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Cell death is a complex process that plays a vital role in de-
velopment, homeostasis, and disease. Our understanding of and
ability to control cell death is impeded by an incomplete charac-
terization of the full range of cell death processes that occur in
mammalian systems, especially in response to exogenous pertur-
bations. We present here a general approach to address this
problem, which we call modulatory profiling. Modulatory profiles
are composed of the changes in potency and efficacy of lethal
compounds produced by a second cell death-modulating agent
in human cell lines. We show that compounds with the same
characterized mechanism of action have similar modulatory pro-
files. Furthermore, clustering of modulatory profiles revealed
relationships not evident when clustering lethal compounds based
on gene expression profiles alone. Finally, modulatory profiling
of compounds correctly predicted three previously uncharacter-
ized compounds to be microtubule-destabilizing agents, classi-
fied numerous compounds that act nonspecifically, and identified
compounds that cause cell death through a mechanism that is
morphologically and biochemically distinct from previously estab-
lished ones.
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Cell death has historically been viewed as a binary phenome-
non. Cells were described to die in one of two ways—through

a controlled and ordered process (apoptosis) or an unregulated
and chaotic process (necrosis) (1, 2). Not only were these often
considered the only two possible mechanisms, but they were also
frequently viewed as morphologically and biochemically uniform
(3, 4). A great deal of research in recent decades has not only
shown the complexity and heterogeneity of apoptotic and ne-
crotic signaling, but also that cells can die in physiological and
nonphysiological contexts through processes morphologically and
biochemically distinct from both apoptosis and necrosis.
Activation of caspases, a family of cysteine proteases, is es-

sential for producing the full morphological characteristics of
apoptosis. There are at least three distinct pathways that can lead
to the activation of effector caspases—the extrinsic death re-
ceptor pathway, the intrinsic mitochondrial pathway, and the
Granzyme B pathway (5)—but numerous mechanisms feed into
these three pathways. There is substantial evidence that necrosis,
long considered to be a disorganized and unregulated process,
can proceed through an evolutionarily conserved pathway in a
highly orchestrated fashion. Necrosis-like morphology has been
observed after death receptor stimulation (6–12), after treatment
with DNA-damaging agents (13–15), and in Caenorhabditis ele-
gans in response to a variety of stresses (16, 17). These examples
illustrate the heterogeneity of cell death processes resembling
necrosis. A widely debated nonapoptotic, nonnecrotic cell death
mechanism is autophagic cell death, which has been implicated
in vivo in the involution of the salivary gland in Drosophila (18)
and in death because of the hypersensitivity response in Arabi-
dopsis (19) as well as a number of cell culture systems (20, 21).
Additional forms of cell death have been described and reviewed
elsewhere (22–24). Many of these alternative death programs
have been observed only in specialized cells or under unusual

conditions, and they are often limited to morphological rather
than molecular-level descriptions. Rigorous functional under-
standing of these processes and their mechanistic relationship to
each other is lacking.
New lethal reagents are routinely generated in anticancer drug

discovery, chemical biology screens, and cell death research.
However, despite our improved understanding of cell death, the
investigation and characterization of such lethal reagents typi-
cally proceeds in an ad hoc way. There is no standardized process
to compare lethal compounds or identify those compounds act-
ing through specific mechanisms. Hence, rigorous characteriza-
tion is only performed on lethal compounds that are active in
more selective and inherently interesting secondary assays. The
remaining uncharacterized orphan lethal compounds represent
an untapped resource. Investigation into the mechanism of ac-
tion of such compounds could reveal information about the
scope and detail of death pathways that can be activated in cells.
A major use of specific secondary assays is for the elimination

of compounds that kill cells through nonspecific mechanisms.
Such compounds are not useful in investigating the signaling
pathways that govern cell death, and they are not attractive leads
for drug development. For instance, compounds can act non-
specifically on cells through chemical reactivity (25), by forming
small molecule aggregates (26), or disrupting membranes (27).
These properties of small molecules are not easy to predict
a priori. Although reactivity can often be predicted from chem-
ical structure, some reactive compounds kill cells specifically,
whereas others are not lethal at all (28). Small molecule aggre-
gates are well-established as nonspecific inhibitors in in vitro
biochemical assays (29, 30), but only limited studies have been
performed on their persistence in the presence of high protein
concentrations (31) and cell culture (26). Most drug-like small
molecules are lipophilic (32), and determining those molecules
that act primarily through membrane disruption is not obvious.
Here, we present a methodology for systematically charac-

terizing lethal compounds based on functional profiles. This
method, called modulatory profiling, systematically analyzes the
changes in the lethality of a compound when used in combina-
tion with each member of a panel of cell death modulators.
These modulators were selected to modulate established cell
death processes. Applying this method to both characterized
and uncharacterized compounds has allowed us to identify
previously unidentified microtubule-destabilizing agents, segre-
gate compounds that act nonspecifically, and identify compounds
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that induce death through morphologically and biochemically
distinct mechanisms.

