
Resource

Data-Driven Phenotypic Dissection of AML Reveals

Progenitor-like Cells that Correlate with Prognosis
Graphical Abstract
Highlights
d PhenoGraph partitions high-dimensional single-cell data

into subpopulations

d PhenoGraph plus mass cytometry elucidate intra- and

intertumor heterogeneity in AML

d Surface phenotypes and regulatory intercellular signaling are

decoupled in leukemia

d Signaling-based definition of primitive cells correlates with

clinical outcome
Levine et al., 2015, Cell 162, 1–14
July 2, 2015 ª2015 Elsevier Inc.
http://dx.doi.org/10.1016/j.cell.2015.05.047
Authors

Jacob H. Levine, Erin F. Simonds,

Sean C. Bendall, ..., James R. Downing,

Dana Pe’er, Garry P. Nolan

Correspondence
dpeer@biology.columbia.edu (D.P.),
gnolan@stanford.edu (G.P.N.)

In Brief

The PhenoGraph algorithm robustly

partitions high-parameter single-cell data

into phenotypically distinct

subpopulations, aiding the study of

complex tissues and disease cohorts.

Applying PhenoGraph to a pediatric

acute myeloid leukemia dataset revealed

a recurrent population of leukemic cells

with variable cell surface markers, but

consistent signaling dynamics that

mimicked normal hematopoietic

progenitors.

mailto:dpeer@biology.columbia.edu
mailto:gnolan@stanford.edu
http://dx.doi.org/10.1016/j.cell.2015.05.047


Please cite this article in press as: Levine et al., Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with
Prognosis, Cell (2015), http://dx.doi.org/10.1016/j.cell.2015.05.047
Resource
Data-Driven Phenotypic Dissection of AML
Reveals Progenitor-like Cells
that Correlate with Prognosis
Jacob H. Levine,1,5 Erin F. Simonds,2,5 Sean C. Bendall,3,5 Kara L. Davis,2 El-ad D. Amir,1 Michelle D. Tadmor,1

Oren Litvin,1 Harris G. Fienberg,2 Astraea Jager,2 Eli R. Zunder,2 Rachel Finck,2 Amanda L. Gedman,4 Ina Radtke,4

James R. Downing,4 Dana Pe’er,1,6,* and Garry P. Nolan2,6,*
1Departments of Biological Sciences and Systems Biology, Columbia University, New York, NY 10027, USA
2Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
3Department of Pathology, Stanford University, Stanford, CA 94305, USA
4Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
5Co-first author
6Co-senior author

*Correspondence: dpeer@biology.columbia.edu (D.P.), gnolan@stanford.edu (G.P.N.)

http://dx.doi.org/10.1016/j.cell.2015.05.047
SUMMARY

Acute myeloid leukemia (AML) manifests as pheno-
typically and functionally diverse cells, often within
the same patient. Intratumor phenotypic and func-
tional heterogeneity have been linked primarily by
physical sorting experiments, which assume that
functionally distinct subpopulations can be pros-
pectively isolated by surface phenotypes. This
assumption has proven problematic, and we there-
fore developed a data-driven approach. Using
mass cytometry, we profiled surface and intracellular
signaling proteins simultaneously in millions of
healthy and leukemic cells. We developed Pheno-
Graph, which algorithmically defines phenotypes in
high-dimensional single-cell data. PhenoGraph re-
vealed that the surface phenotypes of leukemic
blasts do not necessarily reflect their intracellular
state. Using hematopoietic progenitors, we defined
a signaling-based measure of cellular phenotype,
which led to isolation of a gene expression signature
that was predictive of survival in independent co-
horts. This study presents new methods for large-
scale analysis of single-cell heterogeneity and dem-
onstrates their utility, yielding insights into AML
pathophysiology.
INTRODUCTION

Intratumor heterogeneity is accepted to be functionally and

clinically significant (Marusyk et al., 2012). Recent evidence

implies that the pathobiology of cancer results from the ac-

tions and interactions of diverse subpopulations within the tu-

mor. Thus, it is necessary to study tumors with methods that

preserve single-cell resolution. Emerging technologies such

as mass cytometry (Bendall et al., 2011) and single-cell
RNA-seq (Patel et al., 2014) have attained dramatic increases

in dimensionality and throughput, bringing unprecedented

resolution to the diversity of cellular states detectable in a

given tissue. Yet, to take advantage of these technological

gains, computational methods are required to robustly iden-

tify high-dimensional phenotypes and compare them within

and between individuals. Data-driven phenotypic dissection

may then form the basis for downstream analyses in which

subpopulations are isolated and compared, revealing the

role of population structure in complex systems such as

malignancies.

Intratumor heterogeneity is pervasive in acute myeloid leu-

kemia (AML), an aggressive liquid tumor of the bone marrow

characterized by an overwhelming abundance of poorly differ-

entiated myeloid cells (‘‘blasts’’). Arising from the disruption of

regulated myeloid differentiation (Tenen, 2003), AML results in

a disordered developmental hierarchy wherein leukemic stem

cells (LSCs) are capable of re-establishing the disease in

immunodeficient mice (Bonnet and Dick, 1997). LSCs were

first thought to be restricted to the same CD34+/CD38– cellular

compartment as normal hematopoietic stem cells (HSCs).

Subsequent studies have demonstrated that both CD38+

(Taussig et al., 2008) and CD34– (Taussig et al., 2010) AML

blasts can have LSC capacity, indicating that AML does not

follow the hierarchy of normal hematopoiesis. While AML

exhibits a differentiated hierarchy, no uniform phenotypic

identifier for LSCs has been found across patients (Eppert

et al., 2011).

Recognizing a disconnect between functionally primitive (e.g.,

tumor-initiating) cells associated with cancer persistence and

their surface phenotype, we simultaneously examined surface

antigen expression and regulatory signaling in individual AML

cells. We reasoned that intracellular signaling rather than surface

antigen profile more accurately represents the functional state of

a diseased cell. We used mass cytometry to measure protein

expression and activation state in millions of cells from AML pa-

tients and healthy bone marrow donors in 31 simultaneous di-

mensions. By measuring cells after ex vivo perturbations, we

further expanded the dimensionality of the data by revealing
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functional responses to environmental cues, reflecting the

broader cellular network beyond what can be inferred from the

unperturbed state (Irish et al., 2004). To avoid the pitfalls of

manual gating, we developed PhenoGraph, a robust computa-

tional method that partitions high-dimensional single-cell data

into subpopulations. Building on these subpopulations, we

developed additional methods to extract high-dimensional

signaling phenotypes and infer differences in functional potential

between subpopulations.

Our data-driven approach revealed two new perspectives

on the pathobiology of AML. First, we found that pediatric

AML draws from a surprisingly limited repertoire of surface

phenotypes, indicating some memory of normal myelopoiesis.

Despite genetic diversity, patterns of surface antigen expres-

sion followed trends in myeloid development, indicating limits

in the ability of leukemic cells to phenotypically diverge from

normal antigen profiles. Second, we found that the signaling

pattern of undifferentiated hematopoietic progenitors defined

a primitive signaling phenotype that was recapitulated in a ma-

jority of AML samples at varying frequencies. Functionally

primitive leukemic cells—defined by signaling—were not

linked to a consistent surface phenotype, including the stan-

dard HSC/LSC antigen profile (i.e., CD34+/CD38–), demon-

strating that surface antigens are decoupled from regulatory

networks in leukemia. The frequency of these functionally

primitive cells enabled isolation of a gene expression signature

that was enriched for stem cell annotations and formed a sig-

nificant predictor of overall survival in independent AML clin-

ical cohorts.

Taken together, we provide an alternative paradigm for identi-

fying primitive cancer cells that complements the immunophe-

notypic definitions of cancer stem cells traditionally used in

both AML and other systems. Moreover, this analysis framework

is robust and broadly applicable to the characterization of

subpopulation structure and function from single-cell data in a

wide range of systems.

RESULTS

High-Dimensional Single-Cell Profiling of Pediatric AML
by Mass Cytometry
We usedmass cytometry to obtain single-cell proteomic profiles

of cryopreserved bonemarrow aspirates from pediatric AML pa-

tients obtained at diagnosis (n = 16) and from healthy adult

donors (n = 5). We performed preliminary analysis to select 16

highly informative surface markers that efficiently captured the

intra- and intertumor heterogeneity in our cohort (Supplemental

Experimental Procedures). We added 14 antibody probes

against intracellular phosphorylation, thus allowing simulta-

neous measurement of surface phenotype and signaling

behavior in single cells. Each sample was subjected ex vivo to

a battery of short-term molecular perturbations (cytokines and

chemical inhibitors; Table S1) to elicit functionally relevant

signaling responses (Bendall et al., 2011; Irish et al., 2004).

The complete dataset contained over 15 million single cells

from 21 individuals measured in 31 simultaneous protein

epitope dimensions following exposure to one of 17 conditions

(Figure 1A).
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PhenoGraph Dissects Population Structure in High-
Dimensional Single-Cell Data
Complex tissues such as bone marrow are composed of bio-

logically meaningful subpopulations that are phenotypically

coherent despite the intrinsic variability that makes each cell

unique. A fundamental challenge is to establish themajor pheno-

types present, enabling an efficient and meaningful profile of the

tissue. While normal immune cells are typically binned into pre-

defined ‘‘landmark’’ cell subsets, this strategy is unsuitable for

less predictable or under-studied tissues such as cancer, where

new phenotypes have been shown to occur. Thus a data-driven,

unsupervised approach is needed that takes single-cell mea-

surements and returns a grouping of cells into distinct subpopu-

lations (i.e., clusters).

Dimensionality reduction techniques such as t-distributed sto-

chastic neighbor embedding (t-SNE) (Amir et al., 2013; Maaten

and Hinton, 2008) help visualize the data but do not explicitly

identify and partition cells into subpopulations. Moreover, not

all subpopulations are visually distinct when rendering high-

dimensional data in only two dimensions. We evaluated a num-

ber of leading methods for clustering fluorescence cytometry

data and found that these did not perform well for mass cytom-

etry data (Aghaeepour et al., 2013). Parametric methods (Pyne

et al., 2009) require strong assumptions about the high-dimen-

sional shape of cellular populations (e.g., ellipsoid, convex),

which are violated in single-cell data (Amir et al., 2013). Therefore

a non-parametric approach is needed, yet these currently use

unstable heuristics or suffer from computational inefficiency

and do not scale well to higher dimensions. We found that as

the number of dimensions increased, available methods

routinely failed to correctly identify known subsets, gave incon-

sistent results and were prohibitively slow (Supplemental Exper-

imental Procedures).

To robustly discover subpopulations in high-dimensional

single-cell data, we developed PhenoGraph. The parameters

measured for each cell define a point in high-dimensional space

wherein clustering is tantamount to finding dense regions. The

difficulty is that density detection in high dimensions is both

computationally hard and statistically unstable. Following our

previous work (Bendall et al., 2014), we model this high-dimen-

sional space using a nearest-neighbor graph. In this graph,

each cell is represented by a node and connected by a set of

edges to a neighborhood of its most similar cells. The graph

distills the high-dimensional distribution of single cells into a

compact, information-rich data structure that captures pheno-

typic relatedness and overcomes many pitfalls of standard

geometries.

After the nearest-neighbor graph is constructed, the problem

of density detection corresponds to the task of finding sets of

highly interconnected nodes (Figure 1B). To this end, we borrow

from the social network field, which has developed powerful al-

gorithms to partition large social networks into communities (Gir-

van and Newman, 2002). In our setting, communities represent

an accumulation of phenotypically similar cells that likely reflects

biologically meaningful phenotypic stability, thus revealing sta-

ble cellular states in the population. Partitioning the graph into

these communities produces a dissection of the population

into phenotypically coherent subpopulations. Community



Figure 1. Mass Cytometry Analysis of Signaling Responses in Pediatric Acute Myeloid Leukemia

(A) Summary of experimental design.

(B) PhenoGraphmethod for clustering high-dimensional single-cell data. Each node in the neighbor graph represents one of 500 random cells from healthy donor

H1 colored by CD34 expression. CD34+ HSPCs form a dense subgraph and are automatically assigned to a single subpopulation. See Figure S1 and Experi-

mental Procedures for more details on the PhenoGraph algorithm.

(C) HSPCs identified by PhenoGraph fromdonor H1. This subpopulation (red histograms) had aCD34+/CD45low phenotype relative to the other cells in the sample

(gray histograms). Each PhenoGraph subpopulation contained cells from all perturbations, permitting analysis of 224 signaling responses.

Please cite this article in press as: Levine et al., Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with
Prognosis, Cell (2015), http://dx.doi.org/10.1016/j.cell.2015.05.047
detection algorithms make no assumption about the size, num-

ber, or form of subpopulations (Fortunato, 2010). Importantly,

communities need not be convex, symmetric, or ellipsoid—as-

sumptions that are questionable for complex cellular popula-

tions. Efficient implementations can partition large graphs in

minimal computation time (Blondel et al., 2008).

A key step in the PhenoGraph method is converting the sin-

gle-cell data to a graph that faithfully represents the phenotypic
relationships between cells. Without a carefully constructed

graph, large populations can obscure rare ones (which may

be outnumbered by orders of magnitude). This problem is

further exacerbated by measurement noise that can spuriously

link unrelated parts of the graph. We addressed both problems

by constructing the graph in two iterations, using the Jaccard

similarity coefficient in the second iteration. Thus, the similarity

between cells is redefined by the number of shared neighbors
Cell 162, 1–14, July 2, 2015 ª2015 Elsevier Inc. 3



Figure 2. PhenoGraph Clustering Recapitulates Manual Assignments of Healthy Immune Cells

(A) viSNE (Amir et al., 2013) display of 30,000 cells from healthy BMMC benchmark data (Bendall et al., 2011). Cells are colored by cell-type assignments

established by manual gating (left) or subpopulations detected by PhenoGraph (right).

(B) Comparison of PhenoGraph to othermethods on the benchmark dataset, assessed for ability to recover themanual cell-type assignments quantified using the

F-measure statistic (Aghaeepour et al., 2013) and normalized mutual information (Figure S2C). Box plots (generated by MATLAB’s ‘‘boxplot’’ function) show the

distributions of F-measure computed from 50 random samples of 20,000 cells from the full dataset. PhenoGraph was tested with four different settings of its

single parameter k. Small interquartile ranges demonstrate that PhenoGraph accurately identifies the structure of the original population and is robust to random

subsampling and to choice of parameter k. Comparison on additional benchmark datasets is provided in Data S1G–S1I.
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following the first iteration (see Experimental Procedures and

Figure S1). The Jaccard metric exploits the local density at

each data point, removing spurious edges and strengthening

well-supported ones. The co-occurrence of rare cells in the

same phenotypic vicinity produces strongly interconnected

modules that distinguish these rare cells from noise. Overall,

the modular nature of the population is better revealed in the re-

sulting graph.

Healthy human bone marrow, which is rich in distinct and

well-characterized immunological cell types, presents a

benchmark case for phenotypic dissection. We tested Pheno-

Graph on three different mass cytometry datasets of healthy
4 Cell 162, 1–14, July 2, 2015 ª2015 Elsevier Inc.
human bone marrow (Bendall et al., 2011) and PhenoGraph

correctly identified labeled immune cell types, displaying supe-

rior precision, recall, and robustness against leading methods

(Aghaeepour et al., 2013) (Supplemental Experimental Proce-

dures and Figures 2 and S2A–S2C, and Data S1). PhenoGraph

runs efficiently on large datasets with substantially better

scaling than other methods (Figure S2D) and can process mil-

lions of cells with modest computational resources. Pheno-

Graph is able to resolve subpopulations as rare as 1/2,000

cells and is robust to random subsampling and to the choice

of the single user-defined parameter (Figures 2 and S2A–

S2C, and Data S1).



Figure 3. Intra- and Intertumor Heterogene-

ity Is Visible across the Phenotypic Land-

scape of Pediatric AML

(A) t-SNE landscape of average surface marker

expression of non-lymphoid PhenoGraph clusters

from the AML cohort. Each cluster is represented

by a single point scaled to represent its sample

proportion and in the main panel colored by pa-

tient identity. Normal bone marrow cell types (H1-

H5; blue) provide landmarks for interpreting the

phenotypes of the leukemic bonemarrow samples

(SJ01-SJ16). In additional panels each subpopu-

lation is colored bymedian expression of indicated

surface markers.

(B) PhenoGraph applied to cluster centroids

consolidated the 616 patient-level subpopulations

into 14 cohort-level metaclusters (MCs). Stacked

columns indicate the contribution made by each

patient to each MC.

(C) Average surface marker expression in each

MC, summarizing the major phenotypes observed

across the cohort. Columns match those repre-

sented in (B).

(D) Intrapatient heterogeneity for each patient

is represented graphically by a horizontal bar in

which segment lengths represent the proportion

of the patient assigned to each MC, colored

according to the accompanying legend (bottom

right). Hierarchical clustering of these patient de-

scriptions revealed that some patterns of intra-

patient heterogeneity were significantly correlated

with genetic biomarkers. (CBF, core binding tran-

scription factor translocation, p = 0.0014; NPM1,

nucleophosmin mutation, p = 0.0083; CN, cyto-

genetically normal, p = 0.018).
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Conformity of Phenotypes in the Landscape of AML
After validating PhenoGraph on healthy cells, we applied it to our

pediatric AML cohort. We ran PhenoGraph on each sample indi-

vidually, defining subpopulations based on the 16measured sur-

face markers. This yielded an average of 28 subpopulations per

sample (ranging between 17 and 48), totaling 616 subpopula-

tions across the entire cohort. Subpopulation size varied by or-

ders of magnitude, from 7 3 102 to 2 3 105 cells (or 0.06% to

20%of a sample). For each sample, we pooled data from all con-

ditions, enabling characterization of subpopulation-specific
Cell 16
signaling patterns. Each resulting sub-

population was a multifaceted data ob-

ject, containing information about surface

phenotypes, as well as the response of

each signaling marker to each molecular

perturbation (Figure 1C).

Each leukemia presented a diversity of

surface phenotypes defined by distinct

combinations of marker expression

(Data S2A). We sought an overview of

the similarities and differences between

detected subpopulations across patients

that could reveal larger trends and enable

direct comparison of all subpopulations
simultaneously. To do so, we began by representing each Phe-

noGraph subpopulation by its surface marker centroid. We

then used t-SNE (Maaten and Hinton, 2008), to reduce the 16-

dimensional data to 2 dimensions, following an approach previ-

ously taken with cytometry data (Amir et al., 2013). The resulting

2D landscape provided an intuitive and comprehensive overview

of the major phenotypes present in the cohort and also demon-

strated the extent of intra- and intertumoral heterogeneity or sim-

ilarity (Figure 3A). Subpopulations from healthy and leukemic

samples were mapped simultaneously so the healthy cell types
2, 1–14, July 2, 2015 ª2015 Elsevier Inc. 5
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could act as ‘‘landmarks’’ to aid interpretation of the leukemic

subpopulations. Normal lymphoid cell types were excluded

from the landscape (Supplemental Experimental Procedures)

to focus on primitive and myeloid phenotypes, ‘‘zooming in’’

on the myeloid lineages relevant to AML.

The AML cohort landscape organized the subpopulations into

regions of phenotypic similarity, distinguished by particular

marker combinations. Inspecting the structure of this landscape,

we found that the vertical axis largely mimicked trends in normal

myeloid development with primitive markers expressed toward

the top and more mature markers toward the bottom (Figure 3A

and Data S2B and S2C). Healthy CD34+/CD38mid hematopoietic

stem and progenitor cells (HSPCs) provided the most primitive

landmark, located at the top of the landscape plot. AML subpop-

ulations in this region displayed surface profiles that resembled

the HSPC phenotype. At the bottom of the landscape, the

CD11b+ healthy monocytes served as a landmark for differenti-

ated myeloid cells, representing full maturation not observed in

the leukemic samples. Between these two poles, other devel-

oping myeloid antigens—CD38, CD117, CD123, CD33—peaked

and subsided, thus the vertical axis of the landscape resembled

normal myeloid development (Data S2B and S2C). The adher-

ence of AML phenotypes to this axis suggests that myeloid

developmental programs continue to influence the phenotypic

diversity of leukemic cells even after malignant transformation.

The patterns of intratumor heterogeneity support this view, as

most patients contained a mixture of ‘‘primitive’’ and ‘‘mature’’

surface phenotypes (Data S2D).

Metaclusters Highlight Interpatient Similarity
Despite the widespread phenotypic diversity observed within

patients (Data S2E), the cohort landscape revealed a surprising

conformity when comparing AML subpopulations across

different patients. Multiple patients occupied each phenotypic

region in the landscape and no patient presented a substantially

unique phenotype, suggesting that subpopulations could be

matched across patients, cohort-wide. To examine these

cohort-level phenotypes further, we pursued a metaclustering

approach in which subpopulations from each patient were

merged by a secondary clustering analysis (Pyne et al., 2009).

We represented each AML subpopulation by its centroid and

used PhenoGraph to group centroids into metaclusters (MCs;

see Experimental Proceduresand Figure S3A), identifying 14

MCs that delineated the major cohort phenotypes (Figure 3B-

C). Each MC had a mixed patient composition, containing sub-

populations from at least 2 patients and a median of 11 patients.

To evaluate the robustness of these MCs, we performed

cross-validation and observed high reproducibility (Figure S3B

and Supplemental Experimental Procedures). Subsequently,

we used the healthy samples (H1–H5) to interpret the MCs by

systematically matching cells from healthy bone marrow with

theMC surfacemarker profiles (Supplemental Experimental Pro-

cedures). Several MCs corresponded clearly to non-malignant

cell types (constituting a small proportion of each leukemic sam-

ple), while the remaining MCs represented presumptive blast

phenotypes. We determined that 7/14 MCs represented malig-

nant expansions (MC 1–4, 6, 7, 13), based on the relative fre-

quency of healthy cognates (Figure 3B) and surface marker pro-
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files (Figure 3C). As expected from the histopathology of AML,

the blast phenotypes resembled normal primitive and progenitor

phenotypes with a myeloid bias. Each malignant phenotype was

detected in multiple patients, but only MC13 was detected in all

patients. The CD64+/HLA-DR+ expression profile of MC13 indi-

cates an immature monocytic phenotype that was often drasti-

cally more abundant in AML than in healthy samples. Occupancy

in MC13 varied substantially between patients (0.8%–77%),

consistent with a model of AML as a block in myeloid differenti-

ation with variable severity (Tenen, 2003).

Samples were evaluated quantitatively in terms of their pro-

portional occupancies of the 14 MCs (Figure 3D). As expected,

the five healthy samples were similar to each other and distinct

from AML. Interestingly, MC occupancies organized the AML

samples into subgroups that were significantly correlated with

other molecular biomarkers (Figure 3D). For example, patients

with core binding factor translocation [t(8;21) or inv(16)] had large

numbers of cells in MC4 and MC13, placing them in a group en-

riched for this clinical annotation (p = 0.0014, hypergeometric

test). Patients with nucleophosmin mutations displayed a

different phenotypic distribution—occupancy of MC2, MC7

and MC13—forming another distinct patient group (p =

0.0083). Finally, the three patients characterized by large occu-

pancies of MC1 were all cytogenetically normal (p = 0.018).

Taken together, each leukemia, although unique, appears to

be formed from a limited palette of possible phenotypes.

Remarkably, the specific composition and relative proportion

of MCs was determined in part by genetic background, demon-

strating a genetic influence on the distribution of phenotypes

observed in each patient.

Signaling Phenotypes Define Functionally Distinct
Subpopulations
Surface markers have become standard tools for clinical diag-

nosis and monitoring of blood neoplasia (Craig and Foon,

2008). In normal bone marrow, cell surface markers identify

stem and progenitor cell populations with distinct lineage poten-

tial and intracellular signaling behaviors (Bendall et al., 2011).

However, in AML, no surface marker phenotype has been estab-

lished that consistently distinguishes the more primitive blasts

universally across patients (Eppert et al., 2011; Taussig et al.,

2008; 2010).

We hypothesized that intracellular signaling might be a better

surrogate of the underlying functional potential and therefore

included molecular perturbations known to elicit signaling re-

sponses that are functionally relevant to normal and malignant

hematopoiesis (Table S1). Intracellular signaling markers were

selected to represent pathways known to be functionally and

clinically relevant in AML, including JAK/STAT, PI3K/AKT, and

MAPK. The response of each of 14 signaling proteins to each

of 16 perturbations revealed a facet of the underlying network

that controls cellular function, resulting in 224 signaling re-

sponses per subpopulation. We used these data to build a

quantitative signaling phenotype representing the structure

and function of the intracellular signaling network in each

subpopulation.

To fully harness the single-cell nature of our data, we devel-

oped SARA (Statistical Analysis of Perturbation Response; see



Figure 4. Analysis of Perturbation

Response Generates Signaling Phenotypes

(A) An illustration depicting how SARA uses the

single-cell distributions together with permutation

testing to score signaling response.

(B) SARA, applied to every signaling molecule for

every perturbation in every subpopulation, pro-

duced�138,000 responses, which were compiled

into 224-dimensional signaling phenotypes (col-

umns) for each of the 616 subpopulations (rows).

Rows and columns ordered by agglomerative

linkage.

(C) Hierarchical clustering of four developmentally

relevant signaling responses in the healthy sam-

ples (top) identified patterns of primitive signaling

(PS) and mature signaling (MS) correlated with

expression of CD34 and CD45, in the healthy

samples. Hierarchical clