
Additional supplementary methods 

t-Distributed Stochastic Neighbor Embedding. 

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a Nonlinear Dimensionality Reduction (NLDR) 

algorithm that projects points from high-dimensional space to low-dimensional space [1]. t-SNE’s input is a list 

of points in high-dimensional space, X. The algorithm begins by calculating the pairwise similarity matrix in 

high-dimensional space, P, and randomizing a starting position for each point in the low-dimensional space, Y0. 

t-SNE proceeds to iteratively update the position of points in low-dimensional space: in iteration i, the similarity 

matrix in low-dimensional space, Q, is calculated according to the points’ current positions (Yi-1). Gradient 

descent is used to calculate the new position of each point, Yi, in order to minimize the divergence between P 

and Q. 

For each point xi in high-dimensional space, t-SNE defines the similarity of xi to xj as defined below: 

 (Equation 1) 

σi is xi’s variance. For each xi, t-SNE performs a binary search for the value of σi that produces a Pi with a fixed 

Perplexity (a parameter for the algorithm that is given by the user; an intuitive interpretation for the perplexity is 

a soft measure for the number of nearest neighbors to consider for each cell). The Perplexity is defined as: 

 (Equation 2) 

where H(Pi) is Shannon’s entropy: 

 (Equation 3) 

The joint similarity of xi and xi is defined as: 

 (Equation 4) 

For each pair of points in low-dimensional space, yi and yj, the similarity is defined as: 

 (Equation 5) 



While pij follows a Gaussian distribution, qij is calculated using a t-distribution. 

t-SNE minimizes the Kullback-Leibler (KL) divergence between the joint probability distribution P (in 

the high-dimensional space) and the joint probability distribution Q (in the low-dimensional space). The KL 

divergence is defined as: 

 (Equation 6) 

The gradient of the KL divergence between P and Q is derived in [1]: 

 (Equation 7) 

 

The most challenging computational part of t-SNE is computation and storage of the pairwise similarities in 

high- and low- dimensional space. Given an input X with n points, each of these matrices will consist of n
2
 

values. For example, for n = 100,000, ten billion values are needed. For high values of n, this requirement is 

beyond the capability of modern computers. However, all of t-SNE’s calculations are local: for a given point yi 

in low-dimensional space, only the vectors pi and qi are needed to calculate the next iteration for yi. 

 viSNE is a distributed implementation of t-SNE that relies on the locality of t-SNE’s calculations. Given 

N cores, viSNE splits the input into partitions where each partition contains n/N points. Each core receives one 

partition. Instead of storing the entire matrix (n
2
 values), each core only stores the submatrix consisting of its 

n/N points, times all other points (n
2
/N values). Going back to the previous example, for n = 100,000 and N=64 

cores, each core will need to store approximately 150 million values per matrix. For each iteration, each core 

locally updates Yi for points in its partition and broadcasts these values to the other cores, guaranteeing that all 

cores have the updated similarity matrix. 

 

The cyt visualization tool. 

cyt is an interactive visualization tool designed for the analysis of viSNE maps and the high-dimensional mass 

or flow cytometry data from which these maps were projected. It plots viSNE maps as scatter and density plots, 



and information can be overlaid onto this map by coloring cells according to various parameters, such as marker 

expression, source of sample or subtype. cyt includes a gating feature that can be used with either biaxial plots 

(to generate a viSNE map on only a defined subset of the cells) or the viSNE map (to further study a population 

identified by viSNE). This is enabled by cyt’s modular design: once a gate is created it can be treated as an 

independent dataset and all of cyt’s features can be applied. The gates can be compared on a marker-by-marker 

basis using one-dimensional density plots, and cyt prioritizes the markers according to the L1 distance between 

marker distributions. This method quickly identifies key differences between populations. The combination of 

viSNE and cyt facilitates efficient examination of mass and flow cytometry data. 

cyt contributes in correlating multiple viSNE maps of the same data. While viSNE consistently separates 

the various immune subtypes, their position on different maps could vary (most often due to rotations and 

reflections of the map). In healthy samples, we initially colored the immune subtypes using cyt, helping us label 

each sub-population and therefore compare between different viSNE maps of similar data. While the maps can 

vary in rotation and reflection, the actual population structure is preserved and cyt can be used for re-

orientation.  For cancer samples, which lack distinct subtypes, cyt lets us quickly identify which populations are 

similar to each other between multiple maps of the same sample based on their marker combination. cyt 

presents the data in an intuitive visual manner that allows the user to corroborate the viSNE maps. 

Alternatively, to get multiple samples projected onto the exact same map, we can run a number of 

samples together in a single run of viSNE. This approach was used to generate Figures 2B and 2D.  cyt can then 

be used to split these into multiple maps, one for each sample, that share coordinates (Supplementary Fig. 5).  

The advantage of running multiple samples together is one of the main reasons that the ability to run on more 

cells is an important feature of viSNE.  

 

 cyt is written in Matlab and is available along with viSNE at 

http://www.c2b2.columbia.edu/danapeerlab/html/index.html. 

 

Using cyt to visualize 2D and 3D viSNE maps. 

http://www.c2b2.columbia.edu/danapeerlab/html/index.html


This paper’s supplement includes four FCS files that can be visualized and explored using cyt. To launch cyt, 

unzip cyt.zip to a folder of your choice, launch Matlab, direct it to cyt’s folder, and run the script run_cyt.m. 

You might wish to copy the FCS files to that folder as well (alternatively, you can load them into cyt from a 

different folder). You will be greeted by the following: 

 

 In the “Gates” panel, you can load and export FCS files, rearrange the order of FCS files and gates, 

remove gates, and transform the data using hyperbolic arcsin (the brush icon). Click the load button (the green 

plus icon) to load a FCS file: 

 



 Click on a file’s name and click “Add” to add it to the selected items list. For this tutorial, add 

“visne_paper_supp_data_4_cytof54_3d.fcs”. Click Done, and the file will be loaded: 

 

 The first step when working with CyTOF data is to transform it using hyperbolic arcsin. Click the brush 

icon at the top left: 

  



 Uncheck the three viSNE channels by pressing Ctrl and clicking on the channel names. Next, press OK 

and the data will be transformed. 

 You can now visualize channel intensities over the viSNE channels. To do so, first use the channel panel 

to pick the two viSNE channels; then, click Plot: 

 

 

 You can now color code cells by channel intensities by picking the channel under the Color panel at the 

bottom. For example, scroll down and pick CD20: 



 

 These files include a third viSNE channel, allowing visualization of the data in 3D. Pick all three viSNE 

channels and click Plot; cyt will retain the CD20 color coding: 

 

 You can visualize the other channels by picking another channel from the Color panel. For example, 

scroll and pick CD33 to see the separation between B cells and myeloids: 



 

 Finally, you can rotate the 3D view using the rotate tool from the top bar (the circular arrow). Here is an 

example with CD3 coding, slightly rotated to highlight CD4+ and CD8+ T cells: 

 

 

The Jensen-Shannon divergence. 

 The Jensen-Shannon (JS) divergence is an information theory-based, symmetric measure of the 

similarity between two probability distributions. It is defined as: 

  



 Where M is: 

 

 And KL is the Kullback-Leibler divergence: 

 

 The JS divergence has a value of between zero and one. When JS(P||Q)=0, the probability distributions 

are identical. When JS(P||Q)=1, there is no overlap in the information encoded by P and Q.  
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Supplementary Figure 1:  A viSNE map can classify cells that were labeled incorrectly by manual gating.  (A) 

viSNE map is identical to Figure 1B. Each of the cell subtypes is surrounded by a gate corresponding to that 

subtype’s color as designated by manual gating. Grey points inside the viSNE map gate were not classified by 

manual gating, although further examination reveals that they belong to the relevant subtype. In addition, there 

are four regions that do not conform to known subtypes. Region A has cells positive for CD45 only, we suspect 

these are missing a marker needed to classify them. Region B includes doublets: pairs of cells that were read 

together by the machine as if a single cell, and are therefore positive for suspect marker combinations (for 

example, CD19+ CD11b+). The cells in Region C are negative for all channels and are probably debris. Region 

D has cells positive for CD45 and CD3 only, these might be NKT cells whose canonical marker is missing. (B) 



The same map as in A, coded by CD33 (myeloid marker) expression. The monocyte cell population is clearly 

visible to the top right. (C) Marker expression level densities for the entire population (grey), the manually 

gated CD11b- monocyte cells (black) and the viSNE gated CD11b- monocytes cells (pink, as shown in panel 

A). The two CD11b- monocyte populations have almost identical marker distributions, except the pink 

population shows some CD3 staining due to reagent “stickiness”, but this level of CD3 expression is 

significantly lower than that on bona fide CD3+ cells.  Rather than exclude these cells based on a hard threshold 

on a single marker, viSNE groups the cells together based on their tight similarity in all other markers. Taken 

together these data support viSNE’s identification of CD11b- monocytes. (D) Gating using the viSNE map is 

typically more accurate than manual gating, since 2D views and hard thresholds can be misleading.  There are a 

number of cells labeled as CD20+ B-cells by viSNE (dark green outline in A) and labeled NK cells based on 

biaxial gating (orange dots within the B-cell region).  These cells just miss the hard CD19 threshold in one of 

the gates (black dashed line) and therefore their CD20 level is never examined during the gating (the presented 

biaxial plot is not part of the gating scheme used).  Their high CD20 levels and borderline CD19 levels support 

their labeling as B-cells, rather than NK-cells. Their CD38 levels further support their B-cell label.  

 

 

Supplementary Figure 2: viSNE is robust to subsampling. Each map includes a different subsample of 6,000 

cells from Marrow1. Despite using different cells for the viSNE runs, we see that the healthy subtypes are 



similarly separated, with the same subpopulations identified.  The axes in viSNE are arbitrary and therefore 

maps often vary in rotation and reflection, as these are defined based on pairwise distances.  The cyt tool helps 

match between equivalent subpopulations (see Using cyt to visualize 2D and 3D viSNE maps).  

 

 

Supplementary Figure 3: viSNE is robust to marker panel selection.  Leave-one-out viSNE maps of Marrow1 

are shown.  Each panel is a viSNE map with twelve markers; the marker listed above the panel was excluded in 

that run. The data itself is the same data as Figure 1B. Despite removing markers, subtypes are identified and 

separated correctly in each panel. The different maps are almost identical to each other.  In this figure the same 



cells are used to make all maps, in contrast to Supplementary Figure 2, that used different cells from the same 

sample in each run. As such, here the maps look similar than they do in Supplementary Figure 2.  

 

 

Supplementary Figure 4: We created a toy example from the Marrow1 data to better understand how non-

canonical markers can be used to separate monocyte cells and B cells.     (A) Demonstrates how three non-

canonical markers can separate monocytes (red) and B cells (green), labeled as in Figure 1C.  We deliberately 

chose three markers (CD45, CD4 and CD38) that cannot separate these cell types in either 1 or 2 dimensions: 

left, the one-dimensional distribution of each marker, x-axis represents marker intensity and y-axis represents 

density of cells at this intensity. Both populations overlap in all dimensions. Middle: biaxial scatter plots of 

CD4 (x-axis) and CD38 (y-axis), and CD4 (x-axis) and CD45 (y-axis), demonstrating overlap of the two 

populations in two dimensions. (B) A viSNE map of the same two populations, colored by cell type, monocytes 

(red) and B cells (green).  While the two subsets are not separated in any linear projection to two dimensions, 

viSNE successfully separates these two populations.   The two populations are disconnected in three-

dimensional space, each residing in a different region: each subtype takes an irregular (non-ellipsoidal) shape 

(see Supplementary Data 1: Marrow 1 toy example) and is separated from the other by a space void of any cells. 

viSNE identifies these shapes and the distinction between them, thus separating the two subtypes. This example 

is available in Supplementary Data 1 and can be visualized in cyt using the instructions provided above (see 

Using cyt to visualize 2D and 3D viSNE maps). 

 



 

 

Supplementary Figure 5:  The viSNE map has a conserved structure across healthy samples. (A) Bone 

marrow samples from three healthy donors (2-4) were mapped together using viSNE. This is the same data 

presented in Figure 2B. Each of the 3 plots represents a different individual. The viSNE plots across different 

individuals are very similar (Jenson-Shannon divergence of ~0.04), share the same cell types (see B) and 

shapes.  Each individual shares the same cell populations, in different frequencies. (B) Same as Figure 2C, color 

coded by subtypes, as identified by marker expression levels (See Supplementary Fig. 6). 

 

 



Supplementary Figure 6: Support of cell subset labeling in Figure 3B.  The viSNE map of Figure 2B colored 

by expression level of the markers used to identify the different immune subsets. Gating logic follows the 

strategy in [2]. For example, T cells are CD3+ CD19- CD20- CD33- CD34- CD45+. 

 

Supplementary Figure 7:  viSNE can be used for the analysis of flow cytometry data.  viSNE map of flow 

cytometry data of healthy bone marrow. The flow cytometry panel includes eight markers (CD45, CD45RA, 

CD3, CD4, CD8, CD33, CD20, CD7) and therefore identifies fewer subsets. 

 



 

Supplementary Figure 8: Left: viSNE map of Marrow1, without CD4 and CD8. All non-T cell subtypes are 

identified well. There is an overlap between CD4 and CD8; however, information in the other channels allows a 

partial separation between them. Right: The same map, color coded by CD4 (top) and CD8 (bottom), again 

showing the partial separation between these subtypes despite the fact that both markers are missing from the 

mapping. 

 



 

Supplementary Figure 9: Biaxial plots of the AML samples used in Figures 3 and 4 using the standard biaxial 

plots and marker combinations typically used to study AML [3]. 

 



 

Supplementary Figure 10:  Additional characterization of viSNE map of AML 1 (as in Fig. 3B), cells colored 

by the expression levels of the marker in the panel’s title. 

 

 

Supplementary Figure 11: viSNE separates an additional diagnosis-relapse pair (patient AML A). Left: viSNE 

map of diagnosis (left, purple) and relapse (right, red) samples of an additional patient. We see two small 

healthy populations (black arrows) and a large cancer region which includes both separate and overlapping 



regions between diagnosis (purple) and relapse (red). Right: The same map, colored by CD34 expression levels. 

We see a gradient of CD34 that begins in the diagnosis sample and reaches its peak in the relapse region. 

 

 



Supplementary Figure 12: viSNE map of diagnosis and relapse AML B samples (same map as in Fig. 5), 

colored by expression level of indicated markers. 

 

 

Supplementary Figure 13: MRD detection works with different channels. This figure follows the same 

structure of Figures 6A and 6C. The eight channels used here are CD38, CD34, CD10, CD45, CD33, HLA-DR, 

surface IgM and a “dump” channel that combines CD235, CD62 and CD66b. As in the healthy samples (Fig. 

2A), viSNE is robust to the panel of measured markers. 

 



 

Supplementary Figure 14:  MRD algorithm does not detect a suspect region in a healthy sample. A viSNE 

map of healthy vs. healthy run of the MRD detection algorithm, colored by sample.  The “MRD” sample is 

composed of healthy cells only. Unlike Figure 6 and Supplementary Figure 13, we do not see a region which 

has distinctly cells from one sample, demonstrating that the subsampling method and viSNE do not spuriously 

create suspect regions. 

