
nature biotechnology  VOLUME 31  NUMBER 6  JUNE 2013	 545

A rt i c l e s

Emerging single-cell technologies have revealed an extensive degree 
of heterogeneity between and within tissues1. Analysis of single-cell 
data has shed light on many different cellular processes2–7 and recent 
technological advances have enabled the study of a large number of 
parameters in single cells at unparalleled resolution. For example, 
mass cytometry8 can measure up to 45 parameters simultaneously in 
tens of thousands of individual cells. High-resolution microscopy9,10 
and single-cell RNA quantification11–14 allow analysis of 100 param-
eters in dozens and soon hundreds of individual cells. These innova-
tions promise to transform the way we think about development, 
differentiation, and disease1,15,16.

However, it is difficult to visualize such high numbers of dimen-
sions in a meaningful manner. Single-cell data are often examined 
in two dimensions at a time in the form of a scatter plot17. Yet, as 
the number of parameters increases, the number of pairs becomes 
overwhelming. A typical mass cytometry data set allows several hun-
dred pairwise combinations. In addition, a pairwise viewpoint could 
miss biologically meaningful multivariate relationships that cannot 
be discerned in two dimensions. Several computational tools, such 
as SPADE18, have been developed to address these problems19,20. 
However, these approaches typically cluster cells and examine the 
average of each cluster, resulting in the loss of single-cell resolution of 
the data. Principal component analysis (PCA), another computational 
tool, has been applied to mass cytometry data sets21 and can be used 
to project data into two dimensions while maintaining single-cell 
resolution. However, PCA is a linear transformation that cannot faith-
fully capture the nonlinear relationships that are a hallmark of many 

single-cell data sets. Therefore, we need new tools to visualize and 
interpret high-dimensional single-cell data such as those produced 
by mass cytometry. An ideal tool would enable visualization at single-
cell resolution, preserve the geometry and nonlinearity of the data, 
represent both abundant and rare populations, and provide a robust, 
interpretable view of the data.

We developed viSNE for this purpose. viSNE allows visualization 
of high-dimensional single-cell data and is based on the t-Distributed 
Stochastic Neighbor Embedding (t-SNE) algorithm22. viSNE finds 
the two dimensional representation of single-cell data that best pre-
serves their local and global geometry. The resulting viSNE map pro-
vides a visual representation of the single-cell data that is similar to a 
biaxial plot, but the positions of cells reflect their proximity in high- 
dimensional rather than two-dimensional space. We utilize color as a 
third dimension to interactively visualize features of these cells. Here 
we apply viSNE to interpret mass cytometry data derived from healthy 
and leukemic human bone marrow.

RESULTS
Preserving high-dimensional relationships in single-cell data
In viSNE, each cell is represented as a point in high-dimensional space. 
Each dimension is one parameter (that is, the expression level of one 
protein). An optimization algorithm searches for a projection of the 
points from the high-dimensional space into two or three dimensions 
such that pairwise distances between the points are best conserved 
between the high- and low-dimensional space (Online Methods). The 
resulting low-dimensional projection, which we call the viSNE map,  
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is visualized as a scatter plot, where a cell’s location in the plot repre-
sents information from all of the original dimensions.

We also developed cyt, an interactive tool for visualization of viSNE 
maps. cyt has multiple features, including plotting the maps, coloring 
cells by marker expression, sample or subtype, and gating. Figure 1a  
illustrates how viSNE works on a synthetic example; the optimi-
zation algorithm identifies the global structure of the data (a one- 
dimensional line, along with its curvature, embedded in three- 
dimensional space) and the local structure (pairwise distances 
between points along the line are conserved).

viSNE map of healthy human bone marrow
First, we evaluated viSNE’s ability to map the well-characterized sys-
tem of human bone-marrow hematopoiesis23. We analyzed previously 
generated data of healthy human bone marrow (sample Marrow1)  
stained with elemental isotope-conjugated antibodies specific for 13 
surface markers21. When applied to this data set, viSNE generated a 
map that clearly separated different cell subsets in space (Fig. 1b). 
To validate and label the map, we used an independently derived 
classification of the cells based on expert manual gating of a series of 
biaxial plots (Fig. 1c and Online Methods). Although viSNE was not 
provided with this classification or with any knowledge of immune 
subsets, it successfully grouped cells of the same subset together and 
cells of different subsets separately (Fig. 1b–c). viSNE accurately dis-
tinguished CD4+ and CD8+ T cells, mature and immature B cells, 
mature and immature monocytes and natural killer (NK) cells. 
Notably, NK cells formed a distinct subset even though CD56, the 
canonical marker associated with this lineage, was not included in 
the antibody staining panel.

To further compare the expert manual gating and the viSNE map, 
we used the cyt feature to gate subsets directly from the viSNE map 

(Supplementary Fig. 1a). In all cases, the viSNE gate included cells 
that were not classified by the expert manually gated biaxial plots; these 
cells are labeled in gray in the viSNE map. Examination of the marker 
expression of these cells reveals that they are typically just beyond the 
threshold of one marker, but the viSNE classification is strongly sup-
ported based on the expression of all other markers. For example, in 
Figure 1d, wherein cells are colored for CD11b marker expression, 
the cells in the gated region express the canonical monocyte marker 
CD33 (Supplementary Fig. 1b). However, only 47% of these cells were 
classified as monocytes by the manual gating (Fig. 1b). In addition, 
the marker intensity distributions between the CD11b– monocytes in 
the viSNE map monocyte gate and in the manually set monocyte gate 
(Supplementary Fig. 1c) are similar, supporting the notion that the 
cells gated in the viSNE map are indeed CD11b– monocytes.

Traditional gating relies on hard thresholds to classify cells into 
subsets. Thus cells whose marker values are slightly below or above 
the threshold might not be classified correctly, or classified at all 
(Supplementary Fig. 1d). When dealing with the hematopoietic con-
tinuum, this may result in the inability to accurately capture transi-
tional cell types. For example, using cyt to color cells based on marker 
intensity revealed that viSNE organized monocytes based on a gradient 
or smooth increase in expression of CD11b, a marker of monocyte 
maturity (Fig. 1d). This finding highlights the continuous and gradual 
nature of CD11b expression during monocyte maturation and better 
represents the continuum of normal differentiation24. viSNE takes into 
account all phenotypic markers concurrently instead of relying on hard 
thresholds and, as a result, classifies more cells and captures a more 
accurate view of the variability within each subset when compared to 
biaxial gating. The single-cell resolution of the viSNE map provides 
fine detail of each subset, going beyond clustering and enabling investi-
gation of the variation, structure and transitions within each subset.

Figure 1  viSNE map of healthy human  
bone marrow. (a) In a synthetic toy example, 
(1,000 points randomly distributed with 
normally distributed noise around a polynomial 
of the third degree) viSNE projects a one-
dimensional curve embedded in three 
dimensions (left) onto two dimensions (right). 
The color gradient shows that points that 
are in close proximity in three dimensions 
remain in close proximity in two dimensions. 
(b) Application of viSNE to a healthy human 
bone marrow sample, stained with 13 markers 
and measured with mass cytometry21, 
automatically separates cells into spatially 
distinct subsets based on the combination  
of markers that they express. Each point  
in the viSNE map represents an individual  
cell and its color represents its immune  
cell subset as designated by independent 
expert manual gating (manual gates are 
defined at the bottom). Gray points were not 
classified by manual gating. The axes are in 
arbitrary units. (c) Biaxial plots represent the 
same data shown in b, and show the gates 
drawn manually by expert operators. The 
colors of the squares match the colors in b. 
The actual manual gating used here is more 
complex and uses a series of biaxial plots to 
gate each population21. Note, that unlike in 
b, no single biaxial plot spatially separates all 
subsets. (d) The same viSNE map shown in 
b is colored according to intensity of CD11b expression. Many of the cells within the dotted line gate were not classified as monocytes by manual 
gating (gray cells, b). (See Supplementary Fig. 1 for additional analysis of marker expression on these cells.)
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Robust subset classification even without canonical markers
We performed a number of analyses to evaluate the robustness of 
viSNE. The viSNE map in Figure 1b includes 10,000 cells that were 
subsampled from the complete data set of Marrow1 (ref. 21). We inde-
pendently subsampled multiple subsets of the data and ran viSNE 
on each. Reassuringly, these separate analyses resulted in similar 
viSNE maps that conserved the spatial separation between subsets 
(Supplementary Fig. 2). Thus the viSNE map consistently and reli-
ably represents real structure in the data.

To test viSNE’s reliance on specific markers for classification of immune 
cell subsets, we generated multiple viSNE maps but excluded some of the 
markers when generating each map. The viSNE map remained consist-
ent in terms of spatial separation of subsets even after removal of any 
single marker (Fig. 2a and Supplementary Fig. 3). Remarkably, even 
after excluding the canonical markers of B cells, T cells and myeloid cells 
(CD19/CD20, CD3 and CD33, respectively), the viSNE map remained 
consistent with the map constructed using all 13 markers (Fig. 2a). These 
findings imply that noncanonical markers, when analyzed together, con-
tain the information needed to separate distinct immune cell subsets. 
This speaks to a previously unappreciated level of organization where 
specialized immune subtypes have tightly coordinated surface marker 
expression beyond their canonical identifiers. The different subtypes 
reside in distinct well-separated subset shapes in high-dimensional space 
(Supplementary Fig. 4 and Supplementary Data 1).