Results
Creating and Clustering Modulatory Profiles. Our initial tasks were
to (i) assemble a collection of reagents that can modulate cell
death-related processes (cell death modulators), (ii) identify
a test pool of characterized lethal compounds, and (iii) choose
cell lines for testing. First, we chose chemical modulators (SI
Appendix, Table S1) based on literature precedent. These com-
pounds include reactive oxygen species scavengers and inhibitors
of calcium signaling, protein synthesis, and proteases, among
others. We also included four genetic modulators of cell death
(SI Appendix, Fig. S1).
For the lethal compounds, we chose a set of 28 well-character-

ized compounds (SI Appendix, Table S2), including inhibitors
of topoisomerases, microtubule assembly, proteasomes, histone
deacetylases (HDACs), kinases, and various stages of mitochon-
drial respiration. We chose two cell lines, a fibrosarcoma cell line
(HT-1080) and an engineered tumorigenic line derived from hu-
man foreskin fibroblasts (BJ-TERT/LT/ST/RASV12). Both of
these cell lines grow rapidly and uniformly in 384-well assay plates.
We reasoned that it would be advantageous to explore both an
engineered tumorigenic line lacking mutations in uncharacterized
death pathways thatmay be found in cancers aswell as a cancer cell
line with WT p53 that could be easily infected with lentivirus.
We then tested each lethal compound in combination with

each cell death modulator (Fig. 1A). We chose a single con-
centration of each modulator (based on literature precedent and

our optimization experiments) and used a 14-point, twofold di-
lution series of each lethal compound. Comparing survival in the
presence of each modulator to survival without a modulator
allowed us to construct comparative concentration response
curves (Fig. 1B and SI Appendix, Fig. S2). We extracted two
parameters from each graph—the change in potency (Fig. 1B
Upper) and the change in efficacy (Fig. 1B Lower) caused by each
modulator. The modulatory profile of a lethal compound was
defined as the dimensional vector of its activity changes (i.e.,
changes in potency and efficacy) induced by each modulator
across distinct cell lines. The modulatory profiles of known lethal
compounds are graphically depicted in Fig. 1C and numerically
depicted in SI Appendix, Table S3. We tested the data require-
ments of the profiles by calculating the parameters based on
a subset of the data (SI Appendix, SI Text and SI Appendix, Fig.
S3A). Experiments to determine the reproducibility of the
measurements between batches, the similarities and differences
in the parameters between cell lines, the dependence of the
measured parameters on the detection reagent, and the effects of
the modulators on the detection reagent and the cells are shown
in SI Appendix, Fig. S3 B–F and discussed in SI Appendix, SI Text.
Classifying the lethal compounds based on the effects of a single

modulator was ineffective (SI Appendix, SI Text and SI Appendix,
Fig. S4), necessitating the use of the full modulatory profiles. We
compared modulatory profiles of lethal compounds using Spear-
man correlations between pairs of compounds (the similarity
matrix is shown in Fig. 2A). Hierarchically clustering the axes of
the matrix caused compounds with well-correlated modulatory
profiles to appear clearly along the axis. The clustering was also

Fig. 1. Creating modulatory profiles. (A) Cells with or
without modulator were seeded in 384-well plates. Lethal
compounds in dilution series were then added, and the
plates were incubated for 48 h before the addition of the
cell viability dye Alamar blue. Readout of fluorescence after
a 14-h incubation with Alamar blue allowed the construc-
tion of comparative concentration response curves. (B) Two
examples of comparative concentration response curves
and an illustration of the two parameters—the change
in efficacy and change in potency—extracted from each
pairwise combination of modulators and lethal com-
pounds. Both examples use HT-1080 cells. (C) Heat map
depicting 32 modulatory profiles of characterized lethal
compounds (28 distinct compounds and 4 repeat com-
pounds). Lethal compounds are listed on the y axis, and
modulators, cell lines, and parameter types are on the x
axis. Missing values are depicted in gray.
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visualized with a dendrogram (Fig. 2B). Independent replicates of
the same compound from separate batches were clustered closely,
showing reproducibility. Compounds with the same well-charac-
terized mechanisms of action were found to cluster together.
Correct clustering, based on an established mechanism, was
observed for topoisomerase inhibitors, proteasome inhibitors,
microtubule-destabilizing agents, HDAC inhibitors, alkylating
agents, and mitochondrial inhibitors (aside from rotenone, which
is discussed below). Interestingly, compounds that did not cluster
together were mechanistically distinct from each other. Cyclo-
heximide is a translational inhibitor, which is quite different from
echinomycin, a bis-DNA intercalator and transcriptional inhib-
itor. Two broad-spectrum kinase inhibitors, although clustered
relatively close, are not in an exclusive cluster, likely because these
inhibitors target different kinases to varying extents.
One of the mitochondrial inhibitors—rotenone, a complex I

