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ABSTRACT
Regulatory relations between genes are an important
component of molecular pathways. Here, we devise a
novel global method that uses a set of gene expression
profiles to find a small set of relevant active regulators,
identify the genes that they regulate, and automatically
annotate them. We show that our algorithm is capable
of handling a large number of genes in a short time and
is robust to a wide range of parameters. We apply our
method to a combined dataset of S. cerevisiae expression
profiles, and validate the resulting model of regulation by
cross-validation and extensive biological analysis of the
selected regulators and their derived annotations.
Keywords: gene expression; gene regulation; gene net-
works; machine learning.

INTRODUCTION
Pathways of interacting proteins and genes underlie the
fundamental functions of living cells. A major promise
of high-throughput methods, such as gene expression
profiling (DeRisi et al., 1997), is that they will enable
us to reconstruct molecular pathways. This paper focuses
on an important aspect of this task: Reconstruction of
regulatory relations between genes using gene expression
data. Previous attempts at network reconstruction have
been restricted to local relations and focused on particular
pathways (Friedman et al., 2000; Pe’er et al., 2001;
Tanay and Shamir, 2001). Here, we attempt to reconstruct
regulatory relations on a global scale, while building on
the principles of local modelling of regulatory interactions
developed by Friedman et al. (2000).

Since only a relatively small part of the genome is di-
rectly involved in transcriptional regulation, our approach
focuses on a small subset of regulators. Accordingly, we
define the following task: Given a set of candidate regu-
lators, we wish to find a small sub-set of active regula-
tors, which control the processes that take place in a given
set of experiments, identify the genes that they regulate
(their regulatees), and characterize both sets. Specifically,
we search for genes which are both known to participate

in regulation and are globally predictive of the expression
of many other genes in the data set.

We formulate this task as a precise combinatorial
optimization problem, devise an efficient approximation
algorithm that solves it, and prove a lower bound on the
quality of the solution, under certain weak assumptions.
Our algorithm has several important features that allow
us to use it on a global scale. First, our implementation
is extremely fast and can provide a model over thousands
of genes within minutes. Second, our model’s parsimony
provides statistical robustness, as demonstrated by its
ability to correctly predict the expression values for
entire arrays using only those of a small set of active
regulators. Finally, our framework is general and can
integrate additional data types including DNA binding
locations (as shown below) and regulatory motifs.

We devise a method that uses the resulting model to
automatically assign biological function to the discov-
ered active regulators based on the properties of their
regulatees. The analysis uses the Gene Ontology (The
Gene Ontology Consortium, 2000) annotations and
derives p-values for its predictions, facilitating the
generation of hypotheses on both the biological process
regulated by the gene and the molecular function em-
ployed in the regulation process. We further determine the
logic (activation or inhibition) of this regulation.

We applied our approach to several expression datasets
in yeast (Hughes et al., 2000; Gasch et al., 2000; Spellman
et al., 1998), as well as DNA binding data (Simon et
al., 2001). First, we correctly predicted the function of
many known regulators both at the level of the biolog-
ical process and the molecular functions they regulate.
Second, we assigned detailed functional annotation to
previously uncharacterized transcription factors and
signaling molecules. Third, we investigated individual
regulator-regulatee relations in detail, finding evidence
that our model can capture transcriptional and post-
translational regulation. Finally, we incorporated binding
data into our model and achieved global improvement for
genes both with and without binding information.
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REGULATION MODEL
In order to detect a small sub-set of active regulators
and their respective regulatees, we first model the local
relation between a regulatee and its active regulators and
evaluate it based on their mutual information score. We
then seek a collection of such relations that optimizes an
overall score, while adhering to certain global constraints.
We apply two constraints on our regulating genes: We
use prior biological information to limit our search to
a set of candidate regulators; and we require that the
union of active regulator sets for all regulatees be of small
cardinality.

Local regulation model
Due to the noisy nature of both technology and biology
we treat gene expression as a probabilistic process.
Following Friedman et al. (2000) we assign each gene a
random variable that represents its level of expression†.
We represent gene regulation by a directed regulation
graph (the network), whose nodes correspond to genes.
Each arc connects a regulator to its regulatee. We denote
by PX the set of active regulators of the gene X and by
Xr the set of regulatees of a regulator r . Our model has a
mechanistic nature: the expression level of each regulatee
gene is a probabilistic function of its active regulators.

In order to find a network model that best explains the
data, we use a scoring function to measure how well a set
Y of regulators predicts the expression level of gene X ,
and solve the optimization problem of finding the highest
scoring model. An example of such a scoring function is
mutual information‡.

Constraining the global structure
When trying to infer a network model from expression
data, one finds that the number of possible solutions
is prohibitively large. Therefore, we make a number of
biologically-motivated assumptions, which significantly
reduce the space of possible models. Not only does this
reduction in search space lead to a more efficient search
algorithm, it also enhances the statistical robustness of the
results.

