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Abstract

Unraveling the molecular processes that lead from genotype to phenotype is crucial for the understanding and effective
treatment of genetic diseases. Knowledge of the causative genetic defect most often does not enable treatment; therefore,
causal intermediates between genotype and phenotype constitute valuable candidates for molecular intervention points
that can be therapeutically targeted. Mapping genetic determinants of gene expression levels (also known as expression
quantitative trait loci or eQTL studies) is frequently used for this purpose, yet distinguishing causation from correlation
remains a significant challenge. Here, we address this challenge using extensive, multi-environment gene expression and
fitness profiling of hundreds of genetically diverse yeast strains, in order to identify truly causal intermediate genes that
condition fitness in a given environment. Using functional genomics assays, we show that the predictive power of eQTL
studies for inferring causal intermediate genes is poor unless performed across multiple environments. Surprisingly,
although the effects of genotype on fitness depended strongly on environment, causal intermediates could be most reliably
predicted from genetic effects on expression present in all environments. Our results indicate a mechanism explaining this
apparent paradox, whereby immediate molecular consequences of genetic variation are shared across environments, and
environment-dependent phenotypic effects result from downstream integration of environmental signals. We developed a
statistical model to predict causal intermediates that leverages this insight, yielding over 400 transcripts, for the majority of
which we experimentally validated their role in conditioning fitness. Our findings have implications for the design and
analysis of clinical omics studies aimed at discovering personalized targets for molecular intervention, suggesting that
inferring causation in a single cellular context can benefit from molecular profiling in multiple contexts.
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Introduction

Genome-wide association studies have identified hundreds of

genetic variants that increase susceptibility to diseases [1].

However, knowledge of the causal genetic variant, frequently

occurring in genomic regions with little or no functional

annotation, rarely yields opportunities for treatment. This may

be because either the affected gene is not known, the affected gene

is not druggable, or the pathway mediating the genetic effect on

the physiological phenotype has not been elucidated. Therefore,

the identification of the full intermediate pathways, including the

causal intermediate molecules through which genetic variants

affect physiological phenotypes (Fig. 1, nodes A and B), will greatly

expand the set of possible targets for molecular intervention.

Transcription profiling has been utilized to narrow down the

causal intermediate pathways and molecules between genotype

and phenotypes of interest, by identifying genes whose expression

levels are associated with genetic variants that also affect

phenotype ([2,3,4] and reviewed in [5]). Using quantitative trait

loci mapping, an abundance of genetic variants have been

associated with gene expression levels (expression quantitative

trait loci or eQTLs). In human, most eQTLs have been detected

in the genomic vicinity of the associated gene, indicating a likely cis

mechanism. However, as sample sizes increase, eQTLs that are

located further away from the associated gene, presumably acting

via a trans mechanism, are increasingly being detected [5]. Genes

whose expression is associated with disease QTLs have been

considered to be putative causal intermediates between genotype

and the disease [5] (Fig. 1 node A, B). However, these genetic

associations can also be the result of linkage (whereby the effect on

gene expression is caused by a linked polymorphism, Fig. 1 node

C) or reflect responses to the physiological phenotype (Fig. 1 nodes

E, F). Hence, eQTL associations with genetic variants that also

underlie phenotypes are merely correlative evidence, and alone do

not confirm that the expression of these genes plays a causal role in

phenotype. Thus far, a systematic evaluation to understand
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whether and under which circumstances eQTL association is

predictive of causal intermediates has not been conducted.

It has long been known that genetic effects on physiological

phenotypes often depend on the cellular and environmental

context, such as culture media, cell type, or tissue. This

dependency on cellular context, or genotype-environment inter-

actions if the context is an external condition, has also been

reported for genetic effects on gene expression, ranging from yeast

to human [6,7,8]. Akin to the increased statistical power of multi-

trait QTL mapping [9], detection of eQTLs is improved by

mapping across multiple tissues [10]. However, the relevance of

eQTLs detected in tissues that are not affected by the disease of

interest for identifying causal intermediates remains unclear. Such

investigations will be necessary to understand the utility of eQTL

studies performed in proxy tissues [11].

Here we hypothesized that distinguishing causal intermediates

from correlative associations can be facilitated by applying

environmental changes, since these induce additional perturba-

tions of gene regulatory networks independently of genetic variants

(Fig. 1). Using functional genomics assays in yeast, we confirm that

profiling expression in multiple environments is informative in

identifying causal intermediates. We anticipate that our observa-

tions will facilitate the use of molecular profiling studies to identify

causal intermediates that can also serve as intervention points to

modulate the effects of genotype on phenotype (Fig. 1).