inhibitor—was placed into a cluster with microtubule-destabi-
lizing agents. Rotenone has, in fact, been shown to destabilize
microtubules both in vitro and in cells (33, 34). We confirmed by
immunofluorescence that rotenone causes a rapid loss of mi-
crotubule polymers in HT-1080 cells (SI Appendix, Fig. S5) as
well as in the flatter TC-7 cells (Fig. 2C) and that other inhibitors
of mitochondrial respiration do not affect microtubules (SI
Appendix, Fig. S6). The unbiased recapitulation of rotenone’s
antimicrotubule activity suggests that, when a lethal compound

operates through the same mechanism of action as a character-
ized compound, the mechanism of action can be predicted based
on modulatory profiling. Importantly, it also suggests that if a
compound has multiple targets, modulatory profiling can identify
which of these targets is relevant to cell death.

Clustering of Compounds Based on Gene Expression Profiles or
Chemical Structure.Gene expression profiling using cDNA micro-
arrays has been applied widely in biology and medicine. Al-
though there have been notable successes using gene expression
profiling to investigate small molecule mechanisms of action
(35–39), the use of straightforward statistical methods to com-
pare small molecules based on their gene expression profiles in
mammalian systems has largely proven disappointing.
We confirmed this observation by clustering lethal compounds

based on gene expression profiling using the same clustering
algorithm that we applied to the modulatory profiles. We as-
sembled gene expression profiling data from the Broad Insti-
tute’s connectivity map (http://www.broadinstitute.org/cmap/) for
lethal compounds that we also tested in the modulatory profiling
system. These data were obtained relatively early after com-
pound treatment (6 h) in an attempt to capture the primary
mechanism of action. We used data from 281 separate micro-
array chips, including 86 drug treatments and 195 vehicle con-
trols. The compounds, concentrations, and cell lines used are

Fig. 2. Clustering characterized lethal compounds based on modulatory profiles. (A) Heat map of the similarity matrix showing the Spearman correlation
between modulatory profiles of lethal compounds. (B) Dendrogram derived from hierarchical clustering of the similarity matrix in A. (C) TC-7 cells stained for
acetylated tubulin after 60-min treatment with vehicle (DMSO), 5 μM rotenone, 1 μM colchicine, or 1 μM staurosporine. Representative images were chosen
for each treatment.
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listed in SI Appendix, Table S4. We treated each concentration as
a separate instance and calculated Spearman correlations based
on gene expression data using MCF7 and PC3 cells, the two cell
lines used in the connectivity map pipeline. The resulting simi-
larity matrix is shown in Fig. 3A, and the dendrogram produced
from hierarchical clustering is shown in Fig. 3B.
There are a number of noteworthy features in the dendrogram

created from gene expression profiles. Not surprisingly, sublethal
concentrations of compounds do not cluster into the appropriate
mechanistic class (Fig. 3B, asterisk and note that lethal con-
centrations in MCF7 cells of all of the compounds are listed in SI
Appendix, Table S4). Looking only at compounds tested at rel-
evant lethal concentrations, some mechanistic classes were quite
well-differentiated, such as HDAC inhibitors and proteasome
inhibitors, whereas others were not. Kinase inhibitors and top-
oisomerase inhibitors were mixed together. Interestingly, very

high concentrations (relative to the EC50) of microtubule
destabilizers clustered together, whereas lower but still cytotoxic
concentrations did not. Overall, characterized compounds are
less accurately placed into their appropriate mechanistic class
when clustering is based on gene expression profiling compared
with modulatory profiling.
We also clustered compounds based on their chemical struc-

ture. Apart from a small number of analogs, chemical structure
did not correctly group compounds according to their known
bioactivities (SI Appendix, SI Text and SI Appendix, Fig. S7).

Clustering Uncharacterized Compounds Based on Modulatory Profiles.
We next sought to use modulatory profiling to classify compounds
lacking annotated mechanisms. We examined two compounds
that we previously identified in a screen for selectively killing
cells expressing a constitutively active mutant of the rat sarcoma
viral oncogene homolog (RAS) (40–42) as well as 23 other
compounds [novel profiling compounds (NPC)] that we found
to be lethal to BJ-TERT/LT/ST/RASV12 cells (42) but for which
no other characterization had been performed. The potency of
these compounds in HT-1080 and BJ-TERT/LT/ST/RASV12

cells is shown in Fig. 4A, and their structures are shown in
SI Appendix, Table S5. We performed modulatory profiling on
these compounds (SI Appendix, Fig. S8 and SI Appendix, Table
S3), calculated Spearman correlations, and hierarchically clus-
tered the characterized and uncharacterized compounds to-
gether (Fig. 4 B and C).

Three Compounds Destabilize Microtubules. NPC4, NPC7, and
NPC25 are not structurally related to each other or to known
microtubule-destabilizing agents (Fig. 5A); nonetheless, the
modulatory profiles of these three compounds were similar to
each other and to the profiles of known microtubule-destabiliz-
ing agents (Fig. 5B). We showed by immunofluorescence that all
three compounds showed a near total loss in acetylated tubulin
within 60 min in a fashion similar to colchicine, a known mi-
crotubule destabilizer (Fig. 5C), confirming the prediction from
their modulatory profiles that they would depolymerize micro-
tubules. Characterized and uncharacterized compounds from
other clusters did not have an effect on microtubule stability
(Fig. 4C and SI Appendix, Figs. S6 and S9).

Compounds That Act Nonspecifically Through Reactivity or Bio-
physical Properties. The majority of the uncharacterized com-
pounds fell into two clusters, which are labeled B and C in Fig. 4C.
Examination of these compounds’ structures (SI Appendix, Table
S5) showed that cluster B contained a large number of compounds
with reactive functionalities, including known alkylating agents.
To quantify the relative reactivity of this cluster, we applied an
established set of predictive reactivity filters (43); 10 of 13 com-
pounds were scored as reactive by this filter, but the other 3
compounds are activated chloroarenes, also known electrophiles
(44, 45). All 13 members of this cluster are therefore likely to be
reactive in a biological milieu. In contrast, only 6 of the other 40
compounds were flagged as reactive by the filter (Fig. 6A). We
examined analogs of one member of cluster B to further dem-
onstrate the importance of reactivity on lethality (SI Appendix, SI
Text and SI Appendix, Fig. S10 A and B).
Compounds in cluster C are all amines with a relatively large

nonpolar surface area (Fig. 6 A and B and SI Appendix, Table
S5), suggesting that they act nonspecifically in a detergent-like
fashion. Consistent with this observation, we found that the
compounds in this cluster act rapidly, causing rounding up of
cells within 40 min of treatment and subsequent loss of cell ad-
hesion (SI Appendix, Fig. S10C).
Small molecules are more likely to act specifically at low

concentrations, whereas at higher concentrations, they can act
more promiscuously (46). We examined the potency of the
compounds in the different lethal compound clusters (Fig. 6C),
omitting the characterized compounds to avoid selection bias.

Fig. 3. Clustering characterized lethal compounds based on gene expres-
sion profiles. (A) Heat map of the similarity matrix showing the Spearman
correlation between gene expression profiles of lethal compounds. (B)
Dendrogram derived from hierarchical clustering of the similarity matrix
in A. *Compound used at sublethal concentration. **Compound used at
supralethal concentration.
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Consistent with our expectation, the compounds in clusters B
and C that appear to act nonspecifically were the least potent.
Although a compound targeting a specific cellular pathway is

susceptible to modulation, compounds causing nonspecific cel-
lular damage are unlikely to be susceptible to such modulation.
Thus, nonspecifically acting compounds should have modulatory
profiles consisting of minimal changes. To test this theory, we
computed the average of the absolute value of each profile and
called this value the modulatability score. We compared the
average modulatability of the different lethal compound clusters
(Fig. 6D). As expected, cluster D (containing compounds known
to target specific cellular processes) had high modulatability,
whereas compounds in clusters B and C, which appear to act
through reactivity or biophysical mechanisms, had consistently
low modulatability (this finding can also be seen in the heat map
shown in SI Appendix, Fig. S8).
There were two clusters of uncharacterized compounds re-

maining: clusters A and E. Cluster E had potent compounds with
high modulatability. Cluster A had one potent and one less potent
compound, both with low modulatability. We investigated further
the compounds in cluster E, because based on these metrics, they
aremore likely to act throughmodulation of specific cellular targets.

Cluster of Compounds Induces BAX-/BAK-Independent Mitochondrial
Cell Death. Cluster E in Fig. 4C contains three compounds. We
previously found that two of these compounds, erastin and Ras-
selective-lethal compound 3 (RSL3), induce a nonapoptotic, iron-
dependent form of death that involves the generation of reactive

oxygen species. Further confirming this finding in the present
context, we observed that erastin and RSL3 caused no detectable
caspase activation, which was measured by cleavage of a fluoro-
genic caspase substrate (Fig. 7B).
Death independent of caspase activity can be dependent on mi-

tochondrial outer membrane permeabilization mediated by BCL2-
associated X protein (BAX) or BCL2-antagonist/killer (BAK)
(47). We therefore tested the lethality of RSL3 and erastin in
WT and Bax−/−Bak−/− double KO mouse embryonic fibroblasts
(MEFs). The absence of BAX and BAK did not suppress death
induced by erastin, and it sensitized cells to death induced by RSL3
(Fig. 7C). Thus, modulatory profiling correctly predicted that
erastin and RSL3 act through a form of cell death that is non-
apoptotic and, in fact, is independent of the core apoptotic ma-
chinery—caspases, BAX, and BAK.
We then asked whether the other compound in cluster E,

NPC26, also acts through a nonapoptotic cell death process. We
repeated a subset of the changes in the modulatory profile in two
additional cell lines and found good consistency between the cell
lines (SI Appendix, Fig. S11A), suggesting that the modulatory
profile is a good marker of the compound’s action independent of
cell line. Within the profile, however, there were some immediate
mechanistic differences apparent between NPC26 and erastin/
RSL3. Erastin and RSL3 are virtually inactive in the presence of
all of the reactive oxygen species scavengers tested [α-tocopherol,
Trolox, butylated hydroxyanisole (BHA), and butylated hydroxy-
toluene (BHT)], the iron chelator deferoxamine, and the MAPK/
ERK Kinase (MEK) inhibitor U0126. NPC26 was only slightly

Fig. 4. Clustering uncharacterized lethal compounds based on modulatory profiles. (A) Potency of uncharacterized lethal compounds in BJ-TERT/LT/ST/
RASV12 and HT-1080 cells after 48 h. Values represent the average of three replicates ± SEM. (B) Heat map of the similarity matrix showing the Spearman
correlation between modulatory profiles of characterized and uncharacterized lethal compounds. (C) Dendrogram derived from hierarchical clustering of the
similarity matrix in B.
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inhibited by α-tocopherol, Trolox, and deferoxamine, and it was
insensitive to the presence of BHA, BHT, or U0126 (SI Appendix,
Table S3). Thus, reactive oxygen species, iron, andMEK signaling
play a less central (if any) role in NPC26-induced death. NPC26
caused a small increase in cleavage of a fluorogenic caspase
substrate (Fig. 7B), but death induced by NPC26 was not blocked
by caspase inhibitors (SI Appendix, Fig. S11B) or affected by the
absence of BAX and BAK (Fig. 7C). These observations led us to
the hypothesis that NPC26 induced a different but perhaps dis-
tantly related death process from the process induced by erastin
and RSL3.
We had previously found by EM that erastin does not affect

nuclear morphology but does cause a loss of mitochondrial
structural integrity (41). To test the hypothesis that NPC26
induces a distantly related form of death, we performed EM to
determine if NPC26 induced similar features. The images, shown
in Fig. 7D, reveal no change in nuclear morphology and a drastic
mitochondrial phenotype. By 3 h in BJ-TERT/LT/ST/RASV12

and 6 h in HT-1080 cells, mitochondria have become circular and
lost their cristae completely. We investigated these mitochon-
drial morphological changes further by expressing a mitochond-
rially targeted red fluorescent protein (DsRed2-mito). NPC26
induced a conversion from elongated to punctate mitochondria,
a phenotype that has been previously observed during apoptosis
(48) and by death induced by inhibitors of oxidative phosphor-
ylation and uncoupling agents (49). However, typical apoptotic-
inducing stimuli failed to induce similar mitochondrial frag-

mentation in HT-1080 cells (SI Appendix, Fig. S11C). Unlike
with inhibitors of oxidative phosphorylation, NPC26-induced
mitochondrial fragmentation is independent of the activity of
the dynamin-related protein (DRP1) (Fig. 7E and SI Appendix,
Fig. S11D). NPC26 is also not a direct uncoupling agent (SI
Appendix, Fig. S11E). Thus, similar to erastin and RSL3, NPC26
induces a distinct form of BAX-/BAK-independent mitochon-
drial cell death.

NPC26-Induced Death Depends on a Unique Kinase Signaling Pathway.
Wenext askedwhether the signaling pathways controllingNPC26-
induced death are unique from those pathways controlling death
induced by characterized compounds or erastin. We first tested
a collection of kinase inhibitors for their ability to inhibit NPC26-
induced death (compounds and activity are shown in SI Appendix,
Table S6). We then tested active inhibitors and related inactive
inhibitors for their ability to inhibit erastin and a representative
subset of the characterized lethal compounds. The results (Fig. 7F)
show that NPC26-induced death depends on kinase signaling
pathways distinct from the other compounds.
Although this pattern serves as a measure of uniqueness, it did

not allow us to identify a specific kinase involved, because no
two redundant inhibitors were effective in preventing death.
For example, one JNK inhibitor (SP600125) prevented death,
whereas another inhibitor did not (JNK Inh VIII). Similar results
were obtained with MEK inhibitors (PD98059 protects and U0126
does not protect) and PI3K inhibitors (LY294002 protects and

Fig. 5. Previously uncharacterized compounds destabilize
microtubules. (A) Structures of the well-characterized mi-
crotubule destabilizers vinblastine, podophyllotoxin, and
colchicine, the previously reported destabilizer rotenone,
and the three compounds predicted to destabilize micro-
tubules based on their modulatory profiles. (B) Heat map of
the Spearman correlations between the modulatory profiles
of the uncharacterized compounds NPC4, NPC7, and NPC25
and the characterized compounds colchicine, vinblastine,
carmustine, trichostatin A, MG132, and doxorubicin. (C)
Time course of TC-7 cells stained for acetylated tubulin after
treatment with 1 μM colchicine, 28 μM NPC4, 28 μM NPC7,
or 14 μM NPC25. Staining for total tubulin and acetylated
tubulin after a 60-min treatment with vehicle (DMSO) is
shown at the top right. Representative images were chosen
from each time point.
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wortmannin does not protect). Such inhibitors have significant
promiscuity within the kinase family, raising two possibilities for
these results: (i) the compounds that suppress NPC26-induced
death inhibit the same off-target kinase or (ii) the compounds that
suppress NPC26-induced death inhibit multiple kinases, and the
pathway is robust to the inhibition of any single kinase.

Structure Activity Relationships of NPC26. Because of the high po-
tency and modulatability of its cluster, modulatory profiling
predicted that NPC26 would exert its effect through a specific
process. To further confirm this hypothesis, we tested structural
analogs of NPC26 (17 purchased and 7 synthesized analogs) and
scored their activity based on their ability to induce cell death
that could be inhibited by the kinase inhibitor SP600125 (SI
Appendix, Table S7). In addition, we resynthesized NPC26, pro-
viding the most rigorous confirmation that the assigned structure
is correct.
Analog testing provided evidence supporting a specific mech-

anism for NPC26-induced death. Subtle structural changes that
would not be predicted to alter the compound’s reactivity or
lipophilicity eliminated activity. For example, although analog
26A14 is active, analog 26A3, in which a seven-membered ring in
26A14 is replaced by a six-membered ring, is inactive (SI Ap-
pendix, Fig. S11F).
In addition, we tested an analog containing a linker with a

protected amine attached at the end. This analog (SI Appendix,
Table S7, SRS1-78) retained activity, suggesting the potential for
the use of NPC26 as a probe for future affinity purification of its
target. In summary, NPC26 acts through a nonapoptotic, mito-
chondrial-driven mechanism, and it has a modulatory profile and
structure activity relationship to suggest a specific molecule tar-
get and mechanism. Thus, modulatory profiling is useful not only
for classifying compounds that act through known cell death
mechanisms and targets but also for flagging for additional study
compounds that are likely to act through previously unidentified
cell death mechanisms.

Discussion
Misregulation of cell death plays a central role in tumorigenesis,
neurodegeneration, damage from infarction, and a host of other
human diseases. Greater understanding of the scope of cell death
pathways that can be activated in cells and gaining pharmacolog-
ical control over such pathways hold the promise of improving
human health. In this study, we present modulatory profiling as
a methodology for categorizing diverse inducers of cell death and
identifying inducers of previously uncharacterized cell death
processes, with the goal of ultimately creating a global view of cell
death mechanisms.
Over the past decade, technologies have enabled the collection

of large-scale molecular profiles and led to their use in charac-
terizing cellular states and perturbations to those states. These
technologies include gene expression and copy number variation
using DNA microarrays, protein expression and metabolite pro-
filing usingMS, enzyme activity usingfluorescence probes, and cell
morphology using high-content imaging (50). Although these
technologies have proven invaluable for investigating a wide range
of basic biological mechanisms and disease processes, it can be
difficult to separate causal changes from correlative changes using
such methods. For example, deletion, knockdown, or inhibition of
many of the proteins that are altered in abundance in a specific cell
state has no consequence, because these changes are products of
the cell state rather than regulators of it. A great deal of effort is
being put to identifying the smaller number of driver mutations
responsible for producing cell states of interest (51–53). Such
techniques are computationally and data intensive, and they re-
quire expert adaptation and fine tuning to each new biological
domain. Thus, despite these technological and computational
advances, there remains a need for the development of high-di-
mensionality profiles of functionally relevant measurements that
can be used to characterize cell states.
We developed modulatory profiling to address this deficiency,

which is particularly acute with regards to small molecule-induced
cell states, particularly cell death. Small molecules, even approved
drugs, can have pleiotropic effects on cells (54, 55). Identifying
which of the many effects is relevant in a given context is impor-

Fig. 6. Two clusters of previously un-
characterized lethal compounds act non-
specifically. (A) Distribution of reactive
compounds and amines throughout the
clusters from Fig. 4C. Reactivity was cal-
culated by adding activated chloroarenes
to filters described previously (43). (B)
Fraction nonpolar van der Waals surface
area vs. pKa of the most basic residue.
Fraction nonpolar surface area was cal-
culated with the built-in parameter in the
software MOE. The most basic pKa was
calculated with the web-based software
SPARC (SI Appendix, SI Methods). Using
a one-way ANOVA and Tukey’s multiple
comparison test, compounds in cluster C
are significantly different in their fraction
nonpolar surface area from those com-
pounds in cluster D (P < 0.01) and signif-
icantly more basic than those compounds
in cluster B or D (P < 0.01). (C) Average
potency of uncharacterized compounds.
The average of the potency in HT-1080
and BJ-TERT/LT/ST/RASV12 cells is shown.
Using a one-way ANOVA and Tukey’s
multiple comparison test, the compounds
in clusters B and C are significantly less
potent than the compounds in cluster D,
and the compounds in cluster C are significantly less potent than the compounds in cluster E (P < 0.05). (D) Average modulatability of compounds. Modu-
latability was calculated by taking the mean of the absolute value of all of the normalized changes in a compound’s modulatory profile. Lines represent cluster
averages ± SEM. Using a one-way ANOVA and Tukey’s multiple comparison test, compounds in clusters A, B, and C each are significantly less modulatable than
those compounds in clusters D and E (P < 0.05).

Wolpaw et al. PNAS | September 27, 2011 | vol. 108 | no. 39 | E777

PH
A
RM

A
CO

LO
G
Y

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1106149108/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1106149108/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1106149108/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1106149108/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1106149108/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1106149108/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1106149108/-/DCSupplemental/sapp.pdf


Fig. 7. Previously uncharacterized compounds induce BAX-/BAK-independent mitochondrial cell death. (A) Structures of erastin, RSL3, and NPC26, which are
the three compounds in cluster E. (B) Caspase activity in HT-1080 cells treated for 12–15 h with erastin, RSL3, NPC26, and staurosporine. Caspase activity was
measured by the cleavage of a fluorogenic caspase substrate and is shown on the left y axis (points represent the mean of three replicates ± SEM). Cell
viability is shown by the shaded region and on the right y axis (points represent the mean of three replicates ± SEM). (C) Lethality of erastin, RSL3, NPC26, and
camptothecin in WT or Bax−/−Bak−/− MEFs after 48 h of treatment. Data represent the mean of three replicates ± SEM. (D) EM images taken of BJ-TERT/LT/ST/
RASV12 cells after a 3-h treatment with either DMSO or 9 μM NPC26 and EM images taken of HT-1080 cells after a 6-h treatment with either DMSO or 9 μM
NPC26. Arrows show the nuclei, and arrowheads show mitochondria. Boxes show the portion of the image shown at higher magnification in the next image
to the right. (E) Fluorescence images of HT-1080 cells expressing a mitochondrially targeted dsRed construct infected with either shRNA targeting DRP1
or a control nontargeting shRNA treated with either DMSO or 9 μM NPC26 for 6 h. (F) Heat map depicting the ability of various kinase inhibitors to alter
death induced by NPC26 and other lethal compounds. Protection is depicted in yellow, and sensitization is depicted in blue. Experiments were performed in
HT-1080 cells.
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tant and nontrivial. Rotenone provided an illustrative example of
this problem within the data presented here. Rotenone has been
used extensively as an inhibitor of mitochondrial complex I (56),
but it has also been shown to destabilize microtubules (33, 34).
Using a measurement such as gene expression profiling, it is not
obvious which of these two effects will be most strongly repre-
sented. If one is interested in the way in which rotenone induces
a downstream phenotype such as cell death, it is also not neces-
sarily the case that the lethal effect will be the one with the
strongest gene expression signature. However, modulatory pro-
filing, by using functional measurements, highlighted the lethal
mechanism of rotenone in the system tested.
Other systems have been developed using collections of func-

tional assays to investigate small molecule activities, including
comparing pairwise interactions of antibiotics in bacteria (57, 58),
profiling the hypersensitivity of yeast haploid deletionmutants (59,
60), profiling cytotoxicity across 60 cancer cell lines (61, 62), and
most recently, measuring changes in cancer cell survival in the
presence of various shRNAs (63). Although these other systems
have provided valuable insights, they also have certain drawbacks.
Nonapoptotic cell death differs markedly even between mamma-
lian cells and other metazoans, such as D. melanogaster and C.
elegans (47), making the use of models in bacteria and yeast less
relevant. The NCI60 approach has produced useful signatures for
finding compounds with similar modes of action, but the use of 60
genetically diverse cell lines does not give any specific information
about cell death mechanisms and is less amenable to genetic
perturbations and the use of neurons and other specialized cell
types. The advantages of modulatory profiling are that (i) it uses
quantitative, functional assays that measure and perturb cell
death, the process that is specifically under study; (ii) it uses a full
dilution series of each compound, eliminating the possibility of
making measurements at irrelevant concentrations; and (iii) the
assays are performed in human cells, the species in which we ul-
timately want to apply our findings.
However, we made some choices that proved somewhat limiting.