Our first assumption exploits prior biological knowledge
to limit our set of candidate regulators C to the list of
known and putative regulators of a given organism. Thus,
our learning process focuses on finding which candidate
regulators are actively regulating other genes, instead of
finding which genes function as regulators altogether.
Unlike previous approaches (Tanay and Shamir, 2001),
which limit themselves to transcription factors, we expand

† We will use the term ‘gene’, instead of ‘random variable denoting the gene’s
expression’ throughout the paper.
‡ Mutual information is defined as
I (X, Y) = ∑

x,y P(X = x, Y = y) log P(X=x,Y=y)
P(X=x)P(Y=y)

our set of candidates to proteins involved in different
aspects of regulation, namely transcription factors, signal
transducers and protein kinases§.

To justify this approach, we stress that in order to cap-
ture a regulation event in gene expression data, we must
observe changes in the expression of both the regulator
and the regulatee. Unfortunately, while transcription fac-
tors directly control transcription, the factors themselves
are frequently regulated post-translationally, and their ex-
pression levels are often too low to allow reliable detec-
tion with microarrays. In such cases, we cannot observe
the change in their regulatory activity in gene expression
profiles. On the other hand, signaling molecules, which are
often enzymes, are expressed at significantly higher levels
and may be regulated transcriptionally (primarily by pos-
itive feedback). Thus, we can capture regulation relations
indirectly, by the change in the expression levels of the
signaling molecule (which in turn regulates a transcription
factor) and its indirect target regulatee genes.

Our second set of assumptions is related to the structure
of our regulation graph. We limit the maximal in-degree
of each node in the graph. This assumption is commonly
made by modellers of gene networks (Akutsu et al.,
1998; Friedman et al., 2000; Tanay and Shamir, 2001).
Finally, we allow only a small number of genes (the
active regulators) to have an out-degree greater than
zero. This is our central structural constraint and the key
to our robustness at a global scale. This constraint is
both biologically and computationally motivated. First, it
adheres to the assumption that only a small fraction of
the genome is directly involved in regulating transcription
and that each such ‘master regulatory gene’ may affect
the transcription of many other genes. Second, it assists
in achieving statistical robustness: Only when a gene
consistently scores high as a parent of many genes, we
believe it indicates a true signal, while an occasional high
score as a parent of a single gene is attributed to spurious
chance.

Formal problem definition
We can now formally define the Best Regulator Set
problem:

PROBLEM 1. Best Regulator Set
We are given as input:

• A set of genes X and a set of m samples: M =
M1, . . . , Mm over X .

• A set of candidate regulators: C
• A local scoring function: Score : X × 2C → Real

§ We used keywords related to transcription factors, signal transducers
and protein kinases to obtain a set C of 456 candidate regulators from
SGD (Cherry et al., 2001) and YPD (Costanzo et al., 2001).
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• Constants: d - the maximal indegree and k - the
maximal size of the regulator set R

For a candidate set of active regulators R we define the
following scoring function:

F(R) =
∑

X∈X
max

P⊂R,|P|≤d
Score(X, P) (1)

F(R) measures the quality of the optimal regulation
model in which only R are regulators. The goal of our
optimization problem is to find a small set R of regulators,
which maximize this score: R = argmaxR|R⊂C,|R|≤k F(R)

By treating this scoring function as an oracle to the op-
timization algorithm, we detach our combinatorial opti-
mization problem from our probabilistic model, allowing
us to reuse our algorithmic framework with other local
scoring methods. In this paper we use mutual informa-
tion as our scoring function. By maximizing the mutual in-
formation between regulators and regulatees, we are min-
imizing the conditional entropy of the regulatees. Thus,
given the values for the set of active regulators, we min-
imize our uncertainty when predicting the values for the
rest of the genes.

APPROXIMATION ALGORITHM
We now propose a greedy algorithm that searches for the
best regulator set and its corresponding graph structure.
Such an approximation algorithm is justified as our prob-
lem is NP-complete (see our website). We describe various
implementation details which lead to speedy performance
even over thousands of genes. We characterize the con-
ditions under which we can guarantee the quality of the
resulting approximation and justify them by empirically
validating that these conditions hold for existing gene ex-
pression datasets.

Greedy Algorithm
We propose the following simple greedy algorithm: Begin
with an empty set of active regulators and at each
iteration add the candidate regulator that gives the largest
gain. Continue to iterate until no candidate provides a
significant additional contribution to the score. A crucial
point is to correctly define the gain of a given regulator at
each iteration. Note, that we calculate mutual information
between a variable and its regulating set. Therefore, when
considering a new candidate regulator c as a parent for
a regulatee gene X , what we measure is not how much
information c holds on X , but how much additional
information c holds, which is not already contained in X ’s
current regulator set. Since we must also adhere to the
maximal indegree constraint and maintain |PX | < d, in
many cases c can be included into PX only by removing
another regulator from PX . Such a swap is effective only