Consistent and reproducible healthy bone marrow map
Having demonstrated viSNE’s robustness when applied to a single healthy 
bone marrow sample, we examined its robustness across bone marrow 
samples from multiple healthy individuals. Three healthy bone marrow 
samples (Marrow2–4) were assayed by mass cytometry using a panel of 
31 phenotypic surface markers. The resulting viSNE map grouped cells 
into distinct subpopulations, and cells from all three individuals over-
lapped within each subpopulation (Fig. 2b and Supplementary Fig. 5). 
We used the Jenson-Shannon (JS) divergence to quantify the similarity 
between the viSNE maps of the three individuals. The JS divergence 
between each pair of healthy individuals was 0.04, confirming that there 
is almost no divergence between the viSNE maps of healthy samples. 
Using cyt to visualize expression of individual markers, we gated spe-
cific immune cell subsets in viSNE maps (Fig. 2c and Supplementary 
Fig. 6). The 31 markers used led to the identification of slightly differ-
ent immune subsets, for example, recognition of erythrocyte and pro-
genitor subsets was aided by the addition of anti-CD61 and anti-CD117  

to the panel, whereas the CD4 and CD8 T-cell populations were merged 
because those markers were omitted (Supplementary Fig. 7).

To further evaluate the robustness of viSNE’s map of healthy bone 
marrow, we applied viSNE to an additional bone marrow sample col-
lected using conventional fluorescence-based flow cytometry. The 
resulting viSNE map is similar to the map generated by mass cytometry 
(Supplementary Fig. 8), demonstrating not only consistency in the map 
between healthy samples, but also that viSNE is well-suited for the analy-
sis of fluorescence-based cytometry data. The cellular subtypes that make 
up the human immune system are reproducibly represented by viSNE, 
and the fidelity of this structure is maintained across multiple cytometry 
platforms, marker panels, and, most importantly, individuals.

Deformed shapes of leukemic bone marrow maps
Encouraged by the consistency and robustness of viSNE maps of 
healthy bone marrow samples, we used viSNE to analyze leukemic 
bone marrow. We stained two bone marrow samples donated from 
healthy individuals and two from acute lymphoblastic leukemia (ALL) 
patients with a panel of 29 antibodies optimized for the analysis of ALL 
(Supplementary Table 1).

The maps of the two healthy bone marrow samples (Marrow5–6) 
overlap (JS divergence 0.04) (Fig. 2d). In contrast, the two ALL samples 
occupy a completely separate region within the viSNE map (JS diver-
gence 0.45), and each forms a distinct population separate from the 
other ALL sample (JS divergence 0.42). Some cells from the ALL samples 
(~5%) overlap with cells from the healthy samples. Inspection of these 
cells revealed marker combinations that correspond to healthy immune 
cells, supporting their placement with the other healthy cells.

When we applied viSNE separately to each ALL sample, each sample 
mapped into a large deformed shape (Fig. 3a) and several smaller shapes; 
the latter corresponded to healthy immune cell populations, indicating that 
the malignant cells were related to each other but sufficiently distinct from 
healthy cells. We also applied viSNE to two acute myeloid leukemia (AML) 
patient samples. The viSNE maps of these AML samples also displayed a 
single, large, deformed shape (Fig. 3b), in contrast to the separated and 
distinct subpopulations of healthy samples. Even when constructing a 
three-dimensional viSNE map, the AML projects onto a single continuous 
shape (Supplementary Data 2–4). We noted a considerable population 
structure within each cancer, as discerned by multiple peaks and saddle 
points in the contour map. Moreover, each cancer sample formed a unique 
viSNE map, in which healthy subpopulations were consistently separated 
from the abnormal leukemic subpopulations.
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Figure 2  viSNE is robust, consistent, and does not require canonical markers. (a) The left map is the same as in Figure 1b, and was generated by 
considering all 13 markers. Middle: viSNE map of the same cells, projected after removing CD33. Right: viSNE map of same cells, projected after 
removing CD33, CD3, CD19 and CD20. Despite removing four canonical markers, viSNE separates most major subtypes using the remaining nine 
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np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



548	 VOLUME 31  NUMBER 6  JUNE 2013  nature biotechnology

A rt i c l e s

viSNE can explore cancer heterogeneity
Although healthy samples can be studied by biaxial gating based on 
known surface phenotypes of individual immune cell subsets, exploring 
cancer heterogeneity in high dimensions can be a daunting task as cancer 
samples frequently display abnormal combinations of surface markers 
and there are hundreds of possible biaxial combinations of surface mark-
ers. In current clinical practice, hematopoietic malignancies are ana-
lyzed using at most four to eight markers simultaneously. Hematopoietic 
malignancy immunophenotyping results have typically been displayed 
using biaxial plots focused on key markers (Supplementary Fig. 9). 
However, by combining mass cytometry with viSNE, we are able to 
visualize cancer at single-cell resolution in a single map that takes into 
account ~30 markers; this sort of analysis can reveal additional struc-
ture, abnormal marker combinations and subpopulations.

We used viSNE to comprehensively characterize a diagnostic 
AML bone marrow sample. Although the overall viSNE map shape 
of cancer is deformed compared to that of healthy bone marrow, 
some markers (e.g., CD33, CD34 and HLA-DR) show gradients of 
expression whereas others (e.g., CD79b) show clustered expression 
(Fig. 3c and Supplementary Fig. 10). Within the subpopulation of 
cells that highly express CD34 (a marker of stem/progenitor cells) is 
a gradient of expression of CD33 (a marker of monocytes; Fig. 3c). 
This marker combination suggests a derailed development program 
in cancer, because during normal healthy immune cell development, 
as monocytes mature, expression of CD34 (a marker of immaturity) 
decreases. Perhaps in this cancer, oncogene activity promoted a 
progenitor-like CD34+ state, but the cells continued to differentiate 
aberrantly as indicated by the induction of CD33 expression. The 
single-cell resolution of viSNE highlights cancer as a continuum of 
heterogeneous phenotype states, demarcated by gradients of marker 
expression rather than distinct subpopulations.

Comparing diagnosis and relapse samples
Because the viSNE map might reflect aspects of cancer progression, 
we used viSNE to analyze two samples from a single AML patient: one 
sample was taken before chemotherapy and the other was taken after 
disease relapse. Using viSNE on a merged data set representing both 
samples, we could clearly visualize a separation between the diagno-
sis and relapse samples (Fig. 4a, Supplementary Figs. 11 and 12).  
viSNE reveals phenotypes unique to the diagnosis sample, which are 
presumably eliminated by chemotherapy, as well as phenotypes that 
arise only at relapse. Notably, the viSNE map identifies a region of 
phenotypes occupied by both samples, but that is considerably rarer 
at diagnosis. This may suggest enrichment of a drug-resistant clone 
that maintained a consistent phenotype from diagnosis to relapse.  
We also note populations of healthy cells that overlap in the diagnosis 
and relapse sample viSNE maps; these provide an internal technical 
control for the similarity of staining between samples. Regarding spe-
cific markers, FLT3 expression is pervasive in the diagnosis sample, 
but diminished in the relapse sample. Genetic analysis of the diagnosis 
sample revealed an internal-tandem duplication of FLT3, a common 
mutation in AML25, suggesting relapse derived from a clone lacking 
this mutation (FLT3 genetic status at relapse was unavailable). The 
clone that reemerged at relapse had an altogether different and more 
immature phenotype, with cells expressing both high CD34 and CD33 
throughout a large fraction of the sample (Fig. 4b and Supplementary 
Fig. 12). The relapse sample was highly heterogeneous, as distinct 
regions expressed different markers from the myeloid lineage (CD64 
and CD15) and lymphoid lineage (CD7) (Fig. 4b).

To allow further dissection of the heterogeneity of the AML sam-
ple using experimental tools such as DNA and RNA sequencing, we 
used the viSNE map to devise a gating scheme that is compatible with 
fluorescence-assisted cell sorting (FACS). We divided the AML sample 
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into subpopulations based on expression of CD33, CD34, CD7 and 
CD64. We classified each marker as “on” (positive) or “off ” (negative) 
according to a threshold that was chosen using the map (Fig. 5a, black 
lines). We intersected CD34 and CD33 gates, selected the CD34+CD34+ 
population, and applied the CD64 and CD7 gates to it (Fig. 5b). When 
examining the intersection of all eight groups (two for each marker), 
we identified six distinct subpopulations having at least 20 cells each 
that spread across the viSNE map (Fig. 5c). The next step would be to 
physically separate the relapse sample into these subpopulations using 
FACS and characterize them by means of downstream experiments.

viSNE detects minimal residual disease
The ability to detect, by flow cytometry, small numbers of cancer-
ous cells displaying an aberrant phenotypic “fingerprint” is used  
to stratify patients by risk of relapse and direct treatment decisions. 
The presence of such minimal residual disease (MRD) can be asso-
ciated with risk of relapse26,27. The detection of MRD indicates  
a need for intensified therapy that unfortunately carries an increased 
risk of toxicity. Consequently, accurate detection of rare malig-
nant populations is paramount in correctly assigning risk to an  
individual patient.

There are two competing manual methods 
for assessing MRD by flow cytometry. The 
first involves identifying aberrant antigen 
expression (leukemia-associated immu-
nophenotype) on the leukemia cells at diagno-
sis, and then looking for that same phenotype 
on samples taken after chemotherapy28. The 
second method involves identifying leuke-
mic cells based on a ‘different-from-normal’ 
phenotype by comparing them to a histori-
cal bank of healthy bone marrow samples29. 
Although the prognostic value of MRD  
measurement has been validated in several 
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Figure 4  viSNE reveals the progression of cancer 
from diagnosis to relapse. (a) Contour plots 
of the viSNE maps of diagnosis and relapse 
AML samples in patient AML B. The contours 
represent cell density in each region in the map. 
The map is the same in each sample. Each point 
represents a cell from the diagnosis (top, purple) 
or relapse (bottom, red) sample. (b) Cells from 
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each map, and the map is the same as in a. Cells 
are colored according to intensity of expression of 
the indicated markers, enabling the comparison 
of expression patterns before and after relapse. 
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clinical trials, both of these approaches require an expert pathologist 
to manually inspect biaxial plots, and both approaches have shortcom-
ings. It can be difficult to identify abnormal cells that are sufficiently 
phenotypically distinct from normal bone marrow. If one relies on and 
searches only for cells with the phenotype of the diagnostic sample, 
one may fail to detect other malignant populations displaying distinct 
yet abnormal phenotypes. Thus, a tool that automatically identifies 
abnormal cellular phenotypes would allow clearer identification and 
evaluation of remaining cancer cells.

Because viSNE revealed such a clear contrast between leukemic and 
healthy bone marrow, we tested whether it could aid manual MRD detec-
tion. We spiked metal-barcoded30 cells from an ALL patient sample into 
a healthy bone marrow sample, thereby creating a synthetic sample with 
0.25% of a MRD-like population. A single healthy bone marrow sample 
served as a guide for interpretation (similar to the different-from-normal 
manual approach). We used a biased subsampling method to enrich for 
unique noncontrol subpopulations and generated a viSNE map using 
eight markers (CD3, CD7, CD10, CD15, CD20, CD34, CD38, CD45) 
to emulate an MRD scenario using fluorescence-based flow cytometry. 
The algorithm was blinded to the metal-barcoded channel.

A good MRD candidate region would be a distinct region of the 
viSNE map that contains cells from the MRD sample, but no cells from 
the healthy control sample. Cells from both samples were well-mixed 
across most of the viSNE map, except for one suspect region that was 
composed almost entirely of cells from the synthetic MRD sample 
(Fig. 6a). We compared marker expression levels in the suspect region 
to the rest of the sample (Fig. 6b) and found that the suspect cells 
strongly expressed CD10 and CD34, exhibited below-average expres-
sion of CD45 and also expressed CD15, a phenotypic combination 
often seen in precursor B-cell ALL. Taken together, the combination 
of these surface markers and the absence of similar cells in the healthy 
control suggest that these were leukemic cells. Removal of the blind-
ing of the metal-barcoding channel revealed that these cells were 
positive for the metal barcode and therefore were indeed the spiked 
ALL cells (Fig. 6c). We repeated this analysis with a different set of 
markers and achieved similar results (Supplementary Fig. 13). As a 
control, we repeated the same procedure with a sample that included 

only healthy cells. The two healthy samples were well mixed across 
the entire viSNE map; there was no region that contained only MRD 
cells (Supplementary Fig. 14), demonstrating that the subsampling 
method and viSNE do not spuriously create suspect regions. Although 
only a synthetic example, this demonstrates viSNE’s success in iden-
tifying a minuscule cancer subpopulation in the data, suggesting that 
viSNE can be effectively used for MRD detection.

DISCUSSION
viSNE allows visualization of high-dimensional single-cell data on a 
two-dimensional map. This mapping takes advantage of the inherent 
structure of the data; for example, different immune subsets reside in 
separate regions in high-dimensional space. Conventional analysis of 
cytometry data, which views only two dimensions at a time, ignores 
the higher-order structure and complex relationships between mark-
ers in the data. Whereas viSNE plots resemble conventional biaxial 
plots, their utility comes from combining and representing informa-
tion from all dimensions simultaneously.

