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Abstract

Genome-wide RNA expression data provide a detailed view of an organism’s biological state; hence, a dataset measuring
expression variation between genetically diverse individuals (eQTL data) may provide important insights into the genetics of
complex traits. However, with data from a relatively small number of individuals, it is difficult to distinguish true causal
polymorphisms from the large number of possibilities. The problem is particularly challenging in populations with
significant linkage disequilibrium, where traits are often linked to large chromosomal regions containing many genes. Here,
we present a novel method, Lirnet, that automatically learns a regulatory potential for each sequence polymorphism,
estimating how likely it is to have a significant effect on gene expression. This regulatory potential is defined in terms of
‘‘regulatory features’’—including the function of the gene and the conservation, type, and position of genetic
polymorphisms—that are available for any organism. The extent to which the different features influence the regulatory
potential is learned automatically, making Lirnet readily applicable to different datasets, organisms, and feature sets. We
apply Lirnet both to the human HapMap eQTL dataset and to a yeast eQTL dataset and provide statistical and biological
results demonstrating that Lirnet produces significantly better regulatory programs than other recent approaches. We
demonstrate in the yeast data that Lirnet can correctly suggest a specific causal sequence variation within a large, linked
chromosomal region. In one example, Lirnet uncovered a novel, experimentally validated connection between Puf3—a
sequence-specific RNA binding protein—and P-bodies—cytoplasmic structures that regulate translation and RNA stability—
as well as the particular causative polymorphism, a SNP in Mkt1, that induces the variation in the pathway.
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Introduction

The potential for using comprehensive data sets, such as RNA

expression data, as a means for uncovering complex genetic traits has

led to the production of eQTL data – gene expression data across a

population of genetically diverse individuals – in a variety of different

organisms [1–6]. One application of this data type is the use of subtle

perturbations in the regulatory network induced by natural genetic

variations to reveal the regulatory interactions and influences. These

data thus provide a unique opportunity for uncovering the cell’s

regulatory structure, and for revealing the genetic basis for

phenotypic traits. Many approaches have been developed that

attempt to identify one or more genetic regions containing

polymorphism(s) that cause a change in gene expression [1–3,7,8].

Some approaches [7,8] expand these ideas by searching for a more

integrated regulatory network, where targets are viewed as affected

not only by changes in genotype, but also by changes in the activity

level of regulatory proteins, estimated by their mRNA levels. These

methods have been used successfully to identify important regulatory

relationships, including some that underlie key phenotypic traits.

A key challenge in the application of these methods is that the

number of candidate regulators is enormous relative to the amount

of available data, making it difficult to robustly identify the correct

regulator. This problem is exacerbated when multiple regulators

are correlated, and therefore many regulators have similar

potential to explain the expression of their targets. Unfortunately,

correlated regulators are the rule, rather than the exception, both

for sequence polymorphisms (due to linkage disequilibrium) and

for regulatory genes identified by gene expression signature (due to

co-expression). In these cases, methods that attempt to recognize

regulatory relationships are often forced to make choices that are

arbitrary, misleading, or non-specific. For example, most linkage-

based approaches identify only a chromosomal region, leaving a

human to predict the true causal polymorphism(s) within the

region. This approach results in a large number of hypotheses for

experimental testing, especially in higher organisms, such as

humans where chromosomal regions are often very large and

methods of experimental validation are time and labor intensive.

In this study, we propose a novel approach based on the

observation that not all candidate regulators are equally likely to

play a causative role in gene expression. Indeed, researchers often

manually select among candidate polymorphisms, favoring those

that are in conserved regions, those that produce significant

changes in protein sequence, or those that lie in functionally

PLoS Genetics | www.plosgenetics.org 1 January 2009 | Volume 5 | Issue 1 | e1000358



relevant genes (such as transcription factors or signaling proteins).

However, it is not clear how to weight these different features, and,

indeed, their relevance might vary across organisms, tissues, or

even conditions. We propose a novel Bayesian method, called

Lirnet, that automatically learns three model components

(Figure 1): a regulatory network; a set of regulatory potentials for all

candidate regulators, evaluating the likelihood that they play a

causal role; and a set of regulatory priors, which define a regulator’s

regulatory potential in terms of its regulatory features, such as the

conservation of a SNP or the annotated function of a gene (see

Methods; Figure 2, Tables S1, S2, S3). All three components are

learned from the data, in an unbiased way, using an iterative

approach: As Lirnet constructs a set of regulatory programs for the

genes in the data, it learns which types of regulators are more

predictive of their putative targets; it adjusts the regulatory prior to

match the observed trends, and it then relearns the regulatory

programs using the adjusted prior (Figure 1). Thus, the method

automatically tailors itself to the regulatory interactions in a

particular data set. Moreover, Lirnet can use any set of features

that are likely to indicate regulatory potential, including sequence

features (such as conservation or significance of amino acid

change) that are available for many organisms. This feature,

combined with Lirnet’s ability to learn the importance of these

features automatically, makes it especially advantageous for

mammalian systems, where many forms of prior knowledge used

in simple model organisms are incomplete or unavailable.

Recently, there have been several approaches for identifying a

causal gene in eQTL data [9,10]. Zhu et al [9] learned a Bayesian

network from the eQTL data. They show that incorporating various

other genomic data such as transcription factor binding sites (TFBS)

and protein-protein interaction (PPI) data improves the quality of

the learned network. They also use the network for identifying the

most likely causal regulator in a genomic region. For a group of

genes linked to a given region and a candidate regulator in the

region, they test the overlap between the linked genes and the genes

regulated by the candidate in the learned network. Suthram et al.

[10], building on earlier work of Tu et al. [11], propose an

alternative method called eQED, which also aims to select a

particular regulation within a linked region. These methods define

an electric-circuit model for the flow of influence in a separate PPI

network and use it to select he most relevant regulator in the region.

These methods, like ours, utilize domain knowledge encoded in

TFBS or PPI data for identifying causal regulators. However, these

methods do not incorporate any information on properties of

individual SNPs, such as their conservation score (a feature that was

indeed chosen to be important in our automated analysis).

Moreover, both methods are biased towards discovering regulatory

relationships involving transcription factors. In comparison, Lirnet

uses a broad range of regulatory features, enabling the identification

of novel regulatory relations, as well as those involving other

mechanisms such as chromatin and mRNA degradation, as is

demonstrated by Lirnet’s experimentally validated hypothesis of a

relationship between two post-transcriptional regulatory pathways.

An alternative approach is proposed by Jiang et al. [12], whose

method prioritizes non-synonymous SNPs as being disease-related,

based on various features such as weight and biochemical

properties. Their predictor was trained on a database of over

20,000 non-synonymous SNPs, annotated with a disease level for

each SNP, and achieved a high prediction performance. Although

this method takes the SNP-specific features as input and prioritizes

individual SNPs, it does not incorporate the gene-based and

network-based features that are used in our analysis, as well as the

ones of Zhu and Suthram. It is also restricted to the analysis of

non-synonymous coding SNPs, and focuses on the relevance to a

single phenotype (i.e. a disease).

We test our approach using two eQTL data sets, selected to

assess method’s versatility. The first is the HapMap data set of

Stranger et al. [4], which contains expression profiles for

lymphoblastoid cell lines generated from participants in the

human HapMap study. The second is the yeast data set of Brem

and Kruglyak [3], which measures the mRNA expression and

genotype of 112 recombinant progeny generated by mating of two

genetically diverse strains of S. cerevisiae, a laboratory strain (BY)

and a wild vineyard strain (RM). We show statistically that the

learned regulatory potential significantly improves the quality of

the learned regulatory programs, as evaluated by the percent of

the variance explained. We also evaluate the biological validity of

our learned regulatory programs by comparing them to other

biological data, not used within the algorithm. Our results clearly

demonstrate that Lirnet produces more accurate regulatory

programs than previous approaches, including Geronemo [7]

and the recent methods of Suthram et al [10] and Zhu et al. [9].

We also provide a detailed analysis of some of the inferred yeast

regulatory programs, and demonstrate that Lirnet can correctly

identify the causative polymorphism within a large, linked region,

even in regions containing several biologically plausible candi-

dates. We study in greater depth one of the pathways produced by

Lirnet, involving two modules related to post-transcriptional gene

regulation. In this case, Lirnet suggested a three-tiered regulatory

cascade: at the lowest level, a module comprising a set of genes

that are bound by the sequence-specific RNA binding protein,

Puf3; the module’s predicted regulatory program, which utilizes

factors involved in several distinct post-transcriptional regulatory

processes, including members of the P-body complex, an RNA

storage and degradation complex that can also modulate mRNA

translation; and at the highest level, a chromosomal region

containing the causal variation, and, using its learned regulatory

prior, even a particular gene in the region – Mkt1, whose protein

product binds (indirectly) to the PolyA-binding protein at the 39

region of mRNA transcripts [13]. We provide multiple forms of

Author Summary

Gene expression data of genetically diverse individuals
(eQTL data) provide a unique perspective on the effect of
genetic variation on cellular pathways. However, the
burden of multiple hypotheses, combined with the
challenges of linkage disequilibrium, makes it difficult to
correctly identify causal polymorphisms. Researchers
traditionally apply heuristics for selecting among plausible
hypotheses, favoring polymorphisms that are more
conserved, that lead to significant amino acid change, or
that reside in genes whose function is related to that of
the targets. But how do we know how much weight to
attribute to different regulatory features? We describe
Lirnet, which learns from eQTL data how to weight
regulatory features and induce a regulatory potential for
sequence variations. Lirnet assesses these weights simul-
taneously to learning a regulatory network, finding
weights that lead to a more predictive network. We show
that Lirnet constructs high-accuracy regulatory programs
and demonstrate its ability to correctly identify causative
polymorphisms. Lirnet can flexibly use any regulatory
features, including sequence features that are available for
any sequenced organism, and automatically learn their
weights in a dataset-specific way. This feature makes it
especially advantageous for mammalian systems, where
many forms of prior knowledge used in simple model
organisms are incomplete or unavailable.

Learning Regulatory Potential from eQTL Data
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experimental data supporting Lirnet’s computational prediction,

including the causal role of Mkt1.

The resulting regulatory network for the yeast data and the

software are freely available on our website http://dags.stanford.

edu/lirnet/; the learned network can be effectively explored using

our visualization tool, downloadable from the same website.

Results

Method Overview
We briefly review the Lirnet method, referring to the Methods for

a full description. Lirnet uses genotype and expression data of

genetically diverse individuals (eQTL data) and aims to learn a

regulatory prior concurrently with reconstructing a regulatory

network. Building on earlier work [7,14], Lirnet clusters genes into

modules with the assumption that expression of the target genes in each

module is governed by the same regulatory program. As with several

other methods for the reconstruction of regulatory networks, Lirnet

can accommodate two types of regulators: values of genotype markers

(genotype regulators), representing genetic polymorphisms on

chromosomal regions [1–3]; and expression levels of genes that are

known to have regulatory roles (expression regulators), representing

activity levels of genes that might regulate that module [7,9,14,15].

Lirnet’s regulatory programs are based on linear regression, a

choice designed to allow for the incorporation and learning of

regulatory potentials. For each module m, the expression levels of

Figure 1. Outline of our approach. Our algorithm, called Lirnet, aims to learn the regulatory potential of an individual SNP, simultaneously with
the regulatory network from an eQTL data set. The regulatory potential of a regulator is defined as a function of its regulatory features, such as the
conservation of a SNP or the function of a gene (Figure 2, Tables S1, S2, S3). The weight of each regulatory feature is called the regulatory prior. All
three components – the regulatory programs, the regulatory potentials, and the regulatory priors – are learned from data, in an unbiased way, by
iterating the following three steps: (i) Lirnet takes as input the regulatory potentials for each regulator, and constructs a set of regulatory programs
for the genes in the data, using the regulatory potentials to bias the choice of active regulators used. In the first iteration, the regulatory potentials
are taken to be uniform. (ii) Lirnet takes as input the regulatory programs, and learns which types of regulators are more predictive of their putative
targets (which ones occur more often in the learned regulatory programs), and adjusts the regulatory prior to match the observed trends. (iii) Lirnet
takes as input the regulatory priors, and computes the regulatory potential of each SNP by computing the total contribution of its regulatory
features, weighted by the learned regulatory priors. The regulatory potential of each chromosomal region (genotype regulator) is then computed by
aggregating the contributions of the individual SNPs in the region.
doi:10.1371/journal.pgen.1000358.g001

Learning Regulatory Potential from eQTL Data
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Figure 2. Learned regulatory priors in yeast and human. Shown are the maximum effect of the different regulatory features, given the learned
regulatory priors for the different regulatory features, in (A) yeast and (B) human (CEU) data sets. Each bar lists the maximum contribution that a given
regulatory feature can make to the regulatory potential: the feature’s regulatory prior, multiplied by the difference between its maximal and minimal
value. For clarity, only the regulatory features whose regulatory priors are greater than 0.05 are shown in this graph. The full list of regulatory priors,
including that for human YRI dataset, can be found in Tables S2, S3. (*) As described in Methods, the pairwise features are constructed based on -
log(p-value), indicating the enrichment of the corresponding regulator’s putative targets in the module. Since these values have much higher
variation than others, for a more clear and intuitive presentation, we report the amount of contribution made by an increase of the 2log10(p-value)
by 3.
doi:10.1371/journal.pgen.1000358.g002

Learning Regulatory Potential from eQTL Data
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genes in the module (denoted by ym,j) are modeled as a linear

regression of candidate regulators (denoted by x1,…,xn):

ym,j,wm,1x1+wm,2x2+…+wm,nxn, where all genes in the module

share the same weights wm,k A regulator r that has a zero weight

wm,r has no effect on the expression of the targets in module m. A

biologically plausible regulatory program should have a small

number of regulators with a non-zero weight. To achieve this goal,

we use the LASSO method [16] to select only the most significant

regulators. In its simplest form, LASSO adds a fixed penalty term

to the objective function that introduces a uniform bias towards

sparsity in the weights w.

Lirnet, inspired by our recent work on feature selection [17],

incorporates regulatory potential by allowing different regulators

to have different sparsity biases; a regulator r whose regulatory

potential is low for a module m will have a stronger bias towards

wm,r = 0, and thus a lower probability of being selected as an active

regulator for that module. The regulatory potential Cr of regulator

r is defined to be a function of its regulatory features fr. The method

flexibly accommodates any property or combinations of properties

of a regulator (Figure 2, Tables S1, S2, S3) that might be indicative

of its likelihood of having a causal effect on its targets. These

features can include features of the regulator alone, such as the

location and significance of sequence polymorphisms, the function

of the gene (transcription factor, signaling protein, etc.), and

conservation of the polymorphic site. They can also include

features that involve both the regulator and the targets, such as the

enrichment of the module with genes having known relationships

to regulator (e.g. transcription factor targets). The regulatory prior b
encodes the importance given to each regulatory feature (see

Methods), and is automatically learned from the data, allowing less

relevant regulatory features to be ignored and others to manifest

their significance.

The learning algorithm of Lirnet jointly estimates wm,r’s and b by

maximizing a joint objective that involves both. The algorithm

iterates three steps until convergence (Figure 1): (1) learning the

regulatory program for each module by estimating the weights

wm,r’s; (2) learning the regulatory priors b that reflect the importance

of each regulatory feature; (3) computing the regulatory potential for

each candidate regulator, module pair, based on the current b,

thereby biasing their selection in the next iteration’s regulatory

programs. The output of Lirnet is thus threefold. First, it constructs

a set of learned regulatory programs for the modules used in the

analysis; for module m, these are all the regulators r with a non-zero

weight wm,r. Second, it constructs a quantitative regulatory potential

both for genes and for specific sequence polymorphisms within

them, allowing us to rank candidates for the causal sequence

variation and to prioritize hypotheses for further testing. Third, it

produces a set of regulatory priors, which may provide insight on

the properties of a polymorphism that tends to induce an effect on

its downstream targets.

Statistical Evaluation on Yeast and Human Data
To test the versatility and generality of Lirnet, we applied it to

two very different eQTL data sets. The first is the eQTL data set

of Brem and Kruglyak [3], which measured the mRNA expression

and genotype of 112 S. cerevisiae strains derived as the F2 progeny

of a BY/RM cross. The second is the expression data measured in

the lymphoblastoid cell lines of the 60 unrelated HapMap

individuals in the CEU data set, using only the genotypes of a

subset of markers (the 500 K tag SNPs on the Affymetrix chips) as

regulators (see Methods).

Figure 2 shows the regulatory priors of the most significant

regulatory features in each of these data sets, as identified by the

Lirnet algorithm. Several aspects of the features automatically

chosen as important by the algorithm are revealing. First the top

learned regulatory potentials between two organisms as different

as human and yeast are remarkably consistent, supporting the

robustness of our approach. For example, aside from the feature

indicating the stop codon, which affects only 43 genes, the

strongest positive weight on the regulatory potential in both

datasets is given to a feature denoting whether the sequence

variation correlates with changes in the expression level of the

closest gene (cis-eQTL). This gene-level feature indicates that the

polymorphism is already causal towards a change in the cell (the

expression level of the gene) and hence may have additional

downstream effects. The second most significant regulatory

feature, also in both data sets, is the conservation score, consistent

with the hypothesis that changes in residues conserved across

millions of evolutionary years are more likely to have a causative

influence. Also with a significant weight are features that evaluate

the functional relevance of the position of the polymorphism, and

the significance of the actual change. These features include, for

example, the presence and type of amino acid changes, and

polymorphisms in the 59 or 39 UTR. Surprisingly, in both data

sets, synonymous SNPs weigh more heavily than non-synonymous

ones. This phenomenon might arise from the fact that synony-

mous SNPs can have an effect on translational efficiency or

mRNA destabilization [18], consistent with recent findings that

such SNPs are under significant purifying selection [19,20]. The

selection of this regulatory feature by our automated method lends

support to this hypothesis, and is worthy of further investigation.

Aside from sequence-based features, we also provided the

method a rough categorization of gene function, allowing it to

learn which types of genes are likely to play a regulatory role.

Despite receiving no prior knowledge about the relative importance

of the various functional categories, the method automatically

assigns high weight to functional categories with a regulatory role: In

the human data, the highest weights among those features are given

to genes involved in cell death, transport, cell growth, signal

transduction, transcription, and cell communication. In the yeast

data, ‘transcription regulator activity’, ‘telomere organization and

biogenetics’, ‘protein folding’, ‘glucose metabolic processes’, and

‘RNA modification’ are chosen to be important. Notably, other

work supports the differences between BY and RM in many of these

processes, including glucose processing (BY and RM demonstrate

dramatically different growth rates on a number of carbon sources

including glucose; D. Pe’er, unpublished data) and telomere

organization [7], showing the value of allowing the regulatory

priors to be tailored to particular data sets and organisms.

Lirnet can also take advantage of other functional data, when

available. For example, in the yeast data, the pairwise feature

derived from ChIP-chip binding between the regulatory gene and

targets in the module received a relatively high weight. We note,

however, that the method is also effective when such data are not

available for a given transcription factor and set of target genes (see

Oaf1 example below) or when the features themselves are not

available, as in the case of the human data.

We next tested whether the learned regulatory potentials

improved the quality of the learned regulatory program, by

computing the proportion of genetic variance (PGV) explained by

the learned program. We compared Lirnet with a uniform

regulatory potential (hereafter ‘‘flat’’ Lirnet), Lirnet with a learned

regulatory potential, a standard single-marker linkage (as in [1–3])

and Geronemo [7]. The results (Figure 3) demonstrate that Lirnet

explains a dramatically larger fraction of the variance for a much

larger set of genes than all the other methods. For example, in the

yeast data, Lirnet with learned regulatory potentials explains over

50% of the PGV for 1,644 genes, compared to 1,457 genes for flat

Learning Regulatory Potential from eQTL Data
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Figure 3. Statistical evaluation of learned regulatory programs. Proportion of genetic variation in gene expression explained by different
methods. The percentage of genetic variation (PGV) explained by detected regulation programs for Lirnet with learned regulatory potential (pink),
Lirnet with uniform regulatory potential (blue). (A) The PGV curves for the yeast data with additional comparison to Geronemo (brown) and the eQTL
analysis of Brem & Kruglyak (red points) applied to the same dataset. The graph shows the PGVg values (y-axis) of 3152 genes (x-axis). The genes (x-
axis) are sorted by their PGVg, shown on the y-axis. A more refined PGV analysis, with an independent test set is shown in Figure S1A. (B) The PGV
results for the human HapMap data with 500 k tag SNPs (Affymetrix), for both the CEU and YRI individuals. Similarly, we compare Lirnet (pink) to the
variant with a uniform regulatory potential (blue) and to a classical single-marker approach (red; see Methods). Results for 100 k tag SNPs are shown
in Figure S1D, and the results with an independent test set is shown in Figure S1B & C for 500 k and 100 k tag SNPs, respectively.
doi:10.1371/journal.pgen.1000358.g003
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Lirnet, 828 genes for Geronemo and 230 genes for the method of

Brem & Kruglyak. The same advantage translates across the

spectrum of PGV values, and is arguably even greater at the tail,

where many genes that are very poorly explained by other

methods have a considerable fraction of PGV explained by Lirnet.

A more refined PGV analysis, with an independent test set, shows

that this dramatic improvement does not arise from overfitting to

the test data (Figure S1). In fact, the Lirnet model has a

comparable number of parameters to Geronemo and fewer

parameters than the method of Brem and Kruglyak, due to the use

of modules.

Notably, even flat Lirnet considerably outperformed both the

single-marker linkage and Geronemo methods, suggesting that

Lirnet would still perform well in cases where the learned

regulatory potential was less informed. The gap between Lirnet

and flat Lirnet appears to increase when using more markers (see

Figure S1D for human results on 100 K markers), and is larger in

the YRI than in the CEU data. These results are consistent with a

hypothesis that the benefits of a non-uniform regulatory prior are

more pronounced when regulatory potentials are aggregated over

smaller regions of linkage disequilibrium. Thus, one can expect the

benefits of Lirnet’s learned regulatory priors to grow as we move to

denser genotyping.

Recovery of Known Regulatory Pathways
We evaluated how well the learned regulatory program recovers

known regulatory interactions. We begin with a comprehensive

analysis of the quality of the learned regulatory programs,

demonstrating that they are consistent with other sources of data

indicating regulatory interactions that were not provided to the

Lirnet algorithm. We then provide a comparison to the state-of-

the-art method of [9], which was applied to the same data.

As a gold-standard set of regulator-target relationships is not

available, we constructed a comparison test set from various

datasets: deletion and over-expression microarrays [21,22]; chro-

matin immune-precipitation (ChIP-chip) binding experiments [23];

mRNA binding pull-down experiments [31]; transcription factor

binding sites [65]; and a literature-curated set of signaling

interactions from the Proteome database (http://www.proteome.

com/). Although each of these data sets has its own limitations in

terms both of false negatives and of false positives, agreement with

these orthogonal data sources is a reasonable metric for evaluating

the quality of a method’s predictions. For a prediction that a

regulator r regulates a module m, we defined it to be validated if

there was significant overlap (hypergeometric p,0.01) between the

members of m and the putative targets of r, suggested by one of the

above datasets. We note that none of these datasets was used for

constructing the regulatory features for Lirnet: Lirnet used only the

ChIP-chip data set of [24], and all regulator-target pairs that

appeared in these data were removed from the evaluation data [23].

Most of these data sets focus on regulatory relationships where r

is a transcription factor, whereas Lirnet and the other methods we

evaluate are also capable of identifying cases where r plays a

different regulatory role, such as signaling, chromatin modifica-

tion, or RNA degradation. Therefore, to increase the coverage of

our validation effort, we also considered indirect regulatory

relationships (Two-Step Cascade in Table 1), where a method

predicted a regulator r that has some close relationship with a

transcription factor t, and t is confirmed in the above data sets to

regulate m. We considered cases where t and r have a reliable

protein-protein interaction (PPI) (Xenarios et al. 2000); and cases

where r phosphorylates t in the Proteome data set.

Table 1 summarizes the number of validated regulators for

various models, applied to the same set of modules: Lirnet with a

uniform regulator potential, Lirnet with the learned regulatory

potential, Geronemo, and a random model. (See also Table S5 for

a full list of Lirnet predictions and their support.) Overall, Lirnet

recovers a larger fraction of the known regulatory interactions

than the other methods. We note that the reference set supports

only a subset of the predicted regulatory interactions. This fact is

not surprising, as the data sources used for constructing the

reference set focus on transcriptional regulation, whereas Lirnet

and Geronemo cover a much larger set of regulatory relationships.

Although we have made some attempt to expand our reference set

to cover signaling interactions, the data set of literature-curated

signaling interactions is only a small fraction of the total set of

signaling interactions that presumably hold in yeast. Moreover, as

shown in our previous study [7], a large part of the regulatory

interactions in these data sets represent chromatin modification

and post-transcriptional regulation, which are not represented in

our reference set.

The BY/RM cross also exhibits a large amount of cis-

regulation, which we did not explicitly model in the Lirnet

analysis. Nevertheless, of 492 cis-regulated genes – those whose

nearby marker is significantly predictive of its expression level (t-

test p-value,1e-5; 12.8% of the 3152 genes used in our analysis),

307 genes (76.4%) are assigned to modules with cis-regulatory

programs. More specifically, 149 genes are assigned to modules

that have the genes’ nearby markers as genetic marker regulators;

158 other genes are assigned to modules that have their nearby

Table 1. Biological evaluation of the learned regulatory program.

Direct Two-Step Cascade

# interactions # modules # interactions # modules

Lirnet 32/123 (26.02%) 25/49 (51.02%) 101/173 (58.38%) 45/53 (84.91%)

Lirnet without regulatory prior 28/122 (22.95%) 21/50 (42.00%) 88/162 (54.32%) 44/52 (84.62%)

Geronemo 16/105 (15.24%) 13/57 (22.81%) 81/158 (51.27%) 43/62 (69.35%)

Random Model 9/110 (8.18%) 9/58 (15.52%) 39/151 (25.83%) 29/62 (46.77%)

We evaluated our learned regulatory programs relative to a reference set of regulatory interactions collected from various datasets that were not used by the Lirnet
method (see text for more details). A prediction that a regulator r regulates a module m was considered as validated if there was significant overlap (hypergeometric
p,0.01) between the members of m and the putative targets of r in the reference set above. For each method, we counted the number of validated interactions
(column named # interactions) for module m containing $10 genes, where each entry shows: a/b (c%), where a is the number of significant regulators, b is the total
number of predicted regulators that appear at least once in the reference dataset, and c is the proportion (a/b6100). We similarly counted the number of modules that
have at least one validated regulator (column named #modules), relative to the total number of modules having a predicted regulator in the reference set. We also
considered two-step regulatory cascades, as described in the main text. Table S4 shows this analysis for expression regulator and genetic marker regulators separately.
doi:10.1371/journal.pgen.1000358.t001
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expression regulators having their markers in the regulators’

regulatory programs, suggesting an indirect cis-effect from a locus

to an expression level of a regulator in that region to a target.

We also compared our results with those of the recent Bayesian

network method of [9]. As this method infers regulatory

interactions for individual genes rather than modules, we used

the number of regulator-target pairs validated in the reference set

as our evaluation metric. For a fair comparison, we removed from

the reference set any data sets that are used for learning either

model, leaving only the deletion and over-expression microarray

data [21,22]. The results (Figure 4A) show that, for various levels

of expression change in the deletion or over-expression data sets,

the regulatory interactions inferred by Lirnet are more consistent

with previously known regulatory relationships. In Figure 4A, we

see that Lirnet recovers many more supported regulators than the

Zhu et al. method. This large discrepancy is partially due to the

fact that their method largely focuses on transcription factors, and

hence is incapable of picking up many of the regulatory

relationships that are uncovered by Lirnet. However, even if we

focus attention only on the relationships that could be compared to

the deletion/over-expression data (Figure 4B), and evaluate the

fraction that were validated in these data, we see that Lirnet

significantly outperforms the Zhu et al. method.

Predicting the Causative Sequence Polymorphism in a
Large Chromosomal Region

One of Lirnet’s key features is its ability to identify a specific

causative regulator in a linked chromosomal region, an ability also

presented in several other recent methods [9,10]. Since other

methods for comparison focused on identifying a causal gene not a

specific SNP, we also prioritized genes for a direct comparison. We

first compute the regulatory potential of all SNPs in the region of

interest, relative to each module (to account for pairwise regulatory

features). We then rank each gene based on the highest-scoring

SNP associated with it. Figure S2 shows the overall distribution of

the regulatory potentials for both SNPs and genes. We can see that

the vast majority of SNPs and of genes have a fairly low regulatory

potential. The distribution begins to tail off at a regulatory

potential of about 0.694; only 0.22% of SNPs and 2% of genes

have a regulatory potential that exceeds this value.

We first compare to the recent work of Zhu et al., who focus on

13 ‘‘hot spots’’ – chromosomal regions identified to regulate

expression levels of a number of genes in a previous study [1].

Previous work has identified regulators for several of these hot

spots, and Zhu et al. provide new experimental validation for a

number of others. To compare to these results, we considered the

genes linked to each hot spot as a ‘‘module’’, and applied the

learned regulatory prior (Figure 2) to individual SNPs in each

region to compute each gene’s regulatory potential (see Methods).

We sorted the genes in each hot spot based on their regulatory

potential, and listed the top 3 genes for each hot spot. Figure 4B

compares the result of the suggested causative genes in each region

between Lirnet and the method of Zhu et al. (2008). We see that,

of the top Lirnet regulators, 14 regulators, spanning 11 hot spots,

have experimental support (see Methods), in comparison to 8

regulators (7 hot spots) in the analysis of Zhu et al. Even if we

consider only Lirnet’s top regulator for each region, there is

experimental support for 10 regulators.

We also compare to the recent method of Suthram et al. [10],

which improves on earlier work of Tu et al. [11]. These methods

consider a gene and a chromosomal region to which it is linked,

and analyze the flow in a protein-protein interaction network to

select a particular causal regulator within the region. Suthram et

al. validate their results relative to a pre-defined set of 548

regulatory relationships, extracted from gene knockout or

overexpression microarray studies [21,25], similarly to our analysis

above. The predicted network of Suthram et al. was not available,

so we evaluated Lirnet using their protocol and the reference set,

to allow for a direct comparison. For each target gene and linked

region, we selected, as the Lirnet predicted regulator, the gene

whose regulatory potential in the region was highest. We then

evaluated these predictions using the reference set of Suthram et

al. The results, shown in Table S6, show that Lirnet significantly

outperforms both the method of Suthram et al. and the previous

method of Tu et al. [11], according to this evaluation metric.

Biological Results
We also performed an in-depth analysis of some of the specific

regulatory modules produced by Lirnet for the yeast data set, and

evaluated its ability to identify both the correct regulators and the

specific polymorphisms that gave rise to the expression change in

the targets.

Transcriptional Regulators
One example of the predictive power of assigning regulatory

potential to individual SNPs within a large chromosomal region is

the Zap1 module (Figure 5A). The module contains ten target

genes and two major regulators, the gene expression pattern of

ZAP1, which encodes a transcription factor (TF) that activates

genes in response to Zinc [26,27], and a genetic region on

chromosome 10 that contains ZAP1. Of the ten target genes in the

module, six were among 40 probable Zap1 targets based on the

presence of a consensus ZRE element and RNA expression

patterns in zinc and in the absence of Zap1 (p = 5.7610210) [27].

While the causative role of Zap1 in this data has previously been

affirmed a number of times [3,7–9], Lirnet automatically identified

polymorphisms within Zap1 as the ones most likely, within the

linked region, to play a causal role (Table S7). The regulatory

potential of the identified SNP is the highest over all yeast SNPs

(Figure S2). The most significant regulatory feature by far in this

identification was the known binding relationship between Zap1

and two of its target genes, but other features also played a role

(Figure 5B). Thus, the method has identified a TF-target

relationship for which there is significant biological support.

Importantly, however, Lirnet is also able to predict such

relationships when relevant functional data such as binding assays

are not available. One such example is the peroxisome module

(Figure 6A), containing ten genes that are enriched for processes

related to fatty acid metabolism (hypergeometric p,4.861026)

and peroxisome organization and biogenesis (hypergeometric

p,5.561026), nine of which we considered for further analysis

(see Methods). Lirnet suggests two regulators: expression level of

PIP2 (alias: OAF2), a gene that encodes a Zn(2)-Cys(6) TF that

heterodimerizes with Oaf1 to regulate genes involved in

peroxisomal functions via an ORE element [28], and a genetic

region between nucleotides 51,324 and 52,943 on chromosome 1.

Of the 11 genes in this region of chromosome 1 (Figure 6B; Table

S8), Lirnet selected polymorphisms within OAF1 as having the

highest regulatory potential; the regulatory potential value of

OAF1 is within the top 1% over all genes (Figure S2). Several forms

of data support the role of the Oaf1/Pip2 heterodimer in

regulating this module. Of the nine target genes analyzed in the

module, six contained the canonical ORE motif (p = 1.861026).

Moreover, five were in the top 1% of most significantly down-

regulated genes in a microarray experiment that compared RNA

expression levels of an oaf1D versus a wild-type (BY) strain under

inducing conditions [29] (p = 8.061029). We note that the PIP2

promoter itself is Oaf1-dependent and contains an ORE element
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[29]. Thus, differences in PIP2 expression patterns across the 112

segregants are also likely to be partly due to polymorphisms in

OAF1. However, the fact that PIP2 expression was selected in

addition to the OAF1 genotype demonstrates Lirnet’s ability to

identify multiple relevant regulators, even when they are

correlated. We note that OAF1 was not identified by previous

methods analyzing this data set.

The BY allele of OAF1 contains two non-conservative coding

polymorphisms at conserved positions that are likely to alter its

function: an R70W polymorphism in the DNA binding domain

(the highest-scoring SNP) and a Q447P polymorphism in the

ligand binding domain [30]. OAF1’s high regulatory score

(Figure 6B) is a combination of the correlation between its

expression and genotype (cis-regulation), shared GO process

annotations with the target genes, the presence of non-synony-

mous coding mutations and their effects on protein properties (e.g.,

pKa and pI), and (to a lesser extent) its function as a transcriptional

regulator. Importantly, the ChIP-chip data set [24] used in our

analysis did not contain Oaf1 binding information and therefore

did not influence the choice of the regulator, demonstrating

Lirnet’s effectiveness even when binding data are not available.

Moreover, another gene in the same region of chromosome 1

(PEX22) shares common functional annotations with many of the

target genes, yet received a significantly lower score. This

highlights the fact that functional annotations, although a useful

source of prior knowledge, are not the primary cue used by Lirnet.

Both of these characteristics are likely to play an important role in

the analysis of data from other organisms, where binding data and

functional annotations are both limited.

Post-Translational Network
Lirnet also suggested an intriguing hypothesis regarding a

cascaded pathway involving two modules. The first (hereafter the

‘‘Puf3 module’’) contains 153 co-expressed genes, highly enriched

(p,10291) for nuclear genes with mitochondrial functions, and

very highly enriched (p,102130, Figure S3A) for genes whose

mRNA transcripts are bound by the sequence-specific RNA-

binding protein, Puf3 [31]. This enrichment is specific to Puf3

binding and not just coincident with the preponderance of

mitochondrial genes (Figure S3B). Also, the Puf3 targets that are

in the module show higher Puf3 motif score than those not (Figure

S3C; Text S1). Indeed, RNA expression levels in a puf3D mutant

in rich medium (YPD) showed a significant up-regulation

(p,10237) mRNA levels of the module genes (Figure S3D). While

these results suggested that the highly coherent expression profile

of this module was due, at least in part, to regulation of RNA

stability via Puf3, we found that neither PUF3 mRNA expression

nor its genotype is correlated with expression of the module genes

(Figures 7A, S4), suggesting that Puf3 itself was not the regulator

driving the observed variability across the strains.

The Lirnet analysis identified several genes as being involved in

the regulatory program of the Puf3 module (Figure 7A). Towards

the top of the list, we find DHH1 (ranked 1st) and KEM1 (ranked

4th), two components of the dynamic cellular structures called

cytoplasmic processing bodies (P-bodies) [32–35]. P-bodies are

sites of RNA storage [32] that can modulate mRNA translation or

degradation: RNA transcripts are translationally silenced while

stored in the P-body [36] and can be subsequently degraded or

released back into the translating pool [37]. P-bodies contain the

catalytic subunits of the mRNA de-capping enzyme Dcp1/Dcp2

[38,39], whose activity is regulated by Dhh1. However, the signals

for determining mRNA localization to P-bodies and subsequent

degradation or release have not been identified [32]. Thus, Lirnet

suggested an intriguing regulatory connection between the Puf3-

bound transcripts and a known posttranscriptional regulatory

complex (P-bodies).

If Puf3 serves as a regulatory signal in one or more of the

processes associated with P-bodies (RNA targeting, degradation,

or release back into the translating pool), we would expect Puf3

protein to be localized to P-bodies. We therefore used fluorescence

microscopy to test the subcellular localization of Puf3 in wild-type

BY cells. Indeed, under certain conditions (see Methods), a Puf3-

GFP fusion protein formed bright punctuate spots in the

cytoplasm which co-localized with those of known P-body

components, Dhh1 and Edc3 (Figure 7B). These results are

consistent with those of a previous study [31] that reported

punctuate cytoplasmic Puf3-GFP fluorescence in the BY strain

background, but did not test for co-localization with P-bodies.