Minreg Algorithm
set R = ∅, F = 0
do (i = 1 . . .) set F ′ = F {

//For each iteration find c∗ = argmaxc∈C F(c|R)

foreach c ∈ C { set R′ = R ∪ c, F ′′ = 0
foreach X ∈ X { set PX = ∅

//greedily approximate maxP⊂R′,|P|≤d Score(X, P)

for j = 1 . . . d {
PX = PX ∪ argmax p′∈R′\PX

Score(X, PX ∪ p′) }
F ′′+ = Score(X, PX ) }

if F ′′ > F ′ set c∗ = c , F ′ = F ′′ }
R = R ∪ c∗, F = F ′ }

until ∀cF(c|R) < threshold

Fig. 1. Overview of the Minreg algorithm. The algorithm consists of
two nested greedy loops. The external loop finds the optimal set R
of k regulators. For each X ∈ X , an internal loop finds an optimal
set of parents PX .

if it leads to an improvement in X ’s local score. The active
regulator chosen at each iteration is the candidate c which
provides the most improvement when summing over all
genes in X .

We formulate the notion of best improvement by bor-
rowing terminology from the field of economic utilities.
We define a valuation function fx for each gene x ∈ X
as the function that measures the local score of x given
a regulator set R: fx (R) = maxP⊂R,|P|≤d Score(X, P).
The global valuation of a regulator set R is now defined
as F(R) = ∑

x∈X fx (R). Note, that our function F is de-
fined on subsets of C. We define the marginal utility of
adding a regulator set C to an already chosen regulator set
R with regard to the function fx as: fx (C|R) = fx (C ∪
R) − fx (R). In a similar way, we define the marginal util-
ity of C at R ⊂ C with regard to F . Therefore, at each step
our greedy algorithm chooses the single element with the
largest marginal utility (argmaxc∈C F(c|R)). An overview
of our Minreg algorithm is presented in Figure 1.

Several details in Minreg’s implementation allow us to
quickly generate a model over thousands of genes. First,
we have implemented a very efficient routine to calculate
mutual information over discrete distributions. However,
since other Score functions can be computationally inten-
sive, the algorithm calculates and caches Score(X, Y) only
when needed. The pseudo-code presented in Figure 1 re-
quires dk2|C||X | calculations of score, thus our algorithm
is linear in |X | and quadratic (assuming C ⊆ X ) in |C|.

We also employ a number of heuristic tricks which
in practice lead to substantial speed-up over the naı̈ve
algorithm. First, we use branch and bound: The potential
candidates C are stored in a heap sorted by Improve(c),
which is the previously calculated marginal utility of c.
We traverse the candidate set starting from candidates that
were recently found to have large marginal utility, and
avoid the evaluation of candidates for which the recent
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improvement Improve(c) is smaller than a factor of α of
the best F(c|R) found in the current iteration. Second, we
do not recalculate fX (c|R) for each c and each X in each
iteration. Rather, the function fX is re-evaluated only after
X ’s parent set P∗

X changes. This is particularly effective in
later iterations where changes in P∗

x are rare.

Approximation bounds
The success of the greedy algorithm largely depends on
the properties of the scoring function. Our algorithm fails
in the situation where the marginal valuations F(c1|R)

and F(c2|R) are both low, but F(c1 ∪c2|R) is significant.
In this case, neither c1 nor c2 are attractive enough to be
chosen by our greedy algorithm, although by including
both c1 and c2 in R the final score would increase over
that derived by the greedy algorithm.

We formalize this intuition by introducing α-modular
scoring functions. Following Lehmann et al. (2001), we
define an α-modular function as follows:

DEFINITION 1. A function f is α-modular (α ≥ 1) if
and only if ∀z, A, R the following holds:

f (A ∪ z|R) ≤ f (A|R) + α f (z|R). (2)

One might consider α as some measure on the convexity
of f over the space of subsets: for larger α more can
be gained by joining sets together. If we assume that the
empirical distribution of our data is such that F is an α-
modular function, we can prove a guaranteed lower bound
on the quality of our approximation (see website):

THEOREM 1. Denote by Fopt the optimal solution for
the Best Regulator Set problem and denote by Fminreg
the solution derived by the minreg algorithm (Figure 1).
For distributions in which F is α-modular and monotone
increasing it is guaranteed that:

(α + 1)Fminreg ≥ Fopt (3)

We empirically validated that we can safely assume
small α-modularity of F (i.e., good approximation factor).
Our validation scheme tests an equivalent but less intuitive
formulation of α-modularity, namely that F is an almost
decreasing function (∀T, ∀S ⊂ T, ∀z /∈ T, αF(z | S) ≥
F(z | T )) (Lehmann et al., 2001), by randomly sampling
such sets. Our procedure consisted of iteratively building
up R by randomly choosing the regulator at each iteration
k, and calculating F(c|Rk) for all c ∈ C. We applied
this procedure 1000 independent times to the data. Indeed,
our calculations consistently showed that the marginal
valuation of each c ∈ C is an almost decreasing function
of the iteration. In the worst case F(c|Rk+1)

F(c|Rk)
was 1.4.

PREDICTIVE POWER OF REGULATORS
We evaluated our algorithm on a dataset containing 358
samples combined from the Hughes et al. (2000) and
Gasch et al. (2000) datasets. These datasets measure S.
cerevisiae expression profiles under a wide variety of cel-
lular conditions¶. The data was normalized and discretized
to 3 values: down-regulated, no change and up-regulated,
as proposed by Tanay and Shamir (2001). We automati-
cally filtered non-informative genes (i.e., those that remain
almost unchanged across the conditions), and remained
with 3622 variables in X . We bound the maximal inde-
gree to 3 and assumed a maximal α-factor of 2 (defines
depth of search in heap). Our current implementation
of the Minreg algorithm requires 19 minutes on an Intel
III 1GHz processor and detected a set R of 45 active
regulators among a set C of 456 candidate regulators.

Robustness: Our algorithm is very robust to different
choices of parameters, including discretization methods,
thresholds for the stopping criteria and non-informative
gene filtering, as well as parameters for the maximal α-
factor and the maximal indegree d . Almost invariably,
we obtained robust regulator sets: an intersection of over
80% between the top-20 regulator sets‖ of almost any two
runs with different parameters. Regulatee robustness was
evaluated qualitatively: Significantly over-represented GO
annotations in these sets (see below) also behaved robustly
over the different variations.

Consistency of Prediction: More importantly, we per-
formed cross-validation analysis, testing the ability of our
active regulators to predict the expression levels of their
regulatees. Recall that in our model each X ∈ X is a
probabilistic function of its active regulators (i.e., each in-
stantiation, y, of the active regulators defines a distribution
P(X |Y = y)). Given a data sample in which X = x and
Y = y, the probability that our model assigns X = x is
P(X = x |Y = y). The parameters for the distributions
P(X |Y = y) are estimated using maximum likelihood on
the training data. However, small sample size often leads
to an overfit model, which attains excellent performance
on the training data, but performs poorly on samples not
encountered during the training process.

We evaluated the performance of our algorithm using 5-
fold cross validation. The data was randomly partitioned
into a test set (containing 20% of the samples) and a
training set containing the remaining samples. Minreg
inferred a model containing 46 active regulators, using
only the training set as its input. For each test sample, the
values of all 3576 regulatees (genes) were predicted based
on the values of the active regulators in that sample and

¶ Hughes et al. (2000) contains 276 deletion mutants from various functional
classes and Gasch et al. (2000) contains 82 samples of responses to 12
different stress conditions.
‖ We defined an order on the regulators based on the size of their regulatee
sets in the final model.
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Fig. 2. Cross validation of the predictive capabilities of our model
on test data. The graph measures the number of genes correctly
predicted at each probability. We compare our model (triangles) to
the null model (crosses) that uses the empirical distribution of each
gene and to a model based on cluster representatives (circles).

the regulation model inferred from the training data. We
calculated the overall precision of the model by comparing
our predicted values with the actual measured ones.

We compared Minreg’s prediction capabilities of sev-
eral different models. As a baseline we used the empirical
distribution of each gene as its own predictor. Since most
of the genes remained unchanged most of the time, even
this simple predictor scored well (Figure 2, crosses). As
competition to our Minreg algorithm we generated 45
clusters using standard k-means clustering (Duda and
Hart, 1973) and randomly chose from within each cluster
a gene r ∈ C as its ‘active regulator’. For each cluster
we calculated P(X |r) and used this as our predictor.
While cluster representatives somewhat improved the
prediction (0.06 log-loss/instance, Figure 2, circles), our
Minreg algorithm clearly provided the best predictions
(0.11 log-loss/instance, Figure 2, triangles). Several
important advantages of Minreg account for its predictive
success over clustering. These include capturing ‘mech-
anistic’ regulation using mutual information (vs simpler
co-expression in clustering), identifying both activatory
(correlated) and inhibitory (anti-correlated) regulators,
and finding combinatorial logic and non-linear interac-
tions between a gene and its active regulators (impossible
in clustering where the same gene cannot belong to more
than one cluster). In conclusion, our cross-validation
demonstrates that most of the information in an entire
array can be captured by a small set of master predictors.

BIOLOGICAL INTERPRETATION
In this section we describe how to extract biologically
meaningful features from the results of our core al-
gorithm. We distinguish between local features (e.g.,
Gene 1 regulates Gene 2) and global ones (e.g., Gene 2
regulates cell wall organization). By using multiple local
relationships, we devise a method to answer questions
on the global role of regulators, such as ‘What is the
biological process or molecular mechanism that a gene
regulates?’.

While the basic building block of our model is the local
regulated relationship, the main power of our framework
lies in global interpretation. Individual local relations must
be treated with caution, since they may rather indicate spu-
rious artifacts or co-regulation. As an alternative, we gain
global biological robustness by annotating each active reg-
ulator according to prominent features of its entire regula-
tee set. We devise a fully automated methodology, based
on the Gene Ontology(GO)∗∗, to map an active regulator
r with specific biological processes (e.g., cell wall orga-
nization) and molecular functions (e.g., amino acid trans-
porter) that are significantly over represented in its set of
regulates, Xr . We use the hypergeometric tail distribution
to calculate a p-value that measures the probability of the
given set to contain such a high concentration of a given
GO term under a uniform null model. For a set of inter-
est we systematically traverse all the nodes in the GO tree,
searching for significantly associated GO terms. We de-
veloped an extension of the GENESYS system (Tanay and
Shamir, 2001) for the visualization of the resulting model
as well as its annotation and filtering according to GO-
based classifications.

We validated our results in two ways. First, we com-
pared our derived annotations of active regulators to their
known functions as reported in the literature. Indeed, our
results corresponded well to previous findings. For exam-
ple, the associations for 8 of the top 10 active regulators
provided ‘proof of principle’ (success or partial success,
Table 1) by coinciding with well-known functional roles
of these genes. Of the remaining two active regulators, we
were able to assign a putative role to one previously un-
characterized gene, but failed to identify the correct role
of the other. Importantly, the competing ‘cluster represen-
tative’ approach (GO annotation by cluster) did not yield
a similar success (3/10 ‘sucesses’, 7/10 ‘no support’, for
more details see website), further emphasizing the unique-
ness of the Minreg approach. Second, we used the signifi-
cant GO terms in order to focus our attention on individual
regulatees which are more likely to represent true signal.

∗∗ Gene Ontology (The Gene Ontology Consortium, 2000) provides a well-
defined vocabulary for the annotation of molecular function, biological
process and cellular location. It is embedded in a tree hierarchy which
permits queries at different levels of granularity. The entire yeast genome
has been annotated using GO (Cherry et al., 2001).
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Numerous individual regulator-regulatee relations of inter-
est were examined, which lent support to our global analy-
sis. Below we provide a number of detailed examples that
demonstrate some of the abilities of our method. More re-
sults and gene lists by GO term will be available on our
website.

Our functional assignment can be highly discriminative
and comprehensive, providing us with an elaborate
characterization of the active regulator gene based on
its regulatee set. For example consider SLT2, the MAP
kinase that activates the cell wall integrity pathway.
Our GO term derived annotation correctly predicts the
biological process which SLT2 regulates (cell wall or-
ganization and biogenesis), the molecular function of
the effectors (cell wall structural proteins and endopepti-
dases), the molecular mechanism of regulation (protein
kinase cascade) and associated, cross-talking modules
(mating, cell-cell fusion). Inspection of individual reg-
ulatee genes further supported this annotation.†† Most
importantly, Minreg found SLT2 to regulate RLM1, the
main transcription factor of the low-osmolarity cell-wall
integrity pathway. RLM1 is phosphorylated and activated
post-transcriptionally by SLT2 (an event that cannot
be observed in expression data), and, in turn, directly
mediates SLT2’s activatory effect. Indeed, several of
the aforementioned regulatees (PST1, CRH1, BOP1,
KTR2, GSC2, YPS3, PTP2) are known or putative
RLM1 targets and promoter sequence analysis of SLT2’s
regulatees indicated a highly significant Rlm1 motif
(P = 2.85e−05).

Our method can also correctly piece together the joint
regulation of a specific biological process by several
active regulators. For example, we detected several GATA
transcription factors (GAT1, UGA3, DAL80) that are
known to participate in the regulation of the nitrogen
starvation response. All three regulators were associated
with correct biological processes (‘nitrogen starvation
response’ for GAT1 and DAL80, ‘urea cycle’ and ‘ni-
trogen metabolism’ for UGA3). However, the molecular
functions they regulate only partially overlapped, high-
lighting their specific roles in a common response. Thus,
only DAL80 regulates allantoin pathway genes (DAL1, 2,
3 and 7, consistent with the specific effect of dal80-null

††Among the regulatees are known and putative structural cell wall proteins
(CIS3, SED1, TIR1, PIR3, PIR1, BOP1, PAU1, PAU6, PRY2, DAN1,
DAN3, TIR1, CRH1, PST1), cell wall enzymes (ASP3-2, BGL2), cell wall
aspartic endopeptidases (YPS3, YPS5, YPS6), enzymes and other genes
involved in cell wall biogenesis (MYO3, KTR2, KRT6, GSC2, CHS1) and
transcriptional regulators known to affect cell wall maintenance (RLM1,
ECM22, TUP1). Many of these genes were previously reported to be
transcriptionally regulated by various stress conditions, such as heat- and
cold-shock or changes in osmolarity. Most of the identified mating and cell-
cell fusion genes (AFR1, CDC1, PRM8, PRM5, PRM10, CMP2, SCW10,
PTP2, GIC2) are cell-wall related through biological process (budding,
stress) or localization (membrane or cell wall proteins).

mutant on allantoin catabolism (Chisholm and Cooper,
1982)), while only GAT1 regulates protein biosynthesis
and ribosome biogenesis, another molecular component
of the response. Our model also captured inter-regulator
links correctly: we found that DAL80 regulates GAT1,
in accordance with recent findings on exactly such direct
transcriptional regulation (Cunningham et al., 2000).