We used exclusively small molecules as death-inducing agents.
Although small molecules are tractable experimentally, we were
limited by the number of existing classes of characterized lethal
compounds. It will be desirable to extend modulatory profiling to
include larger numbers of other stimuli, particularly gene knock-
down and overexpression. In addition, we chose two fibroblast cell
lines that are well-suited for the type ofminiaturized assays required
for performing high-throughput assays; however, the use of these
two cell lines is likely to prevent the analysis of more specialized
pathways. We chose to focus, therefore, on capturing the more
common mechanisms. Last, we showed here the utility of modula-
tory profiling as applied only to cell death. It would be desirable to
extend modulatory profiling to other cell fates and processes.
We measured viability with Alamar blue, a fluorogenic dye

that measures cellular reductive potential. Although this reagent
has shown excellent correlation with other viability metrics, both
in our hands and in the hands of others (42, 64), in certain cases,
it can give false positives and negatives (65). It should be em-
phasized, however, that to disrupt the output of the profiling,
a modulator would have to cause a viability-independent effect
on Alamar blue reduction to varying extents for different lethal
compounds. Such a finding is expected to be a rare event.
As a proof of principle, we showed that modulatory profiling

correctly classified characterized compounds according to their
known mechanisms of action. It did this without ambiguity, de-
spite using a relatively naïve clustering algorithm. Clustering
compounds based on gene expression data using the same algo-
rithmwas less accurate. Althoughmore sophisticated methods for
analyzing gene expression data have shown an improved ability to
identify compounds with the same mechanism of action (37, 39),
it should be emphasized that modulatory profiling accomplished
accurate clustering without sophisticated computational methods.
These studies identified three microtubule destabilizers from

structural classes that had not previously been shown to de-

stabilize microtubules. It also allowed us to identify two groups of
compounds that likely act nonspecifically, one through chemical
reactivity and the other through detergent-like properties. Such
classification is highly desirable, because these compounds are
uninteresting as both probes and pharmaceuticals. Identifying
such compounds without modulatory profiling would not have
been possible without also removing a number of specifically
acting characterized compounds and some highly interesting pre-
viously uncharacterized compounds. Finally, modulatory profiling
identified compounds that kill cells through pathways distinct
from characterized pathways. Expanding the number of charac-
terized cell death pathways could contribute greatly to our basic
understanding of cellular fates and provide avenues for cancer
cell-specific therapies. Erastin and RSL3 were originally identi-
fied in our laboratory (40–42), and the current work serves to
show the uniqueness of their mode of death relative to a large
number of other compounds.
One uncharacterized compound, NPC26, had a modulatory

profile similar to the profiles of erastin and RSL3. Although the
mechanism of action of this compound has important differences
from the mechanisms of erastin and RSL3, it also induces
a BAX-/BAK-independent death that involves severe distur-
bances to mitochondria. The death process can be prevented by
a unique set of kinase inhibitors, and structural activity rela-
tionships testing shows that this compound acts specifically and
can be modified for use as an affinity probe.
In summary, we have developed a system of modulatory pro-

filing, and we have shown its ability to map cell death pathways
and identify small molecules operating through known and un-
known mechanisms. Use of this system should improve our un-
derstanding of cell death and provide small molecule tools to
dissect and control diverse biological and disease processes.

Experimental Procedures
Cell Lines. BJ-TERT/LT/ST/RASV12 and HT-1080 cells were cultured as described
previously (42). The WT and Bax−/−Bak−/− MEFs were provided by Craig
Thompson (Memorial Sloan-Kettering Cancer Center) (SI Appendix, SI Methods).

Cell Survival Assays. Cells were trypsinized, counted, and combined with
modulators or vehicle and seeded into 384-well plates. Cell death-inducing
agents were then added. After 48 h, Alamar blue was added to a final
concentration of 10%. After 16 h of incubation, the fluorescence intensity
was determined using a Victor 3 plate reader. All assays were performed in at
least triplicate.

Determination of Changes in Potency and Efficacy. Background was subtracted
from raw fluorescence measurements, and values were normalized to vehicle
or modulator-only controls. Four-parameter logistic best-fit dose curves were
constructed for each of the replicates using GraphPad Prism. The change in
potency was defined as the log ratio of the concentration of compound in the
presence of modulator to the concentration in the absence of modulator
required to produce a level of cell survival equal to the one-half maximal
reduction in viability produced in the absence of the modulator. Efficacy
changes were defined as the difference between the curves in the presence
vs. the absence of modulator at the highest concentration of lethal com-
pound tested. The efficacy measurement was deemed unreliable when no
measurement was taken at a concentration close to the bottom of the curve,
and a missing value was assigned in its place (additional details on calculating
the parameters and using them to cluster the compounds are in SI Appendix,
SI Methods).

Preprocessing and Clustering Based on Gene Expression Profiles. Microarray
data were downloaded from the Broad’s Connectivity Map website (http://
www.broadinstitute.org/cmap/) as cell intensity files (CEL files). For the ex-
periments included in our analysis, cells were treated with compound for 6 h
before lysis and mRNA collection. More detailed descriptions of the experi-
mental protocols are available on the website and in the publication about the
project (37).Weperformedprobe set summarizationusing theMAS5algorithm
(66). Values were thresholded, and consistently low or invariant probe sets
were removed. Values were then normalized to a batch-matched vehicle-only
control, and redundant probe sets for the same gene were averaged together
(SI Appendix, SI Methods has additional details of processing and clustering).
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