This finding demonstrates the role of p-bodies in the regulation

of the Puf3 module genes, but does not elucidate the causal SNP

responsible for the difference between strains. To identify this

SNP, we explore the Lirnet predictions for the regulatory program

determining P-body expression. Dhh1 and Kem1 are themselves

members of another module that we call the post-transcriptional

regulatory (PTR) module (Figure 8A). This module also contains

other regulators of the Puf3 module, including GCN1 and GCN20,

two members of a complex that regulates translational repression

in response to nutrient starvation. Many other module members

are associated, directly or indirectly, with post-transcriptional

regulation (Figure S6). The sole regulator of the PTR module is a

genotype marker located on Chromosome XIV (Figure 8A), the

same region that had previously shown as linked to several of these

targets and members of the Puf3 module [1,40]. The smallest

region linked to the PTR module spans more than 30 genes

Figure 4. Evaluation of the learned network in comparison to results of Zhu et al. [9]. We compared two versions of Lirnet results with the
learned network of Zhu et al: all 10,565 regulator-target pairs from the regulatory network (‘full’ in the graph legend); 3,645 top-ranked pairs, in terms
of the magnitude of the weight, to provide a comparable number of predictions to the network of Zhu et al (‘reduced’ in the graph legend). We
evaluated support for these sets of edges in the gene expression data of [21,22]. Here, a pair r-t for a regulator r and target t is considered supported
if t is in the top X% of differentially expressed genes in response to a knockout or over-expression of R. (A) Shows the cumulative distribution of the
number of computational predictions that receive support for different values of X (top). As a baseline, we also show the number of validated
predictions expected in a random regulatory network. Not all regulators were tested in the microarray data. To avoid possible biases, we also
compare the fraction of validated predictions among all predictions that were tested (bottom). We see that Lirnet selects many more tested
predictions than the method of Zhu et al., but also has a much higher fraction of validated predictions, even when we focus only on tested
predictions. (B) Candidate causal regulators for 13 chromosomal regions identified in a previous study. For the 13 hot spots previously suggested [1],
we applied our approach to compute the regulatory potential to prioritize the candidate genes in each region. The first four columns are from the
paper by Zhu et al [9]. For each hot spot, we present the causal regulators suggested by: the original paper of [1]; the method of Zhu et al, and the
top 3 Lirnet regulators, ranked by their regulatory potentials (see Methods). The causal regulators that have some support (see Methods) are colored
accordingly (see legend). Of the top Lirnet regulators, 14 regulators, spanning 11 hot spots, have experimental support, in comparison to 8 regulators
(7 hot spots) in the analysis of Zhu et al. Even if we consider only Lirnet’s top regulator for each region, there is experimental support for 10 regulators
(in 10 hot spots). The results of the previous method (first four columns) are from Table 3 of Zhu et al [9], except for the indication of the supported
regulators.
doi:10.1371/journal.pgen.1000358.g004
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(Figure 8B; Table S9), making a systematic evaluation of the

candidates a significant effort, even in a genetically tractable

organism like yeast. We therefore used Lirnet to evaluate the genes

in the region based on their regulatory potential for the PTR

module. As shown in Figure 8B, MKT1 is ranked as the highest

scoring gene in terms of the learned regulatory potential. The

regulatory potential of MKT1 is within the top 1% over all genes

(Figure S2).

Mkt1 interacts with the Poly(A)-binding protein associated

factor, Pbp1, and is present at the 39 end of RNA transcripts

during translation [13]. Mkt1 contains a highly-conserved

nuclease domain, homologous to the human XPG endonuclease

Figure 5. The Zap1 module. (A) (i) The mRNA expression profiles (log2 ratios) of the module’s 10 target genes, where the rows are genes and the
columns are strains. (ii) The module is regulated by five predicted regulators, where the two that have the most significant coefficients are the
expression pattern of ZAP1 and a genetic region on chromosome 10 containing ZAP1. The bar on the left of each regulator represents its coefficient
in the regulatory program: the length encodes its absolute value, purple represents a negative weight and blue a positive one. (iii) Six of the target
genes (ADH4, ZTR3, YNL254C, YGL258W, ZPS1/YOL154W, and YOR387C) were identified as probable Zap1 targets based on the presence of a
consensus ZRE element and RNA expression patterns [27]. (B) The genetic region on chromosome 10, with the inferred regulatory potentials for each
of the SNPs it contains (Table S7). Also shown are the regulatory features that contributed the most to the selection of a SNP in Zap1 as the causal
polymorphism: a known binding relationship between Zap1 and two of the target genes, the presence of non-synonymous coding changes and their
effect on various protein properties, and the gene’s annotation as having transcriptional regulator activity. All the other minor regulators of this
module (Dhh1, Gcr1 and Gis2) are not located in this region; they are in chr 4, 16 and 14, respectively.
doi:10.1371/journal.pgen.1000358.g005
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[13] and is required for the translational regulation of an Mpt5/

Puf5-dependent transcript (HO) [13]. In the BY strain back-

ground, MKT1 harbors two non-synonymous coding mutations

(Figure S7). The first variation lies in its putative nuclease domain

and makes a non-conservative amino acid change (G30D) in a

residue highly conserved in yeast. Both this and the more

conservative mutation (R453K) are outside a Pbp1 interacting

domain, which maps to the C-terminus of the protein (residues

601–760) [13]. MKT1 has thus far been implicated in four diverse

processes, including propagation of a double stranded RNA virus

[41], growth at high temperature [42], efficiency of sporulation

[43], and gene-specific translational regulation [13]. In many of

these cases the BY variant, and, where examined, the G30D

mutation specifically, appears to introduce a loss of function

mutation [41,43,44]. Both these SNPs contributed significantly to

MKT1’s high regulatory potential, with the G30D SNP scoring

somewhat higher. The properties that contributed the most to this

selection are conservation, cis-regulation, the amino-acid proper-

ties of the coding SNP, and the common GO process with the

targets. These properties are precisely the ones that an expert

biologist would look for in a manual scan of the region; but Lirnet

automatically learned the significance of these features and their

relative importance, allowing it to correctly identify the correct

polymorphism using a fully automated approach. Moreover, we

note that the region contains a number of other plausible

candidate genes, including transcription factors and a number of

mitochondrial genes; nevertheless, Lirnet identified Mtk1 as top

ranked.

To test the effect of the loss of Mkt1 function on the PTR and

Puf3 module genes, we deleted the MKT1 open reading frame in

the RM background and measured genome-wide RNA expression

by DNA microarray analysis. Consistent with Lirnet’s predictions,

Figure 6. The peroxisome module. (A) The module contains 10 target genes (i), regulated by 2 predicted regulators (ii) – a genetic region on
chromosome 1 containing OAF1, and the expression pattern of PIP2, the other component in the Oaf1-Pip2 heterodimer. (iii) Six of the target genes
(POX1, FAA2, TPO4, ANT1, YPLO95C and CLN3) contain a canonical Oaf1 binding site (ORE) [29]. The two predicted regulators and five of the target
genes are among the most significantly down regulated RNA transcripts in an oaf1D microarray with the following ranks: POX1 (1st), YPL095 (2nd),
FAA2 (5th), YHR140W (14th), TPO4 (23rd), OAF1 (9th), PIP2 (29th). (B) The genetic region on chromosome 1, with the inferred regulatory potentials for
each of the SNPs it contains (Table S8). Also shown are the regulatory features that contributed to the selection of a SNP in Oaf1 as the causal
polymorphism.
doi:10.1371/journal.pgen.1000358.g006
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we observed a modest but highly significant down-regulation (KS

p-value,10223) of the Puf3 module in the RM mkt1D strain

(Figure 8C). While previous work demonstrated Mkt1’s role in

repressing the translation of an Mpt5/Puf5-dependent transcript

[13], our results suggest that Mkt1 plays a role in the RNA stability

of Puf3-dependent transcripts. In the PTR module, 16 of 40 genes

were among the top 5% most up-regulated genes (hypergeometric

p,10210; Figure 8A), a set which includes the Puf3 module

regulators DHH1, KEM1, GCN1, and GCN20, with expression

changes (1.36 fold increase) similar to the difference between RM

and BY. A similar response of the Puf3 and PTR module genes

was observed in an RM strain harboring the BY allele of MKT1

(Figure S8), further supporting the role of MKT1 in the RNA

expression differences seen in the original population. Taken

together, these results provide strong evidence that MKT1 contains

a causative variation for these modules, and further demonstrate

Lirnet’s ability to identify the correct causal regulator even in a

large linked region

Thus, the Lirnet procedure automatically uncovered a com-

prehensive 3 tiered regulatory cascade in which MKT1 regulates P-

body abundance, that consequently regulate Puf3 target abun-

dance, providing significant detail and insight into the mechanism

through which the Puf3 module is regulated (Figure S9). Other

methods [8,11] recently applied to these data produced no

hypothesis regarding this pathway. The analysis of Brem and

Kruglyak [3] linked these genes and many others to a region on

Chromosome XIV (Figure S10), but no causal mutation was

identified. Geronemo picked up Dhh1 as a key regulator but failed

Figure 7. The Puf3 module. (A) A module of 153 target genes (i), which is strongly enriched for targets of the mRNA-binding protein Puf3 (shown
on right, p,102130; Figure S3), but neither the expression profile nor the genotype of Puf3 (shown on bottom: BY = blue, RM = yellow) are correlated
with the module expression profile. (ii) The Lirnet regulatory program: the most significant predicted regulator is P-body component DHH1, but the
regulatory program also contains P-body component Kem1, as well as translational regulators Gcn1/Gcn20. (B) Localization of Puf3 to P-bodies.
Images of live cells containing a Puf3-GFP fusion and the P-body components Dhh1 or Edc3 fused to the red fluorescent protein tdimer2 (td2) (A)
Puf3-GFP; (C) Dhh1-td2; (E) merged image; (B) Puf3-GFP; (D) Edc3-td2; (F) merged image. Strains containing only the Puf3-GFP fusion protein, i.e. no
labeled P-body protein, formed similar fluorescent spots under the same environmental conditions (Figure S5). When present in the same cells,
punctate spots of Puf3-GFP fluorescence significantly overlap with the punctate pattern formed by known P-body components (Table S10).
doi:10.1371/journal.pgen.1000358.g007

Learning Regulatory Potential from eQTL Data

PLoS Genetics | www.plosgenetics.org 13 January 2009 | Volume 5 | Issue 1 | e1000358



Learning Regulatory Potential from eQTL Data

PLoS Genetics | www.plosgenetics.org 14 January 2009 | Volume 5 | Issue 1 | e1000358



to identify the causal SNP or gene involved (Figure S11). The

recent analysis of Zhu et al. [9], performed in parallel to our work,

also identified the same genetic region, and provided experimental

support for its causal role with respect to a large group of genes.

However, their identification of MKT1 as the quantitative trait

gene was manual, and based on biological intuition, rather than an

automated method. Moreover, their method failed to elucidate the

mechanism through which MKT1 regulates the gene expression,

missing the role of both Puf3 and the P-bodies. Thus Lirnet is

unique in its ability to automatically generate a comprehensive

regulatory pathway from causal SNP via the intermediate

regulator through which this SNP acts upon the linked genes

(Figure S9).

Discussion

Advances in technology, most notably the emerging availability

of inexpensive sequencing, are likely to give rise to the production

of large amounts of data measuring both genotype and expression

across large cohorts of individuals, both in human and in model

organisms. These data provide a unique potential to elucidate the

biological mechanisms underlying complex traits, including both

basic biological functions and traits related to human health, such

as predisposition to disease or response to treatment. However,

our ability to unravel complex traits depends not only on the

availability of data, but also on our ability to construct more

sophisticated models of the complex pathways underlying these

traits, and to identify the polymorphisms that perturb them. The

precise identification of specific causal polymorphisms is critical for

understanding the mechanisms underlying disease, and for

constructing targeted diagnostic tests and treatments.

Lirnet provides a unified method that tackles these two inter-

related problems: constructing a regulatory network from eQTL

data, and learning the extent to which different regulators and

sequence variations are likely to play a causal role in modifying

expression data. Like other methods that allow for combinatorial

regulation, Lirnet provides the potential for uncovering multiple

factors underlying complex traits. The use of carefully regularized

linear regression allows Lirnet to construct high-quality, biologi-

cally plausible regulation programs. Our results demonstrate that

many of the regulatory programs inferred by Lirnet have

significant support in data sets not used for constructing the

network. The key novel component in the Lirnet method is its

ability to learn a model of the regulatory potential of individual

SNPs and genes, which estimates how likely they are to play a

causal role in gene expression. This capability serves two

important roles: it allows us to exploit prior knowledge in

constructing better regulatory networks, by selecting regulators

that are more likely to play a causal role; and it allows us to select a

particular polymorphism within a large linked region as the most

likely causal regulator.

Other methods have been proposed that address one or both of

these goals. A number of methods make use of prior knowledge in

constructing regulatory networks. The pre-determined selection of

candidate regulators [7,14] is a form of prior knowledge on the set of

regulators. Other methods prioritize the choice of regulatory

program using pairwise relationships between TFs and their targets,

based on ChIP-chip data or on binding site data [9,45]. Various

types of prior knowledge has also been used for selecting a causal

gene within a linked region, including: correlation of expression

between regulator and targets [8,9,46–48], TF binding data [9], or

paths in a protein-protein interaction networks [10,11].

Several important differences distinguish Lirnet from these

previous approaches. First, Lirnet avoids the use of special-purpose

methods and hand-selected parameters for utilizing different types

of prior knowledge. Rather, it automatically learns the regulatory

potential from data, allowing it to utilize any set of regulatory

features that appear relevant in a given organism and data set,

without additional engineering effort. Our results comparing to

two state-of-the-art methods [9,10] demonstrate that the Lirnet

method, with its automatically learned priors, provides signifi-

cantly better reconstructions of regulatory interactions and better

ability to identify the causal polymorphism. At a more qualitative

level, Lirnet’s ability to flexibly accommodate new types of features

will allow it to utilize different types of high-throughput functional

data. Second, Lirnet is able to make use of sequence features, such

as conservation or significance of the sequence change, in a deeper

way than simply eliminating all candidate genes without

polymorphisms in the coding sequence [46]; as we saw, this

property allows the method to be used in less well-characterized

organisms, such as human, where functional data, such as

transcription-factor binding or functional characterization, are

scarce. The use of sequence-based features allows Lirnet to identify

not only the gene that induces the expression change, but also

particular sequence polymorphisms within the gene that underlie

the functional change. This property is critical in obtaining a

mechanistic understanding of the perturbation underlying the

phenotype. Lirnet’s ability to identify the causal regulator, and

even the specific SNP, is likely to be even more valuable in higher-

level organisms, where linked regions are long and contain many

polymorphisms, and where experiments to test different candidate

hypotheses are far more difficult.

There are several limitations to our work that provide directions

for further developments. First, we have exploited only a basic set

of regulatory features; it is likely that improved results can be

obtained with a richer set of regulatory features [49]. In particular,

a deeper study of the effect of different sequence features,

Figure 8. The post-transcriptional regulation (PTR) module. (A) A module of 40 target genes and its regulatory program, consisting of a
genotype marker on Chromosome XIV. The module is strongly enriched for genes involved in post-transcriptional regulation processes (Figure S6),
and contains many of the regulators of the Puf3 module, including P-body components Dhh1 and Kem1, and both components of the Gcn1/Gcn20
complex that regulates translation under conditions of nutrient starvation. The module’s only predicted regulator is at 449,639 on Chromosome XIV.
(i) The mRNA expression profiles (log2 ratios) of the 40 module target genes, where the rows are genes and the columns are arrays (segregants),
sorted by the genotype of the segregants in the linked region on Chr XIV (shown in (ii)). (iii) Annotation of the 16 module members that are in the top
5% of genes up-regulated in the mkt1D array in an RM background (hypergeometric p,10210). (iv) Expression profile of MKT1 in the original arrays;
MKT1 was not included in our original analysis, as it did not meet our stringent cutoff for variation in expression values. (B) Of the 30 genes in the
chromosome XIV region selected as the module’s regulator, the highest regulatory potential is obtained by MKT1 (Table S9). Also shown are the
regulatory features that contributed the most to the selection of a SNP in Mkt1 as the causal polymorphism: conservation, linkage to the adjacent
chromosomal marker (cis-regulation), common GO process annotation with target genes, the presence of non-synonymous coding mutations and
their effect on properties of the resulting protein, and to a lesser extent being annotated as regulating translation. (C) RNA expression levels of an
mkt1D in an RM background. Expression-value distribution for the Puf3 Module target genes (green), the PTR Module target genes (red), and the
remaining genes (dark blue). The results show a modest (average fold change 0.9) but consistent down-regulation of the Puf3 Module (KS p-
value,10223) and up-regulation of the PTR Module (KS p-value,1026).
doi:10.1371/journal.pgen.1000358.g008
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including, for example, synonymous SNPs, may give rise to

insights about the effect of different sequence perturbations.

Moreover, additional data sets that indicate regulatory interactions

continue to be produced, and can be usefully adopted as

regulatory features. In particular, all of the data sets that we used

to produce our benchmark set of regulator-target interactions

(such as differential expression subject to regulator deletion or

over-expression) can also be used as meta-features, as can other

high-throughput data such as signaling interactions [50,51] or

genetic interactions [52,53]. The flexibility of Lirnet allows these

features to be easily integrated into the model. More broadly,

Lirnet currently utilizes prior knowledge only regarding regulators

and regulator-target interactions. We often have data relating to

relationships between targets (such as protein-protein interactions),

and even between regulators (such as cooperative or competitive

binding). It would be interesting to extend the method to exploit

such relationships.

One exciting opportunity is the application of the concept of a

regulatory potential to the task of identifying the causal polymor-

phisms underlying phenotypes of interest, such as disease or drug

response. In particular, it seems plausible that a sequence variation

that is more likely to be causal relative to gene expression traits may

also have a higher chance of playing a causal role for other

phenotypes. If so, then a regulatory potential learned from eQTL

data can help narrow down hypotheses in association or linkage

studies. This capability could be of value in several settings: in

reducing the burden of multiple hypothesis testing by favoring

hypotheses that are more likely to be causal [54,55]; in identifying

plausible regions for resequencing or for follow-up in a larger

population; and in prioritizing particular polymorphisms that may be

worthy of follow-on experiments. This idea may allow eQTL data

from model organisms to be used to increase the power in human

disease studies, where expression data from relevant tissues is not

readily available.

Methods

Dataset and Regulators
We applied our analysis to the expression and the genotype data

generated from 112 meiotic recombinant progeny of two yeast

strains: BY4716 (BY; a laboratory strain) and RM11-1a (RM; a

natural isolate) [3]. Our expression data and genotype data were

selected as previously described [7]. Our 305 candidate expression

regulators were selected using the process previously described [7],

and are listed in our accompanying website (http://dags.stanford.

edu/lirnet/).

We applied Lirnet to the eQTL dataset [4,56] of human

HapMap individuals 260 European (CEU) and 60 African (YRI)

individuals. Among 47,297 probes in the expression data [4], we

picked 7,324 whose standard deviation is greater than 0.03 and

used them for our analysis. The phase II HapMap data [56]

contain genotypes for nearly 4 million SNPs. To perform our

experiment in a setting that is closer to that of a real association

study, we selected only the SNPs that are on a commercial

genotyping chip, namely Affymetrix GeneChip 100 k & 500 k,

and used only their genotypes in our analysis.

Identifying Single Nucleotide Polymorphisms (SNPs)
between BY and RM

We first identified orthologous genes between BY and RM. We

downloaded the genome sequences of S288C (isogenic to BY) and

RM from the Saccharomyces Genome Database (http://www.

yeastgenome.org/) and Broad Institute of Fungal Genome

Initiative (http://www.broad.mit.edu), respectively (sequences

were retrieved on 12 January 2005). In order to define orthologous

genes between BY and RM, we used reciprocal best BLAST hit

[57] (protein sequences of S288C were downloaded from SGD on

12 January 2005). Out of 6,683 genes in 16 nuclear chromosomes,

6,292 (94.1493%) have reciprocal best matches between the two

strains. We also retrieved the genomic sequences, 500 bp

upstream/downstream of each orthologous pair. We aligned the

DNA sequences of the ortholog pair by using LAGAN [58], and

retrieved SNPs between the orthologs.

Regulatory Features for SNPs
We constructed a set of regulatory features that describes each

single nucleotide variation (SNP) in terms of various intrinsic

characteristics. We identified orthologs between BY and RM, and

constructed a list of SNPs, as described above. For human

regulatory features, we downloaded data from dbSNP containing

a list of human SNPs and their various properties. For each SNP,

we defined six kinds of features that can determine its regulatory

potential. First, we characterized each SNP in terms of its location

relative to genes, resulting in seven regulatory features (1 & 12–17

in Table S1). Each non-synonymous coding SNP can change

various properties of the corresponding amino acid (AA), which

can affect the regulatory role of its gene. Therefore, we described

each non-synonymous coding SNP in 10 ways in terms of changes

in various properties caused by the corresponding AA change

based on various data sources [59,60] (2–11 in Table S1). A

sequence polymorphism on the genomic site that is strongly

conserved is more likely to affect the regulatory network. Thus, we

characterized each SNP in terms of the conservation score on its

genomic site (18 in Table S1). The conservation score was

computed based on comparison of protein sequences across a large

group of species. For yeast data, we downloaded the aligned

sequences from Wapinski et al. [61]. For human data, we

downloaded the conservation scores from the UCSC human

genome browser (‘‘Most Conserved’’ track). We also incorporated

the feature indicating whether the SNP is likely to regulate the

expression of the gene in which it resides (19 in Table S1).

Because regulatory potential of a SNP is likely to be affected by

the function of the gene where it resides, we defined a set of

regulatory features that indicate whether the gene belongs to each

of 87 Gene Ontology (GO) categories related to regulatory roles

(20 in Table S1). For human data, we used 48 GO Slim biological

process categories. Finally, a SNP might have different regulatory

potential over different modules. We defined three ‘pair-wise

features’ that describe how likely a SNP is to regulate a particular

module (21–23 in Table S1). For each module, we picked GO

categories – biological process and molecular function – that are

significantly enriched in the module genes; and transcription

factors (TFs) whose putative targets appear significantly in the

module, based on the ChIP-chip binding data [24]. More

precisely, we picked the GO categories and TFs whose hypergeo-

metric p-value is below 1023 after a false discovery rate (FDR)

correction. Then, for a combination of a SNP and a module, we

constructed three features based on whether: (1) the gene

containing the SNP belongs to the module’s GO process; (2) the

gene containing the SNP belongs to the module’s GO function;

and (3) the SNP resides in the module’s TF. In all cases, we took -

log(p-value) to be the value of the regulatory feature, so that a

regulator-module pair where the enrichment is highly significantly

will have a higher-valued regulatory feature.

Overall, for each SNP n, this process results in a set of 22

regulatory features and 87 (for yeast)/ 48 (for human) features

based on the gene function, listed in Table S1.
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Regulatory Potentials for Regions (G-Regulators)
Based on the regulatory features of each individual SNP, we

modeled the regulatory potential of each genetic marker, representing

how likely sequence variations on the marker’s chromosomal

region regulate expression levels of genes. We also defined a

regulatory potential for each e-regulator, representing how likely

the regulator’s expression is to regulate other genes’ expression.

These potentials are based on the regulatory potential of

individual SNPs. We model the probability that each SNP n causes

expression variation (regulatory potential of n) as:

Pr SNP n causes variation in expression levels of genesð Þ

~sigmoid
X

k
bkfn,k

� �
,

ð1Þ

sigmoid tð Þ~1= 1zexp {tð Þð Þ,

where bk is the parameter called regulatory prior that determines the

impact of each regulatory feature on the regulatory potential:

higher values of bk encode the fact that the presence of the feature

fnk increases the probability of having a regulatory effect. The

learning algorithm of Lirnet automatically estimates the value of

the b parameters from data. In our analysis, we focus only on

regulatory features that are likely to increase the regulatory

potential, and hence restrict bk to be non-negative; this assumption

can easily be relaxed in the context of other feature sets. A SNP

with many important regulatory features (with high b’s) will have a

higher regulatory prior, but the sigmoid function introduces a

saturation effect, preventing the regulatory potential from

increasing unboundedly and swamping the data.

Due to linkage disequilibrium, each marker i can represent

genotypes of the chromosomal region where it resides. We

therefore define the regulatory potential of each genetic marker

as an aggregate of the regulatory potentials of the individual SNPs

in the corresponding chromosomal region. We assigned each SNP

to the region associated with its nearest genotyped marker (or tag

SNP). Then, for each region r, we aggregated the contributions of

all SNPs (in the region), each modeled based on (1), by summing

them up and taking a sigmoid function:

Pr Region r is causalð Þ~

sigmoid
X

n[ SNPs in region rf g 2|sigmoid
X

k
bkfn,k

� �
{1

� �� �
:
ð2Þ

Therefore, a region that contains a number of SNPs with high

regulatory potentials is likely to have a high regulatory potential,

but the outer-most sigmoid function again prevents it from

increasing unboundedly. We note that a region that contains a

large number of moderately relevant SNPs can also achieve a high

regulatory potential. This method of aggregation tends to prefer

regions with more SNPs, which is arguably justified, as they are

also more likely to contain a causal polymorphism. However,

other methods of aggregation are also plausible. We experimented

with several other approaches; the one selected achieved the

highest performance in prediction of expression profiles in test

data not used for training the model.

Regulatory Potentials for Expression Regulators
We also model the regulatory potential of candidate expression

regulators based on their regulatory features. We used the

regulatory features of SNPs (Table S1) for constructing those of

an expression regulator. The regulatory features consist of five

categories: (1) 7 features each representing the number of SNPs in

the gene region having one of the features 1 & 12–17 in Table S1;

(2) 1 feature representing the conservation score of the gene region

(analogous to 18 in Table S1); (3) 1 binary feature indicating

whether the gene is cis-regulated (analogous to 19 in Table S1); (4)

87 (for yeast)/ 48 (for human) binary features indicating whether

the gene belongs to each of the GO categories listed in Table S12

(analogous to 20 in Table S1); and (5) three pairwise binary

features indicating whether the gene belongs to a GO process

category enriched in the module, whether the gene belongs to a

GO function category enriched in the module and whether the

gene is the TF whose putative binding targets are enriched in the

module (analogous to 21–23 in Table S1).

We define the regulatory potential of r to be the probability that

each candidate e-regulator r causes expression variation, which we

model as follows:

Pr r is causalð Þ~sigmoid
X

k
akgr,k

� �
, ð3Þ

where grk represents the k’th regulatory feature of e-regulator r

(explained above) and ak is the weight assigned to the k’th

regulatory feature.

Learning Regulatory Programs using the Lirnet Algorithm
Lirnet attempts to reconstruct regulatory programs that define

the regulatory interactions between each group of co-regulated

genes (called a module) and its regulatory factors (regulators).

Candidate regulators of a module consist of binary genotype

values of genetic markers and expression levels of genes that are

not in the module. We model the expression level of each gene g in

a module m (denoted by ym,g) as a linear combination of the

potential regulators (denoted by x1,…,xn):

ym,g~wm,1x1zwm,2x2z . . . zwm,nxnze,

for all g0s, in module m,
ð4Þ

where e represents a zero mean Gaussian noise, and x and y are

standardized.

Our objective is to estimate the weights (wm,1,…,wm,n) for each

module m, from the data that best reflect the regulatory

relationship between x’s and y. More precisely, given x and y, we

aim to construct the network by maximizing the joint log-

likelihood Log P(w,y|x) = Log P(y|x,w)+Log P(w), where for each

module and its regulators P(y|x,w),N(Siwixi,s
2) and P(w)

represents the prior probability distribution of w. We model the

prior probabilities on the weights based on the regulator’s

regulatory potential: For a regulator r, which can be either a

region or an e-regulator, the prior probability is modeled as:

Pr wrð Þ!exp {Cr wrj jð Þ, ð5Þ

Cr~C1 Pr Regulator r is causalð Þ

zC0 1{Pr Regulator r is causalð Þ½ �:

The regulatory potentials, Pr(Regulator r is causal), are defined

in (2) and (3) as functions of b and a, respectively. C0 and C1

represent the maximum and minimum regularization parameters

Ci, respectively. The prior on the weight wr is an L1 prior, which

tends to move the weights of less relevant coefficients to 0 [16]; the

larger Cr, the stronger the bias towards 0. As the regulatory
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potential increases, we have that Cr decreases, reducing the

tendency of the learning algorithm to set the regulator’s coefficient

to 0.

To avoid the singularity problem (when the number of

parameters is greater than the number of data instances) and a

degeneracy problem that occurs when some of the x’s are

correlated, we introduced an additional L2 regularization term (also

called a ridge term) with a regularization parameter D. The Lirnet

algorithm estimates a, b, and w by solving the following

optimization problem:

minimize
X

module m

X
gene g

ym,g{
X

regulator r
wm,rxr

� �2
�

z
X

regulator r
Cr wm,rj jzD

X
regulator r

w2
m,r

�
zE

X
k

h2
k,

ð6Þ

where Cr’s are defined in (5), h= {a}<{b}.

Unlike previous approaches that use tree regression [7,62] or

stepwise linear regression [48], this approach deals well with

correlated regulators. In particular, when several regulators are

highly correlated, both tree regression and stepwise linear

regression will select one representative within the set, often

arbitrarily; with that regulator selected, the correlated regulators

have little explanatory power, and will not be added to the

regulator set. This approach is susceptible to making arbitrary

decisions based on random fluctuations in the data.

Lirnet uses an iterative coordinate descent algorithm to

minimize the above objective function (Figure 1), iterating over

two steps, where in one step we optimize over w’s given the current

a and b, and in the other step we optimize over a and b given the

current w’s. To learn h, we solved the optimization problem of Eq.

(6) with the current weights w’s. To estimate w’s, we modified least

angle regression (LARS) [63] to allow it to handle the L2

regularization term (the third term in (6)); LARS is known to be

one of the most efficient algorithms for solving this type of

regularized regression problem. The regularization parameters C0,

C1, D and E were determined through a 10 fold cross validation

procedure: The arrays were divided into 10 groups; in each run,

we train on 9/10 of the arrays, and compute predictive accuracy

on the held out 1/10; the parameters were selected to maximize

the average performance over the 10 runs. The final set of

regulators was determined by using the chosen D and E over the

entire set of arrays.

Lirnet can be used both to construct a regulatory program for a

pre-determined set of modules, or, as a step in an iterative

procedure whereby modules are adapted dynamically to match

the learned regulatory programs. In this iterative process, first

developed in the module networks algorithm [14], one starts with

an initial assignment of genes to modules, for which regulatory

programs are subsequently learned. Each gene is then reassigned

to the module whose current regulatory program best explains its

expression profile. We ran Lirnet both on a set of Geronemo

modules, and using this iterative process initialized from these

modules. The PGV analysis (see below) showed essentially no

difference between these two runs (data not shown). To facilitate

comparison to the previous results, we therefore used the Lirnet

program for the Geronemo modules.

Experiments on the Human Data
We applied Lirnet to the human eQTL dataset: genotype data

from Phase II HapMap Project 260 European (CEU) and 60

African (YRI) individuals [56] – and expression profiles from the

same individuals [4]. We treated SNPs on the Affymetrix

GeneChip Human Mapping 100 k/ 500 k Array sets as genetic

markers (i.e. tagging SNPs), and assumed we observed the

genotype of only those SNPs. The regulatory features were

constructed for 6,515,224 SNPs downloaded from NCBI dbSNP

database (http://www.ncbi.nlm.nih.gov/SNP), based on various

data sources such as dbSNP, UCSC genome browser (http://

www.genome.ucsc.edu/), and gene ontology [64]. The list of

regulatory features for the human data can be found in Table S3.

We divided the SNPs into regions corresponding to each of the tag

SNP, assigning each gene to its closest tag SNP, and defined the

regulatory potential of each individual SNP and each region,

according to Eq (1) & (2) in Methods, similarly to the experiments

on the yeast data. The learned regulatory prior is listed in Figure 2

and Table S3.

Implementation of a Classical Method for Comparison
As a baseline method for comparison, we used the standard

single-marker linkage model (as in [1–3]). For each (gene, marker)

pair, we performed a linear regression using the gene’s expression

level as a response variable and the marker as a predictor, and

chose the marker that achieves the best fit. For the comparison on

the yeast data, we used the published results [1]. We compared

those results to those of our implementation of single-marker

linkage model (explained above), and the results were almost

identical (data not shown). For the human data, we used our

implementation.

Calculation of Percentage of Genetic Variance (PGV)
We estimated the percentage of genetic variance (PGV)

explained by the identified genetic regulators, following the

procedure of Brem & Kruglyak, as also used for Geronemo [7].

In brief, we randomly divided the data of 112 segregants into a

detection set (training data) and an estimation set (test data). We

used the method on the detection set to learn the regulation

programs and (where relevant) the modules, and used the

estimation set to calculate the PGV for these regulation programs.

The PGV formula uses a corrected ANOVA, which automatically

accounts for model complexity determined by the number of

predictors. We repeated this process 10 times with different

random splits of data, and estimated PGV of each gene by taking

the average of its PGV over 10 runs.

We note that, in the protocol of Brem & Kruglyak, the set of

regulators is chosen on the detection set, but the actual parameters

are estimated using ANOVA on the estimation set. Thus, there is a

risk that more complex regulatory program will be able to overfit

the training data, producing misleadingly good results. Although

the number of parameters in our model is not larger than the

number in the Geronemo model, we wanted to demonstrate

directly that overfitting is not a factor in these results. We therefore

also used an alternative PGV protocol, where the entire regulatory

program – both the choice of regulators and the parameters – are

derived from the detection set alone, and then the resulting model

is estimated on the test set. In the results from this protocol (Figure

S1), the proposed models also considerably outperformed

Geronemo.

Biological Evaluation of Learned Regulatory Programs
We constructed a set of putative regulator-target pairs for the

biological evaluation of the methods. We used five kinds of

datasets: (1) deletion and over-expression microarrays [21,22]; (2)

chromatin immunce-precipitation (ChIP-chip) binding experi-

ments [23]; (3) mRNA binding pull-down experiments [31]; (4)

transcription factor binding sites [65]; and (5) a literature-curated

set of signaling interactions from the Proteome database (http://
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www.proteome.com). For (1), we considered as targets the genes

whose expression changes are within the top 10% of all genes in

terms of the magnitude of the expression change. For (2), for each

transcription factor, we picked the genes with a p-value of p,0.01.

For (3), (4) and (5), we downloaded the lists of putative targets

suggested by the corresponding papers.

Biological Evaluation of Predicted Causative SNPs in a
Large Chromosomal Region

For each of 13 regions that are identified to contain many

candidate regulators of expression variation [1], we constructed a

list of genes that have experimental supports of their regulatory

role on the targets linked to that region, based on microarray data

from deletion experiments [1,9,21–23] and ChIP-chip binding

data [23] (see Figure 4B legend). For each region, we checked for

each candidate regulator whether the candidate is ‘‘supported’’ by

any of these data: (1) For the deletion microarray dataset, we

considered the candidate regulator to be supported if there is a

significant overlap (p,0.01; hypergeometric distribution) between

its putative target based on the deletion data (within top 20% of

differentially expressed genes) and the targets defined by the eQTL

data [1]; (2) For the ChIP-chip binding data, we considered a

regulator to be supported if there is a significant overlap between

the putative targets with a binding significance of p,0.01 and the

linked targets.

Ranking Genes in a Chromosomal Region
To identify the causal SNP in a chromosomal region chosen by

Lirnet as a g-regulator, we ranked each SNP using its regulatory

potential, computed from its regulatory features and the learned

coefficients (as in Figure 2). We then ranked the genes according to

the SNP of highest regulatory potential in the gene region (coding

region, 500 bp upstream, 100 bp downstream).

Yeast Strains and Media
Unless stated, all S. cerevisiae strains used in this study are

isogenic with a GAL2+ derivative of S288c [66] and are also

isogenic to the BY parental strain [3]. Strains used to test the effect

of deleting MKT1 in the RM background we constructed by

transforming a URA3-marked deletion allele into RM11-1a. The

‘‘allele swap’’ strains (RM mkt1-by), replacing the RM allele of

MKT1 (G30, R453) with the BY allele (D30, K453), were

constructed by standard methods of PCR and transformation into

the RM mkt1D::URA3 deletion strain. The presence of the

appropriate variations and absence of any secondary mutations

in the substituted region was confirmed by DNA sequence

analysis. All strains were constructed by standard methods of

PCR amplification and yeast transformation; details are available

upon request. Microarray expression analysis of puf3D and mkt1D
in the BY background used strains from the homozygous yeast

deletion collection [67] (Open Biosystems) with the BY4743

isogenic parental strain as a control. Microarray expression

analysis of mkt1D and mkt1-by in the RM strain background used

the isogenic parental strain RM11-1a as a control. Strains

containing Puf3, Dhh1, and Edc3 GFP protein fusions were taken

from the collection described by Huh et al. [68]. Strains

containing inframe protein fusions to the Red fluorescent protein,

tdimer2, were constructed using pKT176 [69] by standard

methods of yeast methods of PCR amplification and yeast

transformation into either the strains containing the GFP tagged

protein or the isogenic wild-type strain BY4741. Unless stated, all

strains were grown in YPD medium and harvested in mid-log

phase.

Microarray Analysis for the mkt1D Experiment
Total yeast RNA was isolated by hot phenol method [70]. For

both standard and tiling array analysis (see Text S1), total RNA

was converted to cDNA and labeled with Alexa 647 and Alexa

555 (Molecular Probes) using the Atlas PowerScript Fluorescent

Labeling Kit (Clontech) and an oligo(dT) primer as described by

the manufacturer. Labeled cDNA samples were hybridized to

either a stock yeast expression array (Agilent-011445 Yeast Oligo

Microarray G4140A) or a custom yeast tiling array (described

below) and processed according to manufacturer’s instructions

(Agilent Technologies). Arrays were scanned using a ScanArray

Express HT (Perkin Elmer) at a constant laser power of 90% and

various photomultiplier tube gains as described in Dudley et al.

(2002). Signal and background intensities were measured using

GENEPIX image analysis software (Axon Instruments) and data

from multiple intensity scans were combined onto a common scale

using the MASLINER linear regression method [71]. The log2

ratio of intensities of the signal and the background was calculated

for each array element, and the standard normalization techniques

described in Yang et al. [72] were applied to the log2 ratio values.

We used global normalization and intensity-dependent normali-

zation by using LOWESS (locally weighted scatter-plot smoothing)

[73] with parameters relevant to our experimental setting, single

slides and single print tips.

Fluorescence Microscopy
Live yeast cells containing GFP and tdimer2 fluorescently tagged

proteins were visualized with a Nikon Eclipse TE2000-E inverted

microscope under 1006objective with oil. GFP was detected using

a FITC filter, and tdimer2 was detected using HCRed1. Images

were captured using a Hamamatsu Orca-ER CCD digital camera.

Image capture and analysis used Metamorph 6.3R5 and Adobe

Photoshop software. P-bodies, observed as bright punctate spots in

the cytoplasm of cells containing a fluorescently labeled P-body

protein, form in live cells after approximately 10 minutes in water or

minimal medium lacking glucose under a microscope coverslip.

Under the same conditions after approximately 12 minutes, a Puf3-

GFP fusion protein formed similar fluorescent spots (Figure S5),

most of which overlapped the P-bodies (Table S10). When present

in the same cells, punctate spots of Puf3-GFP fluorescence overlap

with the punctate pattern formed by known P-body components

(69/75 = 92% of P-body spots are also Puf3 spots), showing

localization of Puf3 to P-bodies (Table S10).

Analysis of the Oaf1 Module
Of the ten target genes in the peroxisome module, the proximity

and orientation of one (YAL049C) suggested that its co-expression

could be the result of cross hybridization to the OAF1 probe in the

original microarray data; thus, it was removed from further

consideration. To evaluate the dependence of the remaining target

genes on Oaf1, we examined a published microarray dataset [29]

comparing RNA expression oaf1D to a wild-type (BY) strain in the

presence of oleate (an inducing condition). This dataset also

included an estimate of the likelihood of differential expression

[74]. We sorted RNA expression levels by the log10 ratios and

filtered for l values greater than 36.23 to arrive at the top 1% (63)

most significantly down regulated genes (Table S11).

Accession Numbers
The revised RM11-1a PUF3 DNA sequence determined by this

study will be deposited in GenBank (NCBI) prior to publication.

All Microarray datasets will be deposited in the GEO database

prior to publication.
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Supporting Information

Figure S1 Additional PGV plots. These graphs show additional

comparisons of percent genetic variation (PGV), in the format of

Figure 3 in the main text on (A) the yeast data, and (B) the human

HapMap data, for both CEU and YRI individuals, with 500 k tag

SNPs, (C) with 100 k tag SNPs, and (D) with 100 k tag SNPs (the

same protocol as in Figure 3). Each shows PGV explained by

detected regulation programs for Lirnet and Lirnet without

modeling the regulatory potential, as measured by an alternative

protocol. In the protocol of Brem & Kruglyak (used for Figure 3 in

the main text), the set of regulators is chosen on the detection set

(training data), but the actual parameters are estimated using

ANOVA on the estimation set (test data). Thus, there is a risk that

more complex regulatory program will be able to overfit the

training data, producing misleadingly good results. These graphs

in (A), (B) & (C) shows PGV values computed using an alternative

PGV protocol, where the entire regulatory program – both the

choice of regulators and the parameters – are derived from the

detection set alone, and then the resulting model is estimated on

the test set. In the results of this protocol, Lirnet also outperforms

Lirnet without the regulatory prior and the classical single-marker

approach (for human data).

Found at: doi:10.1371/journal.pgen.1000358.s001 (0.1 MB TIF)

Figure S2 Distribution of the regulatory potentials of individual

SNPs (A) and genes (B). (A) Using the learned regulatory prior

(Figure 2), we computed the regulatory potential of all SNPs (Eq 1

in Methods) for each module with the corresponding pairwise

regulatory features. The histogram shows the distribution of these

values. (B) We defined the regulatory potential of a particular gene

to be that of the highest regulatory potential SNP associated with

that gene (see Methods). The graph shows the distribution of the

gene regulatory potentials.

Found at: doi:10.1371/journal.pgen.1000358.s002 (0.2 MB TIF)

Figure S3 Statistical enrichment for Puf3 target mRNAs. (A)

Statistical enrichment for 3,152 genes included in our analysis.

The 210 Puf3 targets from Gerber et al. [31] were obtained from

(http://microarray-pubs.stanford.edu/yeast_puf/). Of these, 147

were present in the set of 3,152 genes used in the Lirnet analysis

used to construct the module. The P-value representing the

significance of the overlap (108 genes) between the 153 Puf3

module genes and 147 Puf3-bound mRNA transcripts was

computed based on the hypergeometric distribution. (B) Statistical

enrichment within the subset of genes with mitochondrial

functions. We restricted our analysis to 956 nuclear genes whose

protein products function in the mitochondrion, of which 588 are

present in the set of 3,152 genes used in our analysis. The P-value

representing the significance of the overlap between the 139 Dhh1

module genes and 127 Puf3 target genes was calculated based on

the hypergeometric distribution. The significant enrichment for

Puf3-bound transcripts within the subset of mitochondrial genes

supports the hypothesis that Puf3 binding (rather than some other

feature common to a large set of mitochondrial genes) is the

relevant characteristic shared between these co-expressed genes.

(C) Distribution of Puf3 motif scores. The distribution of Puf3

motif scores of the 147 Puf3 targets identified by the assay of

Gerber et al. [31] and used in our analysis. These 147 genes were

divided into two groups: 108 genes that were members of the Puf3

module (purple) and the remaining 39 Puf3 targets (blue). Motif

scores were obtained from Gerber et al. [31] who used the motif

finding tool MEME (Multiple EM for Motif Elicitation) [75] to

search for the Puf3 motif. The Puf3 motif is more coherent in the

module genes than in the other Puf3 targets, providing further

support for the assertion that our method has independently

identified a group of Puf3-dependent transcripts. (D) Up-

regulation of Puf3 targets in a BY puf3D. Distributions of

microarray expression values in a BY puf3 deletion mutant

(puf3D) are shown. The x-axis shows the log-2 ratio expression

level (puf3D : wildtype), and the y-axis the percentage of genes with

that expression level within the Puf3 module genes (purple) and

within the set of all remaining genes (blue). The higher expression

levels of the Puf3 module in puf3D are significant (p-value,10237)

by Kolmogorov-Smirnov test.

Found at: doi:10.1371/journal.pgen.1000358.s003 (0.1 MB TIF)

Figure S4 Revised protein sequence for the RM allele of PUF3.

Orthologous genes between BY and RM were determined by

reciprocal best BLAST hit [57], as previously described [7].

Although the genome sequence of the RM strain (Saccharomyces

cerevisiae RM11-1a Sequencing Project, Broad Institute, http://

www.broad.mit.edu/annotation/genome/saccharomyces_cerevisiae/

Home.html) reports the presence of a series of coding mutations in

PUF3 that would effectively truncate the C-terminal portion of the

protein, re-sequencing of this region of PUF3 from the RM strain

revealed only two amino acid substitution mutations in this region

and an additional amino acid substitution mutation in the N-

terminal region of the protein.

Found at: doi:10.1371/journal.pgen.1000358.s004 (0.03 MB TIF)

Figure S5 Images of live cells containing a Puf3-GFP fusion

protein. Puf3-GFP forms punctuate spots under conditions

required for P-body formation. GFP Fluorescence channel (FITC)

and cell morphology (DIC). These strains do not contain any other

fluorescently labeled proteins, and thus control for the possibility

that Puf3 spots seen in the co-localization experiments are an

artifact of P-body fluorescence.

Found at: doi:10.1371/journal.pgen.1000358.s005 (0.3 MB TIF)

Figure S6 Summary of known functional interactions between

the PTR module target genes. The network was generated using

data collected from the literature (Table S13), E-MAP analysis

(Table S14), and RNA expression levels (Figure S12). The edges

represent different functional connections, as indicated; thick lines

correspond to interactions tested in small-scale experiments, thin

lines to high-throughput assays. The genetic interaction edges

(pink, purple) are taken from a recent E-MAP assay of 505 genes

associated with various aspects of RNA metabolism (Table S14,

Figure S13). The expression correlation edge (dark green) indicates

very high similarity of gene expression microarray data in

knockout strains puf3D and gcn20D (Figure S12, Table S15),

indicating a functional connection between the deleted genes

[21,76]. We note that absence of an edge has no significance, since

not all possible combinations have been tested.

Found at: doi:10.1371/journal.pgen.1000358.s006 (0.01 MB TIF)

Figure S7 MKT1 polymorphisms. The aligned protein sequenc-

es of Mkt1 encoded by BY and RM, constructed as described in

Lee et al. [7]. The two sequences are identical except for two

SNPs: G30D and R453K. Both polymorphisms occur in residues

that are highly conserved in the other yeast species shown. Also

marked are three previously identified protein domains [13]: the

XPG-N putative nuclease domain (pink), the XPG-I putative

nuclease domain (green), and the Pbp1 binding domain (yellow).

The non-conservative G30D SNP is located in the XPG-N

domain.

Found at: doi:10.1371/journal.pgen.1000358.s007 (0.05 MB TIF)

Figure S8 RNA expression in an RM strain harboring the BY

allele of MKT1 (mkt1-by). Expression-value distribution for different

groups of genes in RM mkt1-by experiment, measured by tiling

Learning Regulatory Potential from eQTL Data
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array hybridization (Methods): genome wide (dark blue); Puf3

Module (green); PTR Module (red). The results show a modest but

consistent down-regulation of the Puf3 Module (KS p-val-

ue,10213) and up-regulation of the PTR Module (KS p-

value,1028). In the PTR module, we find 23 of 40 genes in the

module in the top 10% of genes most up-regulated (hypergeo-

metric p-value,10212). These genes include Lirnet-predicted

regulators of the Puf3 module: DHH1 (2.3%; 114 out of 4926

verified ORFs), KEM1 (2.8%), GCN1 (1.1%) and other genes in the

PTR modules: BLM3 (5.8%), TUB1 (7.8%), ECM29 (0.6%) and

SIM1 (3.2%). The results agree well with the effects seen in a

complete deletion of the MKT1 open reading frame.

Found at: doi:10.1371/journal.pgen.1000358.s008 (0.02 MB TIF)

Figure S9 Overview of the three-tiered regulatory cascade

proposed by our analysis. (I) A highly coherent module of 153

genes was identified; these genes are nuclear genes with

mitochondrial function, of which an overwhelming majority is

bound by the sequence-specific RNA-binding protein Puf3 (Figure

S3A). (II) Lirnet predicted a set of regulators that suggested the

regulation of these targets by two distinct post-transcriptional

regulation processes: P-body factors and the Gcn1/Gcn20

complex (Figure 7A). The relationship between the Puf3 targets

and P-bodies is supported by microscopy experiments. (III) Lirnet

also identified a locus on chromosome XIV as linked with the

expression variation in these processes, and suggested a specific

gene in this region – MKT1 – as the causal polymorphism

(Figure 8B). The regulatory role of MKT1 in inducing the

observed variation is supported by microarray experiments.

Found at: doi:10.1371/journal.pgen.1000358.s009 (0.1 MB TIF)

Figure S10 Results obtained by a previous linkage based

approach. Results of analysis by Yvert et al. [1], which is a purely

linkage based approach. Among the 3,152 genes to which

Geronemo was applied, 169 genes had been linked to a locus in

chromosome XIV in the previous study [1]. Of these (i) 125 were

assigned to the Puf3 module and (ii) 24 were assigned to the PTR

module.

Found at: doi:10.1371/journal.pgen.1000358.s010 (0.3 MB TIF)

Figure S11 The Geronemo Puf3 module. The regulatory

program generated by Geronemo for the Puf3 module. Although

Dhh1 was selected as the top regulator, the remainder of the

regulatory program appears unrelated to the module function.

Found at: doi:10.1371/journal.pgen.1000358.s011 (0.5 MB TIF)

Figure S12 Comparison between the expression levels in puf3D
and gcn20D mutants. (A) Expression levels of puf3D and gcn20D
mutant arrays for 153 Puf3 module genes (top) and the rest of the

genes included in our analysis (bottom). To show the correlation

between the two arrays more effectively, we sorted the genes in

each group based on the sum of the expression levels in the two

arrays. The scatter plot shows the expression levels of the Puf3

module genes (purple) and the other genes (blue) in puf3D (x-axis)

and gcn20D (y-axis) mutant. (B) A scatter plot showing the

correlation between the puf3D and gcn20D arrays both within the

Puf3 module (pink) and for all other genes (blue). The overall

genome-wide Pearson correlation is 0.65. Although the Puf3

module is induced in puf3D and repressed in gcn20D, there is still a

correlation between the values within the module (Pearson

correlation 0.5). One possible explanation is that the puf3D profile

is an aggregate of two effects: a general cellular response to a

disruption in its mRNA turnover and translation pathways, which

is the same for both knockouts; and a direct effect of the Puf3

knockout of increasing the RNA levels of the Puf3 targets. (C)

Distribution of the Pearson correlation coefficients from every pair

of 300 arrays from the Rosetta yeast deletion mutant compendium

of Hughes et al. [21]. Of the expression profiles resulting from

different gene knockouts, only 28 of 44,850 pairs of knockouts

exhibited a Pearson correlation .0.65, almost all occurring in

pairs of genes that are functionally related (Table S15).

Found at: doi:10.1371/journal.pgen.1000358.s012 (0.2 MB TIF)

Figure S13 Distribution of the E-MAP synthetic sickness values

and pairwise correlations. (A) We find significant synthetic sickness

between gcn1D and deletion of P-body component dcp1D (22.7).

These values are at the top 1.91% and 1.93%, respectively, in the

distribution of synthetic sickness values of all 94,680 measured

pairs among the 505 genes in the E-MAP. We also found synthetic

sickness relationships between puf4D, another member of the PUF

family, and two deletions of genes encoding P-body components,

dcp1D (23.9, top 1.13%) and lsm1DD (28.85, top 0.21%). (B) E-

MAP data can also be used to measure similarity between the

interaction profiles of different genes. We find strong correlations

of synthetic sickness profiles between puf3D and P-body compo-

nent edc3D (PCC = 0.401 – top 0.9% in PCCs of all deletion pairs;

0.245 – top 4.8%), between puf4D and P-body components lsm1D
and pat1D (PCC = 0.544 – top 0.21%; PCC = 0.476 – top 0.41%),

and between gcn1D and puf3D, puf4D (PCC = 0.236 – top 5.32%;

PCC = 0.277 – top 3.34%).

Found at: doi:10.1371/journal.pgen.1000358.s013 (0.06 MB TIF)

Table S1 Regulatory features. For each single nucleotide

polymorphism (SNP), we constructed a list of properties (called

regulatory features) that can indicate how much likely the SNP causes

variation in expression levels of genes. Each column contains the

following information: Name – Name of the regulatory feature;

Property – One of S, G and GP meaning SNP-specific, Gene-

specific and Gene-specific Pairwise, respectively; and Descrip-
tion – The meaning of the regulatory feature.

Found at: doi:10.1371/journal.pgen.1000358.s014 (0.05 MB

DOC)

Table S2 Learned regulatory features for yeast. We list the

learned regulatory prior for all regulatory features in the yeast

data. Each column contains: Regulatory feature – name of the

regulatory feature; and Regulatory prior – the learned

regulatory prior.

Found at: doi:10.1371/journal.pgen.1000358.s015 (0.07 MB

DOC)

Table S3 Learned regulatory features for human. We list the

learned regulatory prior for all regulatory features in the human

HapMap data (CEU & YRI). Each column contains: Regulatory
feature – name of the regulatory feature; and Regulatory prior
– the learned regulatory prior.

Found at: doi:10.1371/journal.pgen.1000358.s016 (0.08 MB

DOC)

Table S4 Biological evaluation of the learned regulatory

program. We constructed a set of comparison regulatory

interactions from various datasets: deletion and over-expression

microarrays [21,22]; chromatin immune-precipitation (ChIP-chip)

binding experiments [23]; mRNA binding pull-down experiments

[31]; transcription factor binding sites [65]; and a literature-

curated set of signaling interactions from the Proteome database

(http://www.proteome.com/). For a prediction that a regulator R

regulates a module M, we defined it to be validated if there was

significant overlap (hypergeometric p,0.01) between the members

of M and the putative targets of R, suggested by one of the above

datasets. We note that none of these datasets was used for

constructing the regulatory features for Lirnet. For each method,

we counted the number of validated interactions (column named
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# regulators), where each entry shows: a/b (c%), where a is the

number of significant regulators, b is the total number of predicted

regulators that appear at least once in the reference dataset, and c

is the proportion (a/b6100). We similarly counted the number of

modules that have at least one validated regulator (column named

#modules), relative to the total number of modules having a

predicted regulator in the reference set. We also considered two-

step regulatory cascades, as described in the main text (see also

Methods). (A) and (B) show the number of validated regulators for

expression and genetic regulators, respectively.

Found at: doi:10.1371/journal.pgen.1000358.s017 (0.05 MB

DOC)

Table S5 Learned regulatory programs and their supports. For

each module with $5 genes, we listed the learned regulators with

their p-values. The p-values indicate the significance of overlap

between the module targets and the genes that have been

suggested to be targets of the regulator. We also considered two-

step regulatory cascades, as described in the main text (see also

Methods).

Found at: doi:10.1371/journal.pgen.1000358.s018 (0.05 MB

XLS)

Table S6 Comparison to the method of Suthram et al. We

compare to another published method [10], which improves on

earlier work of Tu et al. [11]. The authors validate their results

relative to a pre-defined set of 548 regulatory relationships,

extracted from gene knockout or over-expression microarray

studies [21,25], similarly to our analysis. The predicted network of

Suthram et al. was not available, so we evaluated Lirnet using their

protocol and reference set, to allow for a direct comparison. For

each target gene and its linked region, we selected the gene

containing the SNP with the highest regulatory potential in that

region. We then evaluated these predictions using the 548

reference pairs of Suthram et al. The result shows that Lirnet

significantly outperforms both the method of Suthram et al. and

the previous method of Tu et al. [11], according to this evaluation

metric. The results of other methods –Random, Tu et al and

eQED – are from Table 1 in Suthram et al [10].

Found at: doi:10.1371/journal.pgen.1000358.s019 (0.04 MB

DOC)

Table S7 Composition of Zap1 region in terms of SNPs and

regulatory potentials. We list all SNPs in the Zap1 region. Each

column contains the following information: SNP ID – the SNP ID

(1-n); Gene – name of the gene where the SNP resides (including

upstream and downstream regions); Loc – one of U, C and D

representing Upstream, Coding region and Downstream, respec-

tively; Regpot – learned regulatory potential of the SNP; Chr,
Pos – chromosome, position of the SNP; BY-Nuc – nucleotide

allele in BY, RM-Nuc – nucleotide allele in RM; BY-AA –
corresponding AA in BY; and RM-AA – corresponding AA in

RM.

Found at: doi:10.1371/journal.pgen.1000358.s020 (0.4 MB DOC)

Table S8 Composition of Oaf1 region in terms of SNPs and

regulatory potentials. We list all SNPs in the Oaf1 region. Each

column contains the following information: SNP ID – the SNP ID

(1-n); Gene – name of the gene where the SNP resides (including

upstream and downstream regions); Loc – one of U, C and D

representing Upstream, Coding region and Downstream, respec-

tively; Regpot – learned regulatory potential of the SNP; Chr,
Pos – chromosome, position of the SNP; BY-Nuc – nucleotide

allele in BY, RM-Nuc – nucleotide allele in RM; BY-AA –
corresponding AA in BY; and RM-AA – corresponding AA in

RM.

Found at: doi:10.1371/journal.pgen.1000358.s021 (0.2 MB DOC)

Table S9 Composition of Mkt1 region in terms of SNPs and

regulatory potentials. We list all SNPs in the Mkt1 region. Each

column contains the following information: SNP ID – the SNP ID

(1-n); Gene – name of the gene where the SNP resides (including

upstream and downstream regions); Loc – one of U, C and D

representing Upstream, Coding region and Downstream, respec-

tively; Regpot – learned regulatory potential of the SNP; Chr,
Pos – chromosome, position of the SNP; BY-Nuc – nucleotide

allele in BY, RM-Nuc – nucleotide allele in RM; BY-AA –
corresponding AA in BY; and RM-AA – corresponding AA in

RM.

Found at: doi:10.1371/journal.pgen.1000358.s022 (0.2 MB DOC)

Table S10 Microscopy quantitation. To quantitate the extent to

which Puf3 protein (assayed by Puf3-GFP fluorescence, green) co-

localized with P-bodies (assayed as Edc3-tdimer2 fluorescence,

red), we counted the number of spots that exhibited visually

detectable green and/or red fluorescence. The number of Puf3

spots reached a maximum at approximately 20 minutes post

induction. We cannot rule out the possibility that differences in

rates of spot formation could be due to differences in the properties

of GFP and tdimer2 because our inability to detect Puf3 fused to

tdimer2 or other versions of red fluorescent protein (Dudley and

Drubin, unpublished results) prevented us from swapping the

fluorescent protein tags.

Found at: doi:10.1371/journal.pgen.1000358.s023 (0.05 MB

DOC)

Table S11 Deletion arrays. To evaluate the dependence of the

remaining target genes on Oaf1, we examined a published

microarray dataset [29] comparing RNA expression oaf1D to a

wild-type (BY) strain in the presence of oleate (an inducing

condition). This dataset also included an estimate of the likelihood

of differential expression [74]. We sorted RNA expression levels by

the log10 ratios and filtered for l values greater than 36.23 to

arrive at the top 1% (63) most significantly down regulated genes.

Found at: doi:10.1371/journal.pgen.1000358.s024 (0.1 MB DOC)

Table S12 Regulatory Gene Ontology (GO) categories. For

constructing regulatory features, we characterized each gene based

on GO categories. Different organisms have different sets of

categories that are relevant to the regulatory processes. Therefore,

we used different lists for yeast and human data. (A) We

constructed a list of 76 biological process and 11 molecular

function Gene Ontology (GO) categories that might be related to

gene regulatory functions in yeast. (B) For human data, we used a

list of 48 GO Slim biological process categories.

Found at: doi:10.1371/journal.pgen.1000358.s025 (0.09 MB

DOC)

Table S13 Functional interactions between the PTR module

members and related genes. Data and references were obtained

from the Saccharomyces Genome Database (SGD).

Found at: doi:10.1371/journal.pgen.1000358.s026 (0.09 MB

DOC)

Table S14 Genetic Interactions in the EMAP data.

Found at: doi:10.1371/journal.pgen.1000358.s027 (0.7 MB DOC)

Table S15 Highly correlated expression profiles in the Rosetta

yeast deletion compendium. We show the significance of the

correlation between the genomic expression levels of puf3D and

gcn20D mutants (Pearson’s correlation coefficient = 0.65; Figure

S12) by comparing it with those of the pairs of arrays from Rosetta

deletion mutant dataset [21]. For every pair from 300 arrays

consisting of diverse mutations and chemical treatment in S.
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cerevisiae, we calculated Pearson’s correlation coefficients, and

present the pairs whose correlation coefficients are higher than

0.65.

Found at: doi:10.1371/journal.pgen.1000358.s028 (0.05 MB

DOC)

Text S1 Supplementary Methods.

Found at: doi:10.1371/journal.pgen.1000358.s029 (0.08 MB

DOC)
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