Results

To discover causal intermediates for fitness in yeast, we carried

out extensive growth and transcriptome profiling of a panel of

genetically diverse yeast strains (Table S1). In particular, we

monitored the growth of 159 meiotic segregant strains obtained

from a cross between a laboratory strain (S96) and a clinical isolate

(YJM789) of Saccharomyces cerevisiae [12] in 26 diverse environmen-

tal conditions (Table S2). We mapped the genetic determinants of

growth rate in these environments using genome-wide single

marker analysis, which yielded 27 distinct genetic regions (growth

quantitative trait loci, QTLs) significantly associated with growth

rate in at least one environment (False Discovery Rate,

FDR,0.05, Methods, Table S3 and Fig. 2A). Notably, geno-

type-environment interactions were prevalent, which was reflected

in the limited number of growth QTLs that were shared between

Figure 1. Distinguishing causal intermediate genes between genetic variation and phenotype. Genetic variants (genotype, left, here for
159 yeast segregants) affect physiological phenotype (growth curves, right) through a causal chain of molecular events (depicted as arrows) affecting
expression of genes (nodes A and B). Genes like A and B that mediate the effect of genetic variation on phenotype are valuable molecular
intervention points to counteract genetic defects that cause aberrant phenotypes. Genetic variants also affect expression of genes that are neither
causal nor intermediates, including side effects (nodes C and G), and consequences of the physiological phenotype (nodes E and F). Thus, correlation
between the expression of a gene and the genetic variant responsible for the phenotype is weak evidence that the expressed gene is a causal
intermediate. Environment (colored flasks, left) causes (arrows) variation in gene expression and growth, yielding further perturbations that can be
exploited to infer causal intermediates.
doi:10.1371/journal.pgen.1003803.g001

Author Summary

A long-standing challenge in biology is to unravel the
chain of molecular events linking genetic variation to
phenotypes like disease. Identifying the genes that act as
intermediates between the underlying genetic variation
and the disease can offer new ways to intervene in its
progression. While large-scale molecular profiles are an
important starting point, it is difficult to distinguish causal
relationships from correlative associations. In this study,
our goal was to develop strategies to identify these causal
intermediates. We studied the effects of genetic differenc-
es in baker’s yeast on fitness in multiple environmental
conditions. While genetic effects on fitness depended
strongly on the environment, genetic effects on the
expression of truly causal intermediate genes tended to
persist despite environmental changes. This indicates that
causal intermediates can be found among genes whose
expression is affected by genetic variation independently
of environment. We thus developed a statistical method to
predict causal intermediates based on genetics, gene
expression, and fitness in multiple environments. Our
study has implications for the design and analysis of
clinical molecular profiling efforts towards understanding
how genetic variation causes disease, suggesting that
multiple contexts (e.g., cell types) can be informative even
if they are not afflicted by the disease.

GxE Interactions Reveal Causal Pathways

PLOS Genetics | www.plosgenetics.org 2 September 2013 | Volume 9 | Issue 9 | e1003803



Figure 2. Genetic architecture of growth rate and gene expression in multiple environments. (a) Genetic associations with growth
(growth QTLs) in 26 environmental conditions. The significance of association (P-value, single-marker analysis, Methods) is shown for each of 13,314
markers along the genome (x-axis) with growth rates in 26 environments (y-axis). The direction of the QTL effect is color-coded, where red indicates
that the clinical isolate (Y) allele is associated with increased growth rate and blue the lab strain (S) allele; darker colors indicate greater significance.
Two examples of markers significantly associated with growth in only a small number of environments (MAL13 and SUC8, black rectangles), and two
showing significant effects in opposing directions depending on environment (HAP1 and MKT1, dotted black rectangles) are highlighted. (b) Genetic
associations with gene expression (eQTLs) in 5 selected environments. Each panel shows the number of genes associated with the underlying regions
in a sliding window analysis for each environment (FDR,0.05, 50 kb window). The association strength of growth from a) is displayed in the color
bars below each panel. Six significant genetic loci were identified that jointly regulate growth in these environments (AMN1, CHRV, MAL13, CHRX,
HAP1, MKT1, multi-environment growth genetic model, Methods). These are labeled in bold for every environment in which they were associated
with growth in (a) (growth QTL).
doi:10.1371/journal.pgen.1003803.g002

GxE Interactions Reveal Causal Pathways
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any pair of environments (15%+/20.6% standard error of the

mean, s.e.m.). Moreover, even shared QTLs varied in the

magnitude and, in two instances, in the direction of effects (i.e.,

which parental allele was associated with faster growth; Fig. 2A): 1)

the clinical isolate allele of MKT1 was detrimental for growth in

rapamycin but beneficial in ethanol, glucose and maltose; and 2)

the laboratory strain allele of HAP1 was detrimental in glucose but

beneficial in media depleted of nitrogen sources (at FDR,0.1).

Together, the prevalence of genotype-environment interactions

observed here is in agreement with previous reports ranging from

yeast [13] to human [8], demonstrating that genetic effects on

phenotype depend heavily on environmental context.

To identify causal intermediates between genotype and growth,

we performed transcription profiling in 5 environmental conditions

(glucose, low iron, rapamycin, ethanol, maltose; Fig. S1), exceeding

the scale of previous studies [6,8]. These environments were

selected from those for which we generated growth profiles, in order

to cover all types of genotype-environment interactions encoun-

tered in our growth data (including isolated and opposing effects,

highlighted in Fig. 2A). We employed a checkered experimental

design, whereby random subsets of approximately 35 strains per

environment were selected for expression profiling (Fig. S1). This

approach offers the advantage that, at a moderate cost, a large

proportion of the genetic variation in the entire population is

covered. Transcriptome annotation across the 183 tiling micro-

arrays analyzed yielded 8,382 transcribed regions (hereafter called

genes, which include coding and non-coding genes; Table S4,

Methods). The expression of between 22% (low iron) and 50%

(maltose) of these genes was associated with at least one genomic

locus (expression quantitative trait locus, eQTL; FDR,0.05;

Fig. 2B, Fig. S2). The fraction of shared eQTLs for individual

genes between any pair of environments was highly variable (Fig.

S3), suggesting that genetic regulation of gene expression can vary

in its sensitivity to environmental changes depending on the gene.

Across these 5 environments, the genetic effects on growth rate

were captured by 6 major growth QTLs (Fig. 2B: AMN1, CHRV,

MAL13, CHRX, HAP1, MKT1; determined by multi-environment

growth genetic model, Methods). The phenotypic variance

explained by this model differed across environments, ranging

from 31% in glucose to 52% in maltose (Fig. S4). Each growth

QTL was also associated with the expression of a large number of

genes in the same environment (i.e., with eQTLs within 50 kb of

the growth QTL: Fig. 2B, ranging from 76 genes (0.9%) for AMN1

in low iron to 2,894 genes (35%) for MAL13 in maltose). Notably,

some of these loci were also associated with gene expression in

environments where they were not associated with growth. For

example, expression levels of 111 genes were associated with the

MKT1 locus in low iron (within 50 kb, Fig. 2B), although MKT1

was not associated with growth in that condition. To characterize

how environment modulates the effect of growth QTLs on gene

expression, we modeled expression levels as the sum of 1) a genetic

effect that persists in direction and amplitude across environments

(hereafter ‘persistent’), and 2) an environment-dependent effect.

This showed that the number and proportion of persistent genes

varied greatly across individual growth QTLs and environments

(ranging from 0% for MAL13 in maltose to 86% for AMN1 in

glucose; FDR,0.05; Fig. S5). Thus, transcriptome profiling across

5 environments revealed that growth QTLs affected gene

expression in two manners: persistent and, akin to their effects

on growth, environment-dependent.

Both persistent and environment-dependent genes are candi-

date causal intermediates. To test which candidates indeed play a

causal role in growth in the environments of interest, we

performed parallel growth assays of a genome-wide deletion

collection that covers 4,498 distinct non-essential genes [14]

(Methods). As observed in previous studies [15], the phenotypic

effects of individual deletions varied across environments, yielding

between 938 (glucose) and 1,524 (rapamycin) genes whose deletion

was either detrimental or beneficial for growth (FDR,0.05; Fig.

S6, Methods). The top-ranking environment-dependent candi-

dates at each growth QTL did not significantly affect growth in

that environment when deleted (Fig. 3A; 0.8060.07 fold

enrichment compared to genome-wide background, jackknife

resampling, Methods). In contrast, persistent candidates were

much more likely to be validated by the deletion assay (Fig. 3A;

2.1560.18 fold enrichment). This enrichment was robust with

respect to choices of cutoffs, and also held for the vast majority of

individual growth QTLs and environments (see ‘Benchmarking’ in

Methods; Figs. S7, S8). Similar results were obtained when

environment-persistent eQTLs were defined from a down-

sampled dataset (in which the number of data points matched

the average number of measurements in any specific environ-

ment), ruling out possible biases due to larger statistical power for

detecting persistent vs. environment-dependent associations (Fig.

S7 and Text S1). Furthermore, the difference in validation rate did

not depend on the effect size of either the eQTLs (Fig. S9) or the

growth QTLs (Fig. S10). Finally, the number of persistent eQTLs

detected appeared to be independent of the effect size of the

corresponding growth QTL (Fig. S11). Hence, the robustness with

respect to effect sizes suggests that this finding is likely to translate

to growth QTLs with smaller genetic effects, which will become

detectable in larger populations [16]. Altogether, these findings

indicate that persistent eQTLs are more likely to play causal roles

in phenotype than environment-dependent eQTLs.