We found that the viSNE map is consistent across multiple healthy 
individuals, whereas cancer samples occupy regions distinct from 
healthy cells and from each other. We illustrated how viSNE can be 
used to characterize heterogeneity within cancer samples, mark dis-
ease progression from diagnosis to relapse, and identify rare cancer 
populations lurking among predominantly healthy cells.

viSNE has a number of advantageous features for the analysis of  
single-cell data. It is sensitive to small subsets (Supplementary Fig. 15), 
which allows us to subsample uniformly, preserving the original  
frequencies of cell populations. It takes into account similarities 
between all pairs of cells, providing information about both nearby 
and distant cells. And it plots each individual cell, showing the  
diversity within populations and maintaining single-cell resolution. 
This single-cell resolution is one feature that distinguishes viSNE  
from SPADE18, and may help explain why viSNE appears to be more 
robust than SPADE (Supplementary Fig. 16). Single-cell resolution 
may also be critical for viSNE’s success in the MRD scenario. For  
example, when we applied SPADE to the same synthetic MRD sam-
ple, the ALL cells were indistinguishable from healthy cells in the  
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resulting SPADE tree (Supplementary Fig. 17), rendering SPADE 
inappropriate for MRD.

viSNE belongs to the class of nonlinear dimensionality reduction 
(NLDR) algorithms which, unlike PCA, do not assume linear relation-
ships between parameters. Immune subsets are nonlinear and hence PCA, 
unlike viSNE, fails to distinguish between them (Supplementary Figs. 18 
and 19). We evaluated several other NLDR algorithms31 and among 
these only viSNE resulted in consistent maps that separated immune 
subtypes across multiple subsamples of the same data (Supplementary 
Fig. 19). The other methods might be confounded by the noise inherent 
in biological systems and measurement technologies or by the complex 
geometry in high-dimensional hematopoietic space.

Despite its extensive utility, as with all dimensionality-reduction 
tools, viSNE is inherently limited: low-dimensional mapping cannot 
represent all of the information in high-dimensional space. Therefore, 
viSNE captures only the most dominant structures. One way to gain 
more detail is to run viSNE on a well-defined subset of the data. 
For example, instead of analyzing several cancer samples together 
(Fig. 2d), one can run viSNE on each sample separately (Fig. 3a,b). 
Alternatively, it is possible to limit the mapping to only a subset of 
the parameters of interest. Another consequence of dimensionality 
reduction is the ‘crowding problem’, which typically limits the number 
of cells we can map to 30,000. This limits applications such as gating, 
because a subsampling of the cells is required, meaning only cells 
in the subsample can be classified. An effective solution for gating 
is combining viSNE with a clustering algorithm. We clustered the 
cells using FLOCK19, a state-of-the-art clustering tool for cytom-
etry data, and labeled the viSNE map according to this clustering 
(Supplementary Fig. 20). Although FLOCK separated the immune 
subtypes, it split each subtype into multiple clusters. The viSNE map 
helps interpret these clusters and their relationships.

viSNE is an unsupervised algorithm and does not require prior 
knowledge of the system. It is thus suitable for navigating less explored 
systems such as cancer. Although structure in healthy samples is 
formed through an orderly program of development, cancer’s derailed 
developmental program leads to loss of normal order and structure. 
viSNE helps characterize the plethora of abnormal phenotypes unique 
to each cancer by exploiting its ability to take all markers into account 
simultaneously, rather than scanning through hundreds of biaxial 
plots, two markers at a time.

A characteristic feature that repeated across multiple cancer maps 
was the emergence of distinct gradients of marker expression levels 
that resemble developmental progression in healthy cells (Fig. 1d). 
Comparing gradients in AML diagnosis and relapse samples (Fig. 4b) 
supports the notion that the cells first gain CD34 and subsequently 
acquire highly diverse abnormal combinations of lineage-specific mark-
ers without attenuation of CD34. After identifying unexpected cancer 
populations using viSNE, one can design a sorting strategy for physical 
isolation and downstream characterization of these populations.

In the future, we expect viSNE to be instrumental in the analysis 
of mass cytometry data integrating the surface marker panel with a 
panel of functional markers that probe signaling, cell cycle and metab-
olism, under many experimental perturbations (such as cytokines 
and drugs)3. In this scenario, viSNE’s ability to distinguish rare sub-
sets that make up only a tiny fraction of the population (Fig. 6 and 
Supplementary Fig. 15) could be advantageous in the identification 
and characterization of rare drug-resistant subpopulations.

We demonstrated viSNE’s capability to analyze mass cytometry and 
flow cytometry data. Biological research is trending toward dozens 
of dimensions in tens of thousands of cells. Making sense of these 
data is a daunting challenge that requires powerful computational  

approaches. The utility of viSNE will increase with the number  
of dimensions capable of being analyzed by mass cytometry and  
other technologies.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
The t-SNE algorithm. The t-SNE algorithm maps points from high- 
dimensional space to low-dimensional space by minimizing the difference in 
all pairwise similarities between points in high- and low-dimensional spaces22. 
The axes of the low-dimensional spaces are given in arbitrary units. The algo-
rithm proceeds as follows. First, the pairwise distance matrix is calculated in 
high-dimensional space. Next, the distance matrix is transformed to a simi-
larity matrix using a varying Gaussian kernel, so that the similarity between 
points Xi and Xj represents the joint probability that Xi will choose Xj as its 
neighbor or vice versa (based on their Euclidean distance and local density). 
Then, a random low-dimensional mapping is rendered and pairwise similari-
ties are computed for points in the low-dimensional map. However, the low-
dimensional similarities are computed using Student’s t-distribution rather 
than a Gaussian distribution. Finally, gradient descent is used to minimize 
the Kullback-Leibler divergence between the two probability distributions, 
leading to the final low-dimensional map.

The optimization step may be interpreted as a set of springs. Each pair of 
points Yi and Yj is connected by a spring, which repels or attracts the points 
from each other depending on whether the similarity between the points in 
the projection is lower or greater than the similarity in the high-dimensional 
space. The gradient reduces each point’s springs into a single force. The heavy 
tailed t-distribution helps alleviate the “crowding problem” by exerting more 
force when pushing distant points further apart. See Supplementary Methods 
and ref. 22 for full technical details.

The viSNE implementation. viSNE is a fast, distributed implementation of 
the t-SNE algorithm, improved and tailored for the analysis of single-cell data. 
In viSNE, each cell is represented by a point in high-dimensional space, each 
coordinate representing one measured parameter (e.g., the protein expression 
level). Our implementation then maps these points into two or three dimen-
sions. viSNE also includes cyt, a tool for the interactive visualization of the 
resulting maps (Supplementary Methods).

The robustness and accuracy of t-SNE derives from the computation of all 
pairwise similarities. But, the similarity matrix comes at a heavy computational 
price, limiting the original implementation to 10,000 points. Our distributed 
implementation relies on the fact that each of t-SNE’s computations are local 
and do not require the entire matrix. The technical computational limit of 
viSNE is 100,000 points. However, beyond 30,000 the limit is not computa-
tional, but rather the “crowding problem”22: the volume in high-dimensional 
space grows polynomial with the number of dimensions, and as a result a 
two-dimensional map cannot accommodate a large number of points while 
conserving the high-dimensional distances between them. Instead, distant 
points collapse onto nearby areas of the map, creating one large, dense region, 
with no separation between populations. To solve this, viSNE subsamples cells 
uniformly at random and maps the sampled population. The algorithm is 
robust to such subsampling (Supplementary Fig. 2) and even after subsam-
pling, we still detect rare subpopulations that constitute a mere 0.2% of the 
population (Supplementary Fig. 14). viSNE is publicly available for download 
at http://www.c2b2.columbia.edu/danapeerlab/html/cyt.html.

Mass cytometry data. Fresh, Ficoll-enriched human bone marrow was 
obtained from healthy donors from AllCells, Inc. (Emeryville, CA). Samples 
were obtained with informed consent in accordance with the Declaration 
of Helsinki and with accordance with Stanford University’s review board. 
Leukemia bone marrow samples were obtained under IRB-approved  
protocols (protocol number 17552 under Stanford University’s IRB) at  
St. Jude Children’s Research Hospital, Memphis, TN (pediatric acute myeloid 
and lymphoblastic leukemia) or at Princess Margaret Hospital, Toronto, ON 
(adult acute myeloid leukemia). All samples were deidentified. The age and 
the sex of the donor, or any additional clinical information, were unknown 
at the time of the study.

Samples were processed as described21. Briefly, cells were used fresh  
before mass cytometry experiments, or frozen in FCS with 10% DMSO,  
thawed and re-suspended in 90% RPMI with 10% FCS (supplemented  
with 20 U/mL sodium heparin (Sigma) and 0.025 U/mL benzonase 
(Sigma) in the case of frozen samples), 1× l-glutamine and 1× penicillin/ 
streptomycin (Invitrogen).