 



 

Supplementary Figure 15: viSNE can detect and separate a rare subpopulation. Ten thousand cells from two 

healthy samples (Marrow5 and Marrow6, purple and blue respectively) were combined computationally with 

twenty cells from an ALL sample (ALL A, red). Despite being a very small proportion of the combined sample 

(0.2%), viSNE still manages to identify and separate the ALL cells. 

 



 

Supplementary Figure 16: Two SPADE runs of Marrow1, colored by mean marker expression levels for each 

cluster.  In this plot each point is a cluster of cells and edges represent the minimal spanning tree identified by 

SPADE. Each row represents one of the two SPADE runs and each column representes the marker whose mean 

value was used to color the clusters.  Clusters group by immune subtype, but longer range distances are less 

conserved between runs, resulting in considerable differences between the SPADE tree from the two runs.  

 



 

Supplementary Figure 17: SPADE was applied to the same synthetic MRD sample used in Figure 6. The 

ALL-barcoded cells (the target cells) are spread over 3 different clusters (marked with arrows); the cluster with 

the highest percentage of ALL-barcoded cells is marked with a black arrow- approximately 90% of its cells are 

from the MRD sample (the remaining 10% are from the healthy control sample). However, there are 73 clusters 



that fit the 90% MRD criterion (red clusters), and the 3 ALL-barcoded-rich clusters do not stand out relative to 

the other 72 high-MRD clusters or the SPADE tree as a whole.  

 

 

Supplementary Figure 18: Comparison of PCA to viSNE.  We applied viSNE (left) and PCA (right) to the 

same cells from Marrow1.  PCA is limited to a linear projection and therefore the first two principal 

components (x and y axis respectively) fail to separate between the different immune subtypes.  This 

demonstrates the non-linear nature of hematopoietic space and the importance of non-linear approaches to 

explore this space.  

 



 

Supplementary Figure 19: Comparison of four dimensionality reduction algorithms (PCA, Isomap, LLE and 

Kernel PCA) [4-7] to viSNE over three subsamples of Marrow1. These are the same subsamples used in 

Supplementary Figure 2. Cells are color coded by immune subsets, as in Figure 1B. We found similar results for 

additional NLDR algorithms from the toolkit [8]. 

 



 

Supplementary Figure 20: FLOCK clustering of mass cytometry data [9], as visualized by viSNE, each cell is 

colored by its cluster id. FLOCK separates the major subtypes. However, it suffers from over-clustering and 

breaks most cell subtypes into multiple clusters. The viSNE maps helps regroup these back together for 

interpretation. 

 

Supplementary Table 1: Antibody sources, metal isotope and staining concentration for all of the antibodies 

used throughout the various experiments. 

 

Supplementary Table 2: Experiment details, per figure. Figure and section refers to the location of the figure 

in the text. In Dataset, Marrow stands for healthy bone marrow, ALL for acute lymphoid leukemia, AML for 



acute myeloid leukemia and MRD for the in vitro MRD experiment. Cells subsampled is the number of cells 

subsampled from the whole dataset. Markers used is the list of surface markers measured in the dataset. 

 

Supplementary Data 1: Marrow1 toy example. The FCS file includes the mature B cells and CD11b+ 

monocytes from Marrow1, their intensity over three channels (CD45, CD4 and CD8) and two- and three- 

dimensional viSNE maps. Three non-canonical markers can separate monocytes and myeloids. The FCS file 

can be opened and examined in cyt. Examination of the 3D plot (CD45 vs. CD4 vs. CD38) shows that the two 

immune subtypes are separated in 3D, but not in any 2D or 1D plot. 

 

Supplementary Data 2-4: 3D viSNE maps of Marrow1, AML 1 and AML 2, respectively. The FCS files 

include all of the cells from these samples (measured over all channels) and two- and three- dimensional viSNE 

maps for each sample. Examining the map in 3D reveals further separation between immune subtypes. The 

structure captured by these maps is more intricate than in the 2D map. 