We then sought to develop a statistical model that leverages this

insight to predict causal intermediates. The high validation rate of

persistent candidates suggests a regulatory model where QTLs

control expression of causal genes, which in turn have environ-

ment-dependent effects on phenotype (Fig. 1, node A). Former

studies in single environments have shown that joint modeling of

genotype, gene expression and physiological phenotype can assist

in identifying causal intermediates among eQTLs [17,18,19].

These approaches exploit the fact that, in contrast to other genes

associated with the QTL, variation in expression of causal

intermediates entails variation in the physiological phenotype.

We thus extended these principles to multiple environments. For

each growth QTL and for each gene, we used Bayesian network

modeling to estimate the probability that the expression of that

gene causally mediates the environment-dependent genetic effect

on growth (Bayesian network, Methods). The Bayesian network

models the expression level of candidate causal intermediates as a

function of a persistent genetic effect, and the growth rate as a

function of the expression of the candidate gene in an

environment-dependent fashion. The fit of the data to this model

is assessed against a null model, in which the gene is not related to

the QTL. This model comparison identifies genes whose

expression is both associated with the locus of interest across all

environments (i.e., persistent eQTLs) and correlated with growth

in the environment of interest (indicating that variation in its

expression entails variation in growth rate in this environment).

For example, Fig. 3B depicts the expression and growth pattern for

a high-ranking gene predicted as a causal intermediate for the

effect of the MKT1 genotype on growth in ethanol: MRP51 shows

persistent eQTL association (segregation of high and low

expression levels in each environment, x-axis) and correlation

between its expression and growth rate in ethanol (quantitative

correlation between expression and growth rate in ethanol; a more

detailed visualization of these panels is shown in Fig. S12). Because

GxE Interactions Reveal Causal Pathways
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this particular gene fulfills both of these association patterns with

genotype and phenotype, it was among the top ranked candidates.

Our deletion assay validated the causative role of MRP51

expression in conditioning growth in ethanol.

To evaluate the performance of the Bayesian network genome-

wide, we compared its predictions to our deletion validations. The

deletion screen supported 50% of the top 422 predictions across all

growth QTLs. Furthermore, the Bayesian network (Fig. 3C,

purple) that combines genotype, gene expression, and growth rate

was consistently more accurate than predictions based on

persistent expression associations alone that do not consider

growth (Fig. 3C, orange). To compare our approach with previous

attempts to infer causal relationships in genetic networks that

analyzed only one environment [17,18,20], we constructed an

analogous Bayesian network that restricts the analysis to the

specific environment with a growth QTL. These single-environ-

ment approaches, either by basic eQTL association or by Bayesian

network modeling, did not yield meaningful accuracy (Fig. 3C,

blue and pink), underscoring the value of integrated analysis across

multiple environments for predicting causal intermediates.

Functional annotations of the predicted causal intermediate

genes were enriched in molecular pathways related to the

environment of interest and the underlying genetic variant for

most growth QTLs (Table S4 and Methods). For the MAL13

growth QTL, which encodes a regulator of the maltose pathway

[21] and whose genetic influence on growth in maltose

we validated by reciprocal hemizygosity analysis (Methods and

Fig. S13), our model predicted two genes (MAL31, and a non-

Figure 3. eQTLs that persist across environments are effective predictors of causal intermediates. (a) Validation rate (relative to a
random selection of genes, Methods) for the top 100 genes whose expression was significantly associated with a growth QTL that is environment-
dependent (blue) or persistent (orange), based on genome-wide deletion assays. Error bars indicate plus or minus one standard deviation (jackknife
resampling of the growth QTLs, Methods). Star indicates significance of difference (P,0.002, two-sided paired Wilcoxon rank sum test). (b) MRP51:
example of a candidate causal intermediate predicted by the Bayesian network to mediate the effect of the MKT1 genotype on growth in ethanol. In
each of the 5 environments (panels), growth rate (y-axis) is plotted vs. MRP51 expression level (x-axis) and MKT1 genotype is indicated (clinical isolate
allele Y in red, laboratory strain allele S in blue) for all profiled segregants. MRP51 constitutes a strong candidate causal intermediate because: 1)
MRP51 expression is persistently associated with the MKT1 genotype, in every environment (vertical bars in each panel mark the midpoint between
the expression mean of the two subpopulations); and 2) MRP51 expression correlates with growth in the ethanol environment (trendline based on
linear regression, see also Fig. S12). (c) Number of predicted causal intermediate genes validated by deletion (y-axis) vs. number predicted, sorted by
prediction confidence (x-axis) for Bayesian network of persistent intermediate genes (purple), persistent eQTL associations (orange), Bayesian network
based on single environments (pink), environment-dependent eQTL associations (blue), and random selection (black dashed line). Validations were
based on genome-wide deletion phenotypes (Methods).
doi:10.1371/journal.pgen.1003803.g003
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coding RNA SUT145). In support of this prediction, overexpres-

sion of MAL31 has been shown to rescue growth in maltose for the

laboratory strain [22]. The functional specificity of this prediction,

identifying just two genes, is in stark contrast to the 2,894 genes

whose expression level was associated with the MAL13 genotype in

maltose (FDR,0.05, within 50 kb; Fig. 2B). Since the majority of

these 2,894 genes were not functionally validated by our deletion

assay (12.0% validation rate vs. 11.2% genome-wide), most of

them may well be consequences of the pronounced variation in

growth rates (e.g., Figure 1, nodes E, F). Altogether, these data

show that regulatory effects on whole pathways can occur

persistently across multiple environments, even though their

functional impact on growth is apparent only in specific

environments. Therefore, the integration of multiple environmen-

tal conditions improves the prediction of causal intermediates that

transmit genetic effects to phenotype.

Predictions from our model provided a mechanistic explanation

for the opposing effects associated with the MKT1 locus. The

clinical isolate allele resulted in increased fitness in several

environments, most pronounced in ethanol, but decreased fitness

in rapamycin (Fig. 4A). In contrast, MKT1 genetic effects on gene

expression levels in these environments tended to be consistent in

direction and amplitude, indicating that the genetic variant affects

the same network of genes irrespective of the environment (Fig. 4B;

positive correlation, Wilcoxon rank-sum test P,2.2610216).

Likewise, the majority of the candidate causal intermediates

predicted in ethanol and rapamycin were shared (89 of the top 100

in each environment). These genes have been implicated in

mitochondrial function (Table S5) and higher expression levels

were typically associated with the clinical isolate allele in both

environments (Fig. 4B, top-right quadrant). Deletion of these

predicted causal genes typically resulted in impaired growth in

ethanol and improved growth in rapamycin (Fig. 4C, top-left

quadrant). These findings are consistent with (i) regulation of

mitochondria-localized genes by MKT1 [23], (ii) the well-charac-

terized role of mitochondria in growth on non-fermentable media

such as ethanol, and (iii) a previous report of nine mitochondrial

genes as being detrimental to survival in rapamycin [24]. Altogether,

these results explain the molecular basis of the opposing effects of

MKT1 on growth rate in different environments (Fig. 4D). They also

confirm that genetic effects on causative molecular pathways can

occur in multiple environments, yet the functional impact of these

pathways on phenotype may still be environment-dependent.

Discussion

Our results demonstrate that the integration of genetic and

environmental variation into molecular profiling efforts improves the

identification of causal intermediates. Why is this improvement so

pronounced? Environmental cues trigger molecular processes that

perturb the chain of molecular events linking genotype to phenotype.

Our findings indicate that the immediate molecular consequences of

DNA variation, lying furthest upstream in this cascade, are less likely

to depend on environment (Fig. 1 nodes A, C). In contrast, the events

furthest downstream of genotype, including side effects and

consequences of phenotypic changes, are most often environment-

dependent (Fig. 1a, nodes B, E, F, G). Our data show that causal

intermediates can be effectively identified among the most upstream

molecular players, such as genes whose expression is persistently

associated with genetic variants across multiple environments.

The systematic deletion assay was instrumental for validating

strategies to predict causal intermediates. The limitations of this

approach are that it does not detect combinatorial effects and may miss

complex genetic dependencies since the deletions are made in only one

parental background. Additional functional assays, for example from

double-knockout experiments, could be used to refine the validation

information by tackling combinatorial effects. Nevertheless, we were

able to identify a large number of genes within causal intermediate

pathways for each growth QTL. Our dataset thus constitutes a useful

reference for developments of novel causal inference methods.

Analogous to growth in yeast, genetic predisposition to disease is

mediated by gene expression and depends on cellular context,

including environment, tissue, and cell type. We observed that

both persistent and context-dependent eQTLs are common and

frequently occur at genetic loci that affect physiological pheno-

types, consistent with previous reports from yeast [6] to human

[8]. Moreover, most of our validated causal intermediates were not

located in the vicinity of the growth QTL (203 of the 211 validated

candidates at 50% precision cutoff were on another chromosome),

verifying that our approach captures more than the direct cis-

regulatory consequences of genetic variants. The identification of

trans acting intervention points is important, as it yields larger sets

of possible intervention points and allows for addressing QTLs

located within gene deserts, like those frequently reported in

genome-wide association studies. With larger sample sizes, trans

associations are also increasingly being detected in human [4],

although with weaker effect sizes. We have confirmed that the

basic principles we discovered in yeast are robust with respect to

the effect size of the association with phenotype and the genetic

effect on gene expression. Hence, although the experimental

design of a cross is specific to model organisms, our reported

results and conclusions should also hold in higher eukaryotes.

In particular, our findings have implications for the experimen-

tal design of omics profiling of large clinical cohorts. Previous

studies have suggested that disease-afflicted tissues are most

informative in molecular profiling efforts, since they should more

comprehensively capture the molecular consequences of genetic

defects [11]. Our results suggest otherwise: it may be more difficult

to distinguish causal regulatory changes from their consequences

in affected tissues, perhaps because consequences of phenotypes

will be more prevalent in these tissues. To disentangle causes and

consequences, therefore, our findings attest to the utility of

molecular profiling in diverse contexts, even if the overall number

of profiling experiments is not increased. This includes longitudi-

nal studies of individuals that carry a genetic defect before

complex symptoms arise, and the profiling of matched control

samples of the same tissue type that are not affected by the disease.

Our results obtained with a checkered random design suggest that

incomplete data, as commonly encountered in clinical settings, can

be effectively analyzed to yield genuinely causal insights.

Such experimental designs in conjunction with causal inference

algorithms as developed here can help to reveal key associations

that indicate pathways with a causal role in the progression of

genetic disease. Exploring strategies to leverage these mechanistic

insights to develop treatments will be an important direction for

systems medicine research.

Materials and Methods

Data availability
The data reported in this paper have been deposited in the

ArrayExpress repository (http://www.ebi.ac.uk/arrayexpress/)

under accession number E-MTAB-1398.

Strains, media, and primers
The segregants consist of 159 of the 184 segregants previously

derived from a cross of S. cerevisiae strains S96 (MATa ho:: lys5

gal2) and YJM789 (MATa ho::hisG lys2 gal2) (see [12] and Table

GxE Interactions Reveal Causal Pathways
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S1). Further strains were generated to confirm the MAL13 growth

QTL (SI Methods). The complete list of growth media is given in

Table S2. Primers are listed in Table S6.

Growth profiling
Strains were grown and their optical densities were tracked in a

TECAN GENios multiwell plate reader. For the five environments

of focus, measurements were repeated in triplicates and alternative

layouts were compared. Growth rates were estimates using the R/

Bioconductor cellGrowth package (SI Methods).

Transcription profiling and annotation
The segregants were grown at 30uC to mid-exponential phase.

Tiling-array based transcription profiling was done as previously

Figure 4. Molecular basis of the MKT1 genotype’s opposing effects on growth. (a) Distribution of growth rates according to MKT1 genotype
(laboratory strain allele (S) in blue, clinical isolate allele (Y) in red) in two environments: ethanol (left panel) and rapamycin (right panel). The
association is significant for both environments (P,6610210 and P,0.05 respectively, two-sided Wilcoxon rank sum test) but the alleles have
opposing effects on growth (S detrimental in ethanol, Y detrimental in rapamycin). (b) Association of MKT1 genotype with gene expression (P-value,
right and top display higher expression values associated with the clinical strain allele, left and bottom display higher expression levels associated
with the laboratory strain allele) in ethanol (x-axis) and rapamycin (y-axis) for all genes. Unlike for growth, the overall effects of MKT1 genotype on
gene expression levels are in the same direction (positive correlation; Wilcoxon rank-sum test P,2.2610216). High-ranking candidate causal
intermediate genes according to the Bayesian network and common to both environments (89 common genes from the top 100 in each
environment) are highlighted in purple. (c) Fitness defects induced by gene deletion (selection coefficient from deletion collection assay, Methods) in
ethanol (x-axis) versus rapamycin (y-axis), color-coded as in b). Left and upper panels show the distribution of the selection coefficient for the deletion
of the candidate genes (purple) and all other genes (grey). Candidate genes (purple) are typically beneficial for growth in ethanol and detrimental in
rapamycin. (d) Model of the genotype-environment interaction that explains the MKT1 genotype’s opposing effects on growth. The MKT1 clinical
isolate allele upregulates expression of several mitochondrial genes (Table S4) regardless of environment; this regulation leads to improved growth
rates in ethanol, but repressed growth in the presence of rapamycin.
doi:10.1371/journal.pgen.1003803.g004

GxE Interactions Reveal Causal Pathways

PLOS Genetics | www.plosgenetics.org 7 September 2013 | Volume 9 | Issue 9 | e1003803



described [25] and applied to a random subset of strains in all

environments, resulting in 184 arrays overall. Normalization

included variance stabilization and an additional quantile

normalization step (Text S1). Gene expression levels were

estimated from a robust average across probes, accounting for

overlapping genes. Transcriptome annotation was carried out

jointly across all environments (Text S1).

Deletion collection profiling
Aliquots of the deletion collection were obtained from Robert

St. Onge (Stanford Genome Technology Center, Palo Alto, CA).

After overnight growth at 30uC, triplicates comparing relative

abundances for barcoded deletion strains at generation 5 and

generation 0 were profiled(Text S1). For each strain, the selection

coefficient (or relative growth rate) was estimated using a linear

model of log hybridization intensity and its significance assessed

with a moderated t-test (Text S1).

Correction for multiple testing
False Discovery Rates were estimated according to the Storey

and Tibshirani procedure [26].

eQTL mapping
Standard single-marker analysis was used, testing individual

genetic variants for association with expression or growth

phenotypes in a specific environment. To account for non-i.i.d.

sample structure caused by the checkered experimental design, all

association analyses were done using a linear mixed model, similar

to EMMA [27] with a random effect that corrects for genotype

structure (Text S1). Environment-dependent versus persistent

eQTLs were classified by joint analysis across all environments,

considering a shared main effect and interaction term in a

particular environment. The joint growth genetic model was

derived by means of stepwise regression (Text S1).

Bayesian network
To predict causal intermediate genes, we first fit a joint genetic

growth model (Text S1). Next, we considered each gene-

environment interaction term in this growth genetic model and

tested each gene for mediating its effect [17,18,19]. This test was

carried out by comparing two Bayesian networks that assume a

mediating role (causal intermediate gene) versus no mediation. Let

g be the vector of the growth rates in all samples, t the vector of

gene expression of the gene of interest, s the genotype indicator

matrix and E the environment indicator matrix. The two models

compared by our approach can be specified as follows. In Model 1

(causal intermediate gene), growth rate and genotype at the

interaction marker are assumed to be independent conditioned on

gene expression. Furthermore, the gene is under environmentally

persistent regulation of the corresponding marker. For a particular

interaction term (ni, ei,), the joint distribution encoding these

statistical dependencies is:

p g,tjE,sni
,ei

� �
~ p gjE,t,eið Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

growth model

p t E,sni

��� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

expression model

n Model 0 (or null Model), gene expression is assumed to be

independent of the growth QTL genotype and the model for the

growth rate is identical to the multi-environment growth genetic

model:

p g,tjE,sni
,ei

� �
~ p gjE,sni

,ei

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

growth model

p t Ejð Þ|fflffl{zfflffl}
expression model

Model 0 and Model 1 were parameterized as linear Gaussian

models (Text S1). Model comparison using Bayesian Information

Criterion was carried out to estimate the posterior probability of

Model 1 (causal intermediate gene) for any particular gene. All

terms of the growth genetic model except the one considered were

included as covariates (Text S1).

Deletion benchmarking
eQTL mapping and predictions from the Bayesian network

were assessed in terms of their ability to predict genes with a

functional effect on growth in the relevant environments as

identified from the deletion collection profiling data. All assess-

ments were done on the subset of 4,498 non-essential genes. The

direction of the effect (beneficial or detrimental for growth) was

deduced from the correlation between gene expression and growth

and included in the evaluation (Text S1).

Full methods, including a more detailed description of the

statistical analyses, are provided in Supplementary Information

(Text S1).

Supporting Information

Figure S1 Checkered experimental design used for expression

profiling. In each environment (columns), approximately equal

sized fractions of 32 (Rapamycin) to 35 (Ethanol) and 48 (Glucose)

segregants (rows) were randomly selected (red rectangles) for

expression profiling.

(PDF)

Figure S2 Distribution of eQTL per environmental condition.

Left panel: Number of significant eQTLs (single marker analysis

FDR,0.05) per condition and distance of associated marker to

expressed gene (distal if more than 25 kb away, dark grey and local

otherwise, light grey). Right panel: number of distinct genes with

at least one significant eQTL per condition.

(PDF)

Figure S3 Distribution of the fraction of shared eQTLs between

any pair of the five environments. For reference, the bar indicates

the fraction of sharing for the growth phenotype in these five

environments (18%+/22%), which is similar to the sharing in the

full growth panel across 26 environments (15%+/20.6%).

(PDF)

Figure S4 Fraction of variance explained by genotype. For each

environment (YPD,…, YPMalt, see Table S2) the fraction of

phenotypic variance explained by the terms fit in the joint growth

genetic model (black bar). For reference, a richer model that

includes a polygenic background of all variants except those in the

growth genetic model is included (grey).

(PDF)

Figure S5 Distribution of eQTL associations at growth QTLs.

For each environment (YPD, …, YPMalt, see Table S2) and

growth QTLs (AMN1, …, MKT1), the total number of significant

eQTLs (single marker analysis, FDR,0.05) are broken down into

relative fractions of different categories: those with only a

significant environment-dependent association (blue), only a

significant environment-persistent association (orange) or both

(green). Absolute numbers of eQTLs in each category are shown

above each bar. In order to maintain comparable statistical power

for both categories, persistent associations have been computed

from a sub-sampled dataset, such that the number of data points

matches the average number of measurements in any specific

environment.

(PDF)
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Figure S6 For each environment, shown is the absolute number of

deletion strains with a significant (FDR,0.05) effect on growth with

either a positive selection coefficient (s.0.05, orange, improved growth)

or negative selection coefficient (s,20.05, green, impaired growth).

(PDF)

Figure S7 Number of validated predictions of causal intermediate

genes (y-axis) versus the number of predicted causal intermediate

genes sorted by signed prediction (See Text S1) (x-axis) for alternative

methods. Considered are environment-persistent eQTL associations

(orange), environment-persistent eQTL associations in a randomly

selected subsample of the data (orange and dashed), environment-

dependent eQTL associations (blue), and random guessing (black

dashed line). Sub-sampling (orange dashed) of 35 randomly selected

data points, matching the number of samples in individual

environments, was done to control for effective sample size

differences between tests for persistent and dependent associations.

(PDF)

Figure S8 Rate of functional validation considering the yeast

deletion collection for each growth QTL, considering either

environment-persistent eQTLs or environment-dependent eQTLs

in association with the identical loci. For each environment

(YPD,…,YPMalt, see Table S2) and corresponding growth QTL

(AMN1,…, MKT1), shown is the validation rate (relative to a

random selection of genes in same environment) of the 100 top

ranking associations that are either consistent with genes impairing

growth when deleted (upper panel) or predictive to improve growth

(lower panel). The total number of genes in each category is shown

above each bar (in total about 50 at each growth QTL, since about

half of all annotated genes have a matching deletion strain).

(PDF)

Figure S9 Fraction of validated predictions (y-axis) of candidate

mediating genes for environment-dependent eQTLs (blue,

FDR,0.05) and environment-persistent eQTLs (orange,

FDR,0.05, identified at equivalent sample size, see Text S1)

stratified by the eQTL effect (log2 fold change of expression, x-

axis). Error bars show two times standard error of the mean, the

number of genes in each category is displayed beneath the bar

(n = …). Stars indicate significant differences between the two

eQTL types (two-sided Fisher test P,0.01) regardless of effect size.

(PDF)

Figure S10 Fraction of validated predictions (y-axis) of candi-

date mediating genes for environment-dependent eQTLs (blue,

FDR,0.05) and environment-persistent eQTLs (orange,

FDR,0.05, identified at equivalent sample size, see Text S1)

stratified by the growth QTL effect (generations per day, x-axis). The

bins have been chosen to contain similar number of QTLs (3, 3 and

4 QTLs respectively). Error bars show two times standard error of

the mean, the number of genes in each category is displayed beneath

the bar (n = …). Stars indicate significant differences between the two

eQTL types (two-sided Fisher test P,0.01) regardless of effect size.

(PDF)

Figure S11 Number of persistent eQTL associations (y-axis,

FDR,0.05, identified at equivalent sample size, see Text S1)

versus the growth QTL effect (generations per day, x-axis).

(PDF)

Figure S12 MRP51: example of a candidate gene predicted by

the Bayesian network to mediate the effect of MKT1 genotype on

growth in ethanol. This corresponds to Figure 3B with a separate

y-axis scale for each panel to better show the behavior in the

Ethanol environment. In each of the 5 environments (panels),

growth rate (y-axis) is plotted vs. expression levels (x-axis) and

MKT1 genotype is indicated (clinical isolate allele red, laboratory

strain allele blue) for all profiled segregants. MKT1 genotype

displays persistent associations with MRP51 expression: the latter

segregates with the MKT1 genotype in every environment (vertical

bars in each panel mark the midpoint between the expression

mean of the two subpopulations). Expression correlates with

growth in the Ethanol environment (trend line based on linear

regression); MRP51 thereby fulfills all the criteria for a causal

intermediate transcript.

(PDF)

Figure S13 Distribution of growth rate (in generations per day,

y-axis) for the hybrid cross between the lab strain and the clinical

isolate (S966YJM789, n = 4), for the hybrid cross where the

reference strain allele of MAL13 is deleted (S96dMA-

L136YJM789, n = 12) and the hybrid cross where the clinical

isolate strain allele of MAL13 is deleted (S966YJM789dMAL13,

n = 6). The latter two differ significantly in growth rate (P,0.001,

one-sided Wilcoxon rank sum test).

(PDF)

Table S1 Strains.

(TXT)

Table S2 Growth media.

(TXT)

Table S3 Growth QTLs.

(TXT)

Table S4 Genes.

(TXT)

Table S5 Gene set enrichment for candidate mediating genes.

(TXT)

Table S6 Primers.

(TXT)

Text S1 Supplementary information.

(PDF)
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