–5). To study gene–gene interactions between
QTL, we use gene expression and genotype data on segregants
generated in a cross between a laboratory strain (BY) and a wild
strain (RM) of Saccharomyces cerevisiae (6, 7). We developed
GOLPH (GenOmic Linkage to PHenotype), a statistical algo-
rithm to identify multiple genetic factors influencing gene
expression abundance. Our premise is that the modular organi-
zation of gene regulation can be used to enhance the statistical
power of linkage to eQTLs.

GOLPH identifies an unprecedented number of linked re-
gions for each gene. We used GENATOMY, our custom-built
analysis tool, to visualize and analyze the resulting genetic
interactions between QTL. Our results portray a complex picture
in which multiple interacting loci influence the expression of
modules of coexpressed genes that define coherent biological
processes. The data show that genetic polymorphism can give
rise to distinct cellular states in which entire metabolic pathways
and biological processes are activated to different extents be-
tween individuals. In this regard, genotypic differences are
similar to environmental perturbations in their effect on the
internal state of the cell. Most interacting loci demonstrate

allele-specific genetic interactions, in which the secondary locus
exerts an influence on phenotype only when the primary locus
has a particular allele.

A possible explanation is that the primary locus switches the
cell among states or predisposes it toward adopting a cellular
state. The secondary locus only has an effect in one of these
states. For example, we observe differences in the cellular state
mediated by variation at the IRA2 locus. Genetic variation in
IRA2, an inhibitor of RAS/PKA signaling, predisposes strains
with the IRA2-RM allele toward aerobic respiration (7). We
identify several loci containing genes with critical functions
involved with mitochondria and respiration that exhibit IRA2-
RM-specific influences on entire transcriptional programs. Our
data depict a complex relationship between genotype and phe-
notype resulting from the dynamic nature of genetic interaction
networks that are responsive to both the environment and
genetic variation.

Results
We developed GOLPH, a statistical approach to find multilocus
linkage or association to gene expression traits. It is based on the
detection of interacting QTL (iQTL) that involve 2 or 3 loci.
Each iQTL consists of a primary locus and up to 2 secondary
interacting loci, which significantly link to the trait when the
primary locus has a specific allele, represented as a decision tree.
GOLPH constructs iQTL modules consisting of the iQTL
decision tree and all of the genes that link to that combination
of interacting loci. These iQTL modules are further partitioned
into subsets of coexpressed genes, referred to as expression
patterns.

We applied GOLPH to genotype and gene expression data
obtained from 108 segregants and their parents (2, 6, 7). GOLPH
works in 3 stages, each increasing the number of detected
linkages. Similar to previous studies (8, 9), GOLPH begins with
a stepwise search. In the first stage, primary QTLs are detected
for each trait, and in the second stage, secondary interacting loci
are detected. In contrast to previous studies (8), a secondary
QTL is identified independently for every allele at the primary
locus. In the final phase we exploit the modular organization of
gene regulation to link genes that are not significant alone, but
which share a pattern with significantly linked genes (see Fig. 1
and Materials and Methods). We analyzed the resulting linkages
by using GENATOMY, a purpose-built visualization tool, to
gain insight into the architecture of interacting loci.

The GOLPH Algorithm Significantly Increases the Number of Linkages.
Stage 1 of our analysis (Fig. S1 and Table S1) identified 44
hotspots, including many previously reported regions (AMN1,
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GPA1, HAP1, IRA2, MKT1, PHO84) (2, 5, 7, 10, 11). Using these
hotspots, stage 2 identifies secondary loci that interact with each
of the primary loci. We found 81 pairs of iQTL that link to 5 or

more genes, resulting in an increase in the number of multilocus
genes (Fig. 2 A and B).

In stage 3, GOLPH uses the modularity of gene expression to

Fig. 1. Overview of the GOLPH algorithm. GOLPH takes as input gene expression and genotype data for a set of individuals. (Upper) The computation occurring
at each stage. In stage 1 genes are linked to a primary locus; in stage 2 iQTL are constructed by partitioning the samples based on the primary locus and linkage
to the secondary locus; and in stage 3, FDR is used to expand significant linkages. See Figs. S1–S3 for more detail. (Lower) Once all iQTL modules have been
constructed they are analyzed by using GENATOMY, our interactive visualization and data analysis tool. GENATOMY uses additional resources such as sequence,
GO annotations, protein–DNA interactions, and genetic interactions to help interpret the data.