In certain cases, our method allows us to assign function
to previously uncharacterized regulators (Table 2), or to
expand the functional assignment of known ones. For
example, it associated the protein kinase YOL128C with
the GO terms ‘Nitrogen starvation response’, ‘response
to external stimulus’, and ‘cell cycle control’. Among
YOL128C’s specific regulatees we find numerous cell
cycle genes and regulators.‡‡ Thus, we postulate that
YOL128C acts as a cell cycle regulator in response to
starvation signals. This prediction is further supported by
YOL128C’s homology to the meiosis regulator GSK3.

In other cases, our functional assignment may be
misleading. For example, APG1, a signaling molecule
involved in induction of autophagy after nutrient limita-
tion, is strongly associated with ‘protein biosynthesis’ and
‘structural proteins of the ribosome’. Although APG1 is
not known to regulate this process, APG1 is regulated by
TOR proteins, which are known to regulate both ribosome
biogenesis and autophagy (Raught et al., 2001). Tor1p
itself is regulated post-transcriptionally, as reflected by its
unchanged expression in most of the arrays. In the absence
of a TOR signal in the data, we are capturing APG1 as
its ‘replacement’ in our model, reflecting co-regulation
rather than true regulation. Another TOR1 target TF,
GAT1, shows a similarly strong association to ‘protein
biosynthesis’ for the same reason. Note, that APG1’s
true role in autophagy is supported by other GO terms,
including O-glycosyl hydrolases, as well as by specific
autophagy genes (AUT2, AUT4) in its regulatee set.

Regulatory logic
Taking our approach a step further, we can identify the
logic (activation or inhibition) of regulation. As before,
rather than characterizing individual regulatory relations
we focus on the regulation of an entire process or response,
assuming that a given regulator exerts a coordinated
effect on a subset of regulatees. Utilizing the mechanistic
nature of our model we first annotate each individual
relation with one of 3 logic values: activation, inhibition
or unknown. Then, similarly to the method employed for
functional annotation, we look for subsets of regulatees
of the same GO class with a significant enrichment of a
particular logic. Full details of the method are available at
our website.

‡‡e.g., RSC3, CDC22, CDC25, NET1, KCC4, NIP29, DMC1, ULP1, PCL6,
TEM1, ELM1, CHS3, SPA2
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Table 1. Functional annotation of top-10 active regulators sorted by p-value of most significant GO term. For each active regulator, an existing annotation
(adapted from YPD) and known GO annotations (SGD) and keywords )YPD) are compared to significant GO terms within its regulatee set (derived GO
terms). Five of the derived annotations fully match known ones (Success), three match part of the known annotation (Partial Success), one is a novel functional
assignment for a previously uncharacterized TF (novel function) and one is completely inconsistent with known functions (no support)

Regulator
(# regula-
tees)

Concise Annotation SGD (S) GO annotations and
YPD (Y) keywords for biological
process

Minreg’s derived GO terms (score,
#genes)

Verdict

SST2 (99)
signaling

Negative regulator of the
mating pheromone signaling
pathway by binding to Gpa1p
and desensitizing it to
pheromone

Adaptation to mating signal (S,Y)
Signal transduction (S)

Mating (0,17) Signal transducer
(8.9e-05,7)

Success

MET28
(254) TF

Transcriptional activator of
sulfur amino acid metabolism

Sulfur amino acid biosynthesis (S)
Transcription regulation from Pol
II promotor (S,Y)

Amino acid metabolism (0,24)
Sulfur utilization (1.2e-05,6)

Success

GAT1
(125) TF

GATA zinc finger transcription
factor that activates genes
needed to use non-preferred
nitrogen sources

Amino-acid metabolism (Y) Other
metabolism (Y) Pol II transcription
(Y) Cell Stress (Y)

Protein biosynthesis (0,30) Amino
acid metabolism (0.000106,10)
Hydrolase, acting on carbon-nitrogen
(but not peptide) bonds in linear
amides (0.005208,3) Nitrogen
starvation response (0.008642,2)

Success

TEA1(141)
TF

Ty1 enhancer activator of the
Gal4p-type family of
DNA-binding proteins

Pol II transcription (Y) Amino acid metabolism (0,15)
Nitrogen metabolism (7.9e-05,5)
Urea cycle intermediate metabolism
(0.000679,4)

Novel
function

UGA3(73)
TF

Transcriptional activator for
4-aminobutyric acid (GABA)
catabolic genes

Amino acid metabolism (Y) Pol II
transcription (S,Y)

Amino acid biosynthesis (1e-06,8)
Urea cycle intermediate metabolism
(5.4e-05,4) Nitrogen metabolism
(7.8e-05,4)

Success

APG1
(168)
Signaling

Serine/threonine protein
kinase involved in the
induction of autophagy after
nutrient limitation

Autophagy (S) Meiosis (Y) Protein
degradation (Y) Vesicular transport
(Y)

Protein biosynthesis (0,29) Structural
protein of ribosome (0,24)
Hydrolase, hydrolyzing O-glycosyl
compounds (0.000288,6)

Partial
Success

SLT2
(245)
Signaling

Serine/threonine (MAP)
kinase involved in the cell wall
integrity (low-osmolarity)
pathway.

Signal transduction (S,Y) Cell
stress (Y) Cell wall maintenance
(Y) Protein amino acid
phosphorylation (S)

Cell wall structural protein (4e-06,6)
Cell wall organization and
biogenesis (5.4e-05,11) Protein
kinase cascade (0.017959,2)

Success

TPK1
(603)
Signaling

Catalytic subunit of
cAMP-dependent protein
kinase 1, protein kinase A or
PKA.

Signal transduction (Y) Aging (Y)
RAS protein signal transduction
(S) Pseudohyphal growth (S)

Ribosome biogenesis (7e-06,34)
Protein biosynthesis (3.3e-05,58)
Structural protein of ribosome
(0.000128,46)

Partial
Success

SIP4
(265) TF

Transcriptional activator of
gluconeogenic genes through
CSRE elements.

Transcription factor (S,Y) Structural protein of ribosome
(1.1e-05,28) Protein biosynthesis
(6.9e-05,31)

No
support

TEC1
(104) TF

Transcriptional activator,
involved with Ste12p in
pseudohyphal formation

Differentiation (Y) Pseudohyphal
growth (S)

Mating (3.2e-05,9) Pheromone
response (9.2e-05,6) Cell surface
receptor linked signal transduction
(0.013253,3)

Partial
Success

The regulation logic we unraveled was often consistent
with that reported in the literature, supporting the valid-
ity of our approach. For example, we found that MET28
activates the biological processes of ‘threonine and me-
thionine amino acid metabolism’ as well as ‘sulfur utiliza-
tion’. Similarly our method correctly predicted the acti-
vatory roles of SLT2 and UGA3. All these findings are
consistent with the known roles of these regulators (see
Table 1). Importantly, the same regulator may assume dif-

ferent logical roles with respect to different processes or
functions. For example, we found that GAT1 activates sev-
eral amino acid metabolic processes, but inhibits ‘protein
biosynthesis’ and ‘ribosome biogenesis’. This is fully con-
sistent with GAT1’s known role in mediating the nitro-
gen starvation response, which involves both increase in
amino acid metabolism and concomitant transcriptional
down-regulation of ribosomal proteins and other biosyn-
thetic genes (Kuruvilla et al., 2001).
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Table 2. Novel functional assignment for previously uncharacterized regulators with the Minreg algorithm. For each active regulator, significant GO terms
were derived based on their regulatee set. These served as a basis for functional annotation of the regulator. In some cases (e.g., YOL128C, see text), the
annotation was independently supported by external data

Regulator
(# regulates)

Concise annotation Significant GO terms (score, # genes) Suggested novel annotation

TEA1 (141)
TF

Ty1 enhancer activator of the
Gal4p-type family of
DNA-binding proteins

Amino acid metabolism (0,15) Nitrogen metabolism
(7.9e-05,5) Urea cycle intermediate metabolism
(0.000679,4)

Regulation of amino acid
biosynthesis (nitrogen
utilization?)

KIN1 (292)
Sig

Serine/threonine kinase. Null
mutant is viable and shows no
obvious phenotype

Protein biosynthesis (0.000182,32) Cytokinesis
(0.003699,6) Budding (0.005838,8) GTPase activator
(0.019626,3) Cell cycle (0.034484,18)

Cell cycle regulation
(budding and cytokinesis)

YOL128C
(170) Sig

Protein kinase. Unknown
biological process and
molecular function.

Cell communication (0.000362,14) Nitrogen
starvation response (0.000944,3) Response to
external stimulus (0.00426,8) Cell cycle control
(0.020422,5) Cell cycle (0.031847,12) Signal
transduction (0.034232,6)

Cell cycle regulation,
perhaps in response to
certain starvation signals

KIN82 (127)
Sig

Putative serine/threonine
protein kinase. Biological
process unknown.

Nucleotide metabolism (0.002014,3) Primary active
transporter (0.003399,6) Mating-type specific
transcriptional control (0.008909,2)

Potential participant in the
mating response pathway

Our derived logic is particularly useful for the annota-
tion of previously uncharacterized proteins. For example,
we found that YOL128C positively regulates the ‘nitrogen
starvation response’, while negatively regulating ‘cell cy-
cle control’. This indicates that the gene may regulate a
stress response by inhibiting cell cycle progression under
starvation conditions.