Cells were fixed with formaldehyde (PFA; Electron Microscopy Sciences, 
Hatfield, PA) added directly to growth media at a final concentration of 1.6% 
for 10 min at room temperature. Cells were then centrifuged at 500g for 5 min 
and washed once with staining media (PBS with 0.5% BSA, 0.02% sodium 
azide) to remove residual PFA, and blocked with Purified Human Fc Receptor 
Binding Inhibitor (eBioscience Inc., San Diego, CA) following manufacturer’s 
instructions. Surface marker antibodies were added yielding 50 or 100 µl final 
reaction volumes and stained at room temperature for 30 min (Supplementary 
Table 2). Following staining, cells were washed 2 more times with cell stain-
ing media, permeabilized with 4 °C methanol for at 10 min at 4 °C, and then 
optionally stored at −80 °C for later use. Cells were then washed twice in cell 
staining media to remove remaining methanol, and stained with surface and 
phospho-specific antibodies in 50 or 100 µl for 30 min at room tempera-
ture. Cells were washed once in cell staining media, then stained with 1 ml of 
1:5000 191/193Ir DNA intercalator(2) (www.dvssciences.com; DVS Sciences, 
Richmond Hill, Ontario, Canada) diluted in PBS with 1.6% PFA for 20 min at 
room temperature. Cells were then washed once with cell staining media and 
then finally with water alone before running on the CyTOF.

Processing of mass cytometry data. Data were transformed using hyperbolic 
arcsin with a cofactor of five. Single cells were gated based on cell length and 
DNA content (to avoid debris and doublets) as described21. The expert manual 
classification of Marrow1 was taken from reference21, where the complete 
biaxial plot gating strategy can be found.

viSNE analysis. Generating viSNE maps included the following steps (exact 
details can be found in Supplementary Table 1). First, between 6,000 and 
12,000 cells were uniformly subsampled from the data. After subsampling, 
viSNE was run for 500 iterations to project the data into 2D. Unlike t-SNE, 
PCA was not used as a preprocessing step. All runs used an identical random 
seed and the default t-SNE parameters (perplexity = 30, momentum = 0.5 for 
initial 250 iterations, momentum = 0.8 for remaining iterations, epsilon = 500, 
lie factor = 4 for initial 100 iterations, lie factor = 1 for remaining iterations). 
viSNE maps were visualized using cyt, which was also used to generate figures 
(color coding by immune cell subset (as in Fig. 1b), by marker expression lev-
els (as in Fig. 1d) and in plotting expression level densities (as in Fig. 2b). The 
raw data and viSNE maps can be downloaded at: http://www.c2b2.columbia.
edu/danapeerlab/html/cyt.html.

Quantifying similarity between viSNE maps. We use the Jensen-Shannon 
(JS) divergence (Supplementary Methods) to quantify the similarity between 
viSNE maps. Each map is converted into a probability distribution. We 
define the similarity between two maps as the JS divergence between their  
respective distributions.

A gating scheme for FACS. The viSNE map was used to devise a gating scheme for 
FACS of the AML relapse sample (Fig. 5). Due to the limits of flow cytometry, the 
gating scheme can employ only a limited number of channels and use hard thresh-
olds. Through manual inspection of the viSNE map we identified four markers that 
lead to distinct subpopulations that could be of interest for downstream analysis: 
CD34, CD64, CD33 and CD7 (Fig. 4). For each marker we defined a threshold for 
a binary negative/positive gate. The four binary gates were combined to create a 
total of sixteen composite gates covering all negative/positive combinations. Only 
six composite gates had more than 20 cells. The cells residing in each of these six 
composite gates are color coded on the viSNE map of Figure 5.

Subsampling of synthetic MRD sample. We used two samples: the synthetic 
MRD sample (composed of 99.5% healthy bone marrow cells and 0.5% cells 
from a metal-barcoded ALL sample) and the control sample (100% healthy 
bone marrow cells taken from a different donor). To capture a higher propor-
tion of ALL cells for the viSNE map, we devised the following subsampling pro-
cedure. The cells from the synthetic MRD sample and from the control sample 
were combined computationally and clustered using the Louvain algorithm32. 
Next, the clusters were weighted by the proportion of synthetic MRD sample 
cells in them; the higher the proportion of synthetic MRD sample cells, the 
higher the weight. Finally, 10,000 cells were chosen one at a time in a two-step 
process: one of the clusters was chosen randomly (biased by cluster weight) and 
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a cell was uniformly chosen from that cluster. Note, the subsampling procedure 
is blind to the metal barcode; it can only access the mass cytometry measure-
ment and the identity of the sample (synthetic MRD or control). Following 
the subsampling, viSNE was run as described above.

Additional algorithms. Isomap, LLE, KernelPCA and LLTSA were run  
using the Matlab Toolbox for Dimensionality Reduction31. FLOCK was 

compiled from the code available in the ImmPort FLOCK SourceForge page 
(http://sourceforge.net/projects/immportflock/). SPADE was run using the 
implementation available in Cytobank33.

32.	Blondel, V.D. et al. Fast unfolding of communities in large networks. J. Stat. Mech. 
2008, P10008 (2008).

33.	Kotecha, N., Krutzik, P.O. & Irish, J.M. Web-based analysis and publication of flow 
cytometry experiments. Curr. Protoc. Cytom. 10, 10.17 (2010).
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