Fig. 2. Stage 3 results in a marked increase in linked genes. The number of linked genes increases at each of the 3 stages, with the greatest expansion in module
size occurring at stage 3. (A) Number of linkages at each locus color-coded by stage 1 (blue), 2 (green), and 3 (red). The x axis represents the location of the locus,
each of the bold lines below the axis represents yeast chromosomes I–XVI. The y axis represents the number of genes linked to that locus. (B) Histogram
representing the number of loci linking to each gene at each of the 3 stages. The color code is the same as in A. (C) Plot showing the size of each iQTL at stages
2 (green) and 3 (red). The size of the circle is proportional to the number of genes linked to the iQTL. Both axes relate to chromosomal location with the position
of the chromosome marked in bold.
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gain additional power. Our premise is that gene regulatory
networks are organized into modules of coregulated genes (12,
13), deletion studies have shown that when a regulator is deleted,
the expression of hundreds of genes are influenced (14) and
therefore weaker linkage of additional genes to the iQTL
identified in stage 2 are more likely to be real. Stage 3 leads to
a dramatic increase in both the number of genes linked to each
marker and the number of markers linked to each gene (Fig. 2).
After stage 3, �2,500 genes linked to 2 or more loci and �800
genes linked to 5 or more loci, matching previous analysis
estimating that the expression of more than half the genes is
likely influenced by at least 5 different loci (6). To ensure our
method does not report spurious linkage, we performed careful
randomization testing for each step, and indeed no signal was
detected for the randomized data (see Fig. S3). We conclude that
GOLPH detects an unprecedented number of loci for each gene
expression trait and demonstrates that genetic interactions be-
tween loci are more common than previously estimated (10).

iQTLs Generate Coordinated Biological Programs of Gene Expression.
Although genes were added to each iQTL module based on their
linkage alone, the resulting sets of genes form tightly coex-
pressed clusters. Fig. 3 shows the set of genes that are added to
an iQTL module involving IRA2 (chromosome XV:170945–
180961) and the chromosome VII locus (chromosome
VII:167587–192140) at each stage. The genes added in stage 3

have the same pattern of expression as the genes added during
the more rigorous stage 2. In addition, the genes added in stage
3 share Gene Ontology (GO) annotations and binding sites with
those chosen in stages 1 and 2, significantly improving the
functional enrichment of the modules, and further supporting
their linkage (Fig. S4d). Examples of improved enrichment
include ribosome biogenesis and assembly: 10�47 in stage 2 to
10�102 after stage 3, mitochondrion from 10�18 to 10�76, iron ion
transport 10�4 to 10�10, and aerobic respiration 10�3 to 10�12.
We conclude that iQTL do not influence a single gene but rather
entire biological processes and pathways.

Fig. 3 shows 2 distinct patterns of coexpressed genes that are
inverted, i.e., down-regulation on one side of the heat map is
accompanied by up-regulation of equivalent magnitude on the
other side and vice versa. This is a widespread phenomenon
involving 122 modules and 3,638 linked genes, resembling the
response to environmental perturbation, in which entire pro-
cesses are coordinately up- or down-regulated (see Fig. S5 for an
additional example). The existence of inverse expression pat-
terns suggests that many iQTL not only regulate single pathways,
but rather orchestrate entire cellular responses involving multi-
ple biological processes.

Our results provide a view of genetic variation as an internal
cue that predisposes the organism toward or away from a cellular
state. The presence of a single allele can tip the balance between
one state and another. The most striking example is provided by
the IRA2 locus that links to �2,000 genes. Ira2 is a GTPase-
activating protein that negatively regulates RAS. The RAS/PKA
pathway plays a central role in coordinating processes such as
growth and stress tolerance in response to nutrient availability.
The IRA2-RM sequence differs from BY by 87 nonsynonymous
coding SNPs and 3 gaps and segregants with the RM allele of
IRA2 correspondingly inhibit Ras/PKA signaling better than
segregants with the BY allele (7). Although all of the segregants
were grown in glucose (and might be expected to undergo
fermentative growth), the presence of the RM allele correlates
with the up-regulation of genes annotated for mitochondria
(10�14), aerobic respiration (10�9), response to stress (10�8), and
the down-regulation of genes annotated for ribosome biogenesis
and assembly (10�95), rRNA processing (10�57) and the nucle-
olus (10�56), suggesting a transcriptional response consistent
with respiration.

In contrast to IRA2, the phenotypic differences that link to the
HAP4 (chromosome XI: 247944-247956) locus are likely to be
driven by allelic differences in the promoter. Hap4 is part of a
transcriptional activator complex that regulates the transcription
of genes in response to heme/oxygen and/or growth on nonfer-
mentable substrates (15) and the locus is linked to �200 genes.
HAP4 is a cis-eQTL, i.e., a gene that links to its own locus, and
the RM strain has 14 promoter SNPs. Moreover, the presence of
the HAP4-RM allele correspondingly correlates with the up-
regulation of HAP4 along with genes it activates: Hap4 bound
genes (10�19), those annotated for mitochondria (10�90), and
aerobic respiration (10�13).

The Landscape of Genetic Interactions. GOLPH detected 83 pairs of
interacting loci in 205 modules with 542 expression patterns. We
used the multilocus phenotypes to characterize the genetic
interactions between QTLs. Most methods for multilocus traits
assume an additive model, y �aX � bY. For example, the iQTL
module involving the IRA2 and HAP4 loci influence different
aspects of mitochondrial function. The IRA2-RM allele represses
the PKA pathway, predisposing the strain toward respiratory
growth. Hap4, an activator of aerobic respiration is up-regulated
in segregants with the HAP4-RM locus. Therefore, the presence
of IRA2-RM and HAP4-RM each push the cell toward respiration
through independent mechanisms and their joint influence is an
additive combination of their individual influences (Fig. S4a).

Fig. 3. Gene expression in iQTL modules resemble environmental response.
A heat map showing the IRA2–chrVII iQTL module and the expression of the
genes linked at stages 2 and 3. Each row represents a gene, and each column
represents a strain. The module is organized as a decision tree based on the
strain’s genotype and whether it inherited the BY (blue) or RM (purple)
genotype for each of the interacting loci. (A) Top split based on the primary
locus, chromosome XV:IRA2. The lower split is based on the secondary locus
chromosome VII:167587–192140. (B) Eighty genes linked in stage 2. The
columns represent strains and are arranged according to the tree; the vertical
dotted yellow lines show the split point in the genotype. (C) Sixty-two genes
linked in stage 3. The variance in expression of these genes is �0.25 SD. These
genes were considered in stages 1 and 2, but did not pass the higher threshold
for significance. (D) An additional 88 genes are linked in stage 3. These genes
are not considered in stage 2 because their variance in expression is �0.25 SD
and are hence noisier. The names of the genes represented in B–D are
provided in Table S3.
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One of the most striking aspects of the data is the dominance
of allele-specific interactions, i.e., situations in which the sec-
ondary locus exerts an influence on the phenotype only when the
primary locus has a particular allele (and has little or no
influence when the primary locus has another allele). GOLPH
is able to detect allele-specific interactions because each primary
allele is tested for linkage independently and the secondary locus
need not link to both. We have already encountered such an
effect in the iQTL module in Fig. 3, the chromosome VII locus
interacts with IRA2-RM only and has no influence on IRA2-BY.
We note that whereas 196 genes link to the chromosome VII
locus in with the presence of IRA2-RM, none of these linkage
signals were significant in stage 1. To confirm that these inter-
acting loci are indeed allele-specific and do not reflect borderline
effects, we compared the regression coefficient of the linked
versus nonlinked alleles and found that coefficients for the
nonlinked alleles resemble a random distribution (Fig. 4B).
GOLPH detected a remarkable number of allele-specific genetic
interactions. These involve 78 interacting loci, organized into 94
iQTL modules that contain 1,856 unique genes and 2,891

allele-specific interactions, 81% of the total interactions identi-
fied (Fig. 4A). We conclude that allele-specific genetic interac-
tions are prevalent in our data.

The same secondary locus was found to influence both
primary alleles in 50 iQTL modules containing a total of 562
genes. We tested each of these for epistasis (see Materials and
Methods), and in cases where the secondary locus links to both
primary alleles, the majority of interactions (423/562) do not
show a significant interaction term. Because most other methods
do not detect allele-specific interactions, these found that genetic
interactions are typically additive. Although there are only a few
epistatic modules, these can exhibit dramatic effects; a number
of iQTL modules had secondary locus effects in opposing
directions between the 2 primary alleles. For instance, in the
iQTL involving IRA2 and chromosome VI:70818-75460, the
effect of the chromosome VI locus depends on the IRA2 allele.
The RM allele of chromosome VI:70818-75460 up-regulates the
genes in the module in the presence of IRA2-BY and down-
regulates the genes in the presence of IRA2-RM (see Fig. S4b and
Table S2).

The Prevalence of Allele-Specific Genetic Interactions. To under-
stand how allele specificity might arise, we analyzed an iQTL
module linked to IRA2-RM and a locus on chromosome II:
334020-334022 (Fig. 5). The causal gene on chromosome II is
likely to be TCM62, which encodes a protein that supports
biogenesis of the mitochondrial succinate dehydrogenase com-
plex by acting as a molecular chaperone (16). Strains deleted for
TCM62 grow slowly on rich glycerol medium and are respiration
deficient. TCM62-RM has 3 coding SNPs and 57 promoter SNPs
compared with the BY sequence, including SNPs in 2 Pho2
binding sites. One of these SNPs is predicted to increase the
binding affinity of Pho2 (17); indeed, TCM62 is a strong cis-
eQTL and is up-regulated in segregants bearing the TCM62-RM
allele.

When segregants have both IRA2-RM and TCM62-RM, mi-
tochondrial genes (10�7) and Skn7 targets (10�5) are up-

Fig. 4. Landscape of genetic interactions between loci. (A) A pie chart
representing the types of interactions between loci in our analysis. The outer
circle represents genes, and the inner circle represents modules. RM allele-
specific interactions are orange, BY allele-specific interactions are brown. Blue
represents situations in which the secondary allele links to both sides, additive
interactions are dark blue, and synergistic interactions are light blue. Green
represents modules with 2 different allele-specific interactions, one for each
side. The dominance of allele-specific interactions is evident. (B) Histogram of
correlation coefficients in allele-specific modules. The data show that the
effect of the secondary locus on the noninteracting allele is negligible. The x
axis is the correlation coefficient between the secondary locus and the mean
expression level for genes in the module. The y axis shows the number of
modules. The blue bars represent data from the interacting primary allele and
the red bars represent the other noninteracting allele. The green line shows
that the distribution for randomly chosen pairs of loci is similar to the histo-
gram in red demonstrating that the interactions are indeed with only one
allele and not the other.

Fig. 5. Allele-specific IRA2 module (see also Fig. S6). The IRA2-TCM62 iQTL
module is graphically represented as described in Fig. 3. For compactness,
representative genes were chosen for each pattern. The full list of genes for
each pattern is provided in Table S4. We manually added an additional
partition by using the chromosome VII locus from Fig. 3 to TCM62-BY to
demonstrate that the chromosome VII locus represents an alternative path-
way to that affected by TCM62-RM.
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regulated, whereas ribosome biogenesis and assembly (10�63),
nucleolar (10�37), and rRNA processing genes (10�32) are
down-regulated. Fig. 5 shows the expression pattern of genes in
the module and that the TCM62 locus has a strong influence
in segregants with the IRA2-RM allele and negligible influence
in segregants with the IRA2-BY allele (see also Fig. S6. The PKA
pathway is inhibited in segregants bearing the IRA2-RM allele
and the balance is tipped toward the expression of genes
associated with respiratory growth and the up-regulated
TCM62-RM allele likely further tips the cell toward respiratory
growth.

Previous work reports that linkage to a particular locus often
depends on environment, the locus exerting an influence in one
environment, but not in another (7). Both external environmen-
tal signals and genetically-driven internal cues can drive cells to
switch between states, as reflected by different metabolic f luxes
and stresses acting on the cell. We postulate that the allele-
specific linkages we detect are largely caused by such events.
These switches can sometimes be subtle, such as a release of
inhibition or a shift in bottlenecks, making certain genes more
critical in some conditions than others. Thus, genetic variation
leads to internal change, altering interactions between genes
through shutdown or activation of pathways, release of inhibi-
tion, or shifting of bottlenecks.

The IRA2-RM allele plays a dominant role among the allele-
specific iQTL modules accounting for 41% of the genes influ-
enced by allele-specific interactions with RM; however, other
loci also exhibit this phenomenon. Each of HAP1-RM and
MKT1-RM has allele-specific effects on the expression of �200
genes. Although there are fewer allele-specific interactions with
BY, 886 genes are affected by allele-specific interactions on the
BY side. The loci that dominate BY allele-specific interactions
include HAP1-BY and a locus on chromosome I:41483-42639,
likely to be caused by polymorphism in OAF1, an oleate-
activated transcription factor involved in the �-oxidation of fatty
acids and peroxisome organization and biogenesis. Together
there are �10 different hotspots that exert allele-specific influ-
ences over a large number of genes.

Discussion
The emergence of new technological advances in high-
throughput genotyping and sequencing has enabled large-scale
characterization of genetic variation at high resolution. How-
ever, novel computational approaches are needed to detect
causal sequence variants and model how genotype influences
phenotype. A first step is to characterize the landscape of genetic
interactions between naturally-occurring variants and elucidate
how multiple loci combine to affect phenotype.

Applying GOLPH to yeast detected between 2 and 10 linkages
for each of 2,745 genes, providing an expansive view on the
architecture of multilocus traits and the genetic interactions
between them. A remarkable finding is a large-scale occurrence
of allele-specific interactions, indicating that the landscape of
multilocus traits is predominantly nonadditive. A likely mecha-
nism for allele-specific interactions stems from the observation
that genetic variation can mimic the response to environmental
change. Thus, different biological states occur not only in
response to the external environment but also as a result of
intrinsic genetic variation.

Genetic variation in both coding and regulatory regions of
transcription factors can lead to responses that alter cellular state
(e.g., HAP1, HAP4). More intriguing, such large-scale transcrip-
tional responses are not only caused by variation in classical
transcriptional regulators, but also caused by polymorphism in
metabolic enzymes, regulators of translation, and molecular
chaperones (e.g., LEU2, MKT1, TCM62). These demonstrate
that genetic variation in a single gene may trigger a cascade of
events, leading to an alternative cellular state, by predisposing

the cell toward shutdown or activation of pathways. In this way
the molecular network can be considered an intricate web of
interacting factors in which dynamic entities may rewire their
connectivity in response to perturbations in the environment and
as a result of intrinsic genetic variation.

The prevalence of complex, nonadditive gene–gene interac-
tions is likely to play a large role in human and disease-related
genetics and offers clues as to why recent association studies
involving over tens of thousands of individuals have accounted
only for a very small fraction of the heritable variation observed
(1). We believe that state changes driven by intrinsic genetic
variation and the resulting allele specific interactions are likely
common in human and disease-associated genetics. In multicel-
lular organisms, genetic variation can lead not only to an altered
cellular state, but can propagate to changes at the level of the
entire organism. Detecting such allele-specific association in
human is significantly more challenging as the genome is 2 orders
of magnitude larger than yeast and the population structure is
more complex.

Nevertheless, there are multiple lines of evidence in support
of such allele specificity. The influence of genetic variation on
phenotype is condition-dependent and is influenced both by
external (18) and internal factors such as tissue type. For
example, alleles of IRGM, that confer risk and protection for
Crohn’s disease, show different patterns of tissue-specific ex-
pression (19) and allelic imbalances that confer tissue specificity
are likely to be common (20). Moreover, there are a number of
‘‘hotspot’’ genes associated to a broad range of diseases including
MHC and ApoE. The MHC is associated with autoimmune,
infectious, and inflammatory diseases including multiple scle-
rosis, type 1 diabetes, systemic lupus erythematosus, ulcerative
colitis, Crohn’s disease, and rheumatoid arthritis (21). ApoE is
associated with lipid level and Alzheimer’s disease (18) spanning
the range from metabolic to neurodegenerative disorders. We
hypothesize that variation in genes such as HLA and ApoE
perturbs the molecular network, altering multiple biological
processes and pathways relevant to many of the associated
diseases.

Although much of the challenge in genetic association lies in
detecting the factors involved in disease, understanding the
complex nature of molecular networks that give rise to pheno-
type can be leveraged to gain insight into the transmission of
information from genotype to phenotype. A number of ap-
proaches that take the molecular network into account have
proved successful. Some of these involve integrating different
data sources including gene annotations, transcription factor–
protein and protein–protein interactions to identify paths be-
tween the locus and the linked gene, thus helping to pinpoint the
causal gene within the locus (22, 23). The use of Bayesian
networks (24) to reconstruct the regulatory network and the
perturbations to it arising from genetic variation has also proved
to be particularly powerful (25–27). For example, Chen et al. (27)
used this approach to identify molecular networks conserved
between human and mouse that are perturbed by susceptibility
loci in metabolic syndrome. One of the factors leading to the
success of this approach is that DNA sequence polymorphisms
are effective perturb-agens that provide a rich source of varia-
tion, which helps to uncover regulatory relations in the molec-
ular network and direct their causality. Thus, there is comple-
mentary duality between 2 long-standing computational
challenges: Genetic variation of gene expression helps reveal the
regulatory network, which subsequently aids in identifying the
genetic factors underlying complex traits.

Materials and Methods
Data. The strains, genotypes, and gene expression measurements were those
of ref. 7. We merged adjacent, highly-correlated markers, to obtain a total of
526 markers (25). For our analysis we normalized expression data mean of 0
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and variance 1. For stages 1 and 2 of our algorithm we only used data from the
1,733 genes that showed significant variation (SD �0.25) in their expression
level. GO categories from www.yeastgenome.org with �5 genes were used
for the evaluation of biological function. Putative transcription factor binding
sites were obtained from http://fraenkel.mit.edu/yeast�map�2006.

GOLPH Algorithm. GOLPH is a multistep procedure for identifying multilocus
linkage and pairs of interacting loci. We briefly describe the algorithm,
deferring detailed explanation to SI Text. Two key features in GOLPH enable
the ability to identify multiple locus linkages. First, GOLPH permits the iden-
tification of allele-specific interactions in which secondary QTL are specific for
the allele at the primary locus. This is in contrast to a secondary QTL that
contributes irrespective of the allele at the primary locus. Our model can be
written as expression y � baseline � aX � �bY � (1 � �)cZ, � � 1 for X � BY
and � � 0 for X � RM, where X is the primary locus, and Y and Z are 2 secondary
loci.

Second is the use of modularity: as opposed to searching for interacting
QTLs at each gene independently, we group genes into modules based on the
hotspots identified for each one. This step greatly increases the number of
linkages detected and reduces measurement artifacts and noise.

Stage 1. The first stage of our analysis applies classic genetic analysis (2, 28) to
look for linkage of gene expression traits to a primary locus. For each gene and
marker, we use a Welch’s t test statistic (29) and permutation testing with a
stringent cutoff to evaluate the significance of the linkage, with cutoffs of
0.05 for the t test’s P value and 10�5 for the permutation testing. Because
genes linked to one marker are also likely to have linkage signals in neigh-
boring markers, we merge small peaks with proximal larger peaks into chro-
mosomal hotspots. After the merging of peaks, we identified 44 locus hot-
spots that link to at least 5 genes for stage 2.

Stage 2. For each of the 44 modules identified in stage 1 and each gene that
links to these, we partitioned segregants on the basis of inheritance (either BY
or RM) at the primary locus and similarly tested each subgroup for further
secondary loci. This process was carried out independently for the BY or RM
allele at the primary locus. Secondary loci are considered significant if Welch’s
t test P �0.05 and P �10�4. Each detected secondary linkage defines an iQTL

represented as a decision tree. The resulting tree can have secondary splits on
the BY (right) side, the RM (left) side, or both. Because close loci link to
overlapping sets of genes, we merged similar iQTL modules (see SI Text). After
removing modules that have �5 genes, we obtained 91 iQTL modules.

Stage 3. As discussed above, GOLPH uses the modularity of gene expression to
gain additional power. We seed our search with the iQTL detected by using
highly-stringent criteria in stage 2, ensuring that the loci selected are likely to
exert causal regulatory influence on gene transcripts. We go over the regu-
lation trees one by one and evaluate all 4,338 genes in our set for that module.
Each tree involves 2 independent tests, depending on the structure of the tree.
For each module, we generate a distribution of P values over all 4,338 genes
independently for each of the 2 tests above. A gene is assigned to the module
by using a genomewide false discovery rate (FDR) of 1% (30) for both tests.
Hence our threshold is adaptive to the number of genes and the strength of
linkage signal for each locus, so a large number of weak signals that point to
the same locus increase the significance.

Module Annotation. To biologically annotate the resulting modules, we cal-
culated the hypergeometric enrichment for all modules against all annota-
tions and carried out an FDR correction for multiple independent hypotheses.
We considered values of Pcorrected � 0.005 to be significant.

Additional Information. For interactive viewing and analysis of all of the
constructed iQTL modules we have generated a file formatted for visualiza-
tion with our interactive GENATOMY analysis tool.*

*The GENATOMY visualization application is freely available for academic use and can be
downloaded from www.c2b2.columbia.edu/danapeerlab/html/genatomy.html.
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