Regulatory logic must be interpreted with care, espe-
cially when the regulator is a signaling molecule. For ex-
ample, we found that SST2 positively regulates mating
and transmembrane receptors, while in fact it is a negative
regulator of both (Table 1). To explain this discrepancy,
note that SST2 is activated by STE12, the main mating
TF, along with most of the mating pathway genes, while it
exerts its inhibitory effect on the pathway only later, after
a time delay. Thus, rather than representing its own (nega-
tive) regulatory role, SST2 serves as a representative of its
fellow, co-activated mating genes. We believe that in such
cases (mostly involving signalling molecules), we cannot
reconstruct the regulatory logic from steady-state expres-
sion profiles. Still, we conclude that correct logic may of-
ten be derived by our analysis.

LOCATION ANALYSIS
A major advantage of our method is its applicability to
various data types. Clearly, learning regulation solely
from expression measurements is limited and much can be
gained by incorporating data from diverse sources. Here,
we demonstrate the flexibility of our framework by inte-
grating gene expression with gene binding data obtained
by genome-wide location analysis (Ren et al., 2000).
Genome-wide location analysis is a new high-throughput

experimental approach that measures the binding of
transcription factors to the promoter regions of an entire
genome. The results (‘binding data’) are given in the form
of a matrix: The entry Li, j represents the probability
that TF i binds to the regulatory region of gene j . We
devised a scoring function, Scoreb, that integrates both
expression and binding data, such that our model should
now explain both types of observations. Thus, evidence
of DNA binding of Y to X ’s promoter should raise the
information Y contains on X . We do this by extending
our alphabet and adding psuedo-samples for each TF with
available binding data. When i ∈ Y is shown to bind to X
the mutual information I (X, Y) gains an additive factor.
We control the weight of the binding location data relative
to the expression data through a parameter b.

As a test, we used the Spellman et al. (1998) cell-
cycle expression dataset (76 measurements of 800 genes in
synchronized yeast cultures) in combination with binding
data for 9 cell-cycle transcription factors (Simon et al.,
2001). In order to evaluate the contribution of the binding
information we compared a run using no binding data to
one incorporating such data with a low weight. When no
binding data was used, 20 active regulators were chosen:
11 are known cell-cycle regulators, 5 regulate the mating
and budding responses (both active in the dataset), 4
regulators are irrelevant, and 1 is unknown. Thus, as
before, Minreg performs well in identifying biologically
active regulators in the dataset. When the binding data was
included, we observed some additional improvements: 5
additional cell cycle regulators were identified (to a total
of 16), while 3 irrelevant ones were removed (leaving
only 1 such regulator). Importantly, the additional cell
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cycle regulators included both 3 genes for which binding
data existed and 2 genes for which it did not. Thus,
incorporating the binding data (even with a low weight)
provided global improvement to the model for genes both
with and without binding information.

DISCUSSION
In this paper we present a novel framework for inferring
regulatory relationships from genome wide measure-
ments, based on a fast algorithm that finds a small set
of global active regulators. The global and robust nature
of our model is demonstrated by our success in two
challenging tasks. First, we succeeded in predicting
significant portions of a microarray sample based solely
the measurements for a small number of genes. Second,
we associated comprehensive functional annotation
to regulators, using a fully automated method, whose
success we validated by detailed biological analysis. Our
analysis shows that most of our high scoring assignments
for known genes are correct, and that novel roles can
be assigned to previously uncharacterized transcription
factors and signaling proteins.

Our proposed method lies between molecular network
modelling (Friedman et al., 2000; Pe’er et al., 2001; Tanay
and Shamir, 2001) and global methods for the analysis
of gene expression (e.g., clustering (Eisen et al., 1998;
Sharan and Shamir, 2000) and PCA (Alter et al., 2000;
Holter et al., 2000)), and offers a number of advantages
over both approaches. On the one hand, while previous
network modelling approaches are computationally inten-
sive and can only handle a limited number of genes, our
Minreg algorithm is capable of quickly producing a bio-
logically significant regulation network over thousands of
genes, thus allowing it to scale to mammalian genomes.
Furthermore, Minreg’s robustness, speed and ease-of-use,
together with the GO-based annotation and visualization
framework, make it directly accessible to a wide com-
munity of biologists. On the other hand, the regulation
structure we learn goes beyond clustering and PCA by
capturing combinatorial logic and non-linear behaviour,
both of which are important in biological systems. Indeed,
Minreg’s predictive superiority over clustering was clearly
demonstrated.

Our framework can be extended in several directions:
First, we are further developing other scoring functions,
in order to treat other local models of regulation (e.g.,
continuous data) and additional sources of data (e.g.,
regulatory sequence motifs and mutational data). Second,
we are extending the analysis of regulation logic in order
to better model and capture combinatorial effects between
regulators. Finally, we wish to adapt methods developed
by Elidan et al. (2002) to identify the existence of ‘hidden
regulators’ and their regulatee sets. This would allow us
to better handle the frequent event of post-transcription

regulation on transcription factors themselves (e.g., Tor1),
and to enhance the quality of models reconstructed from
expression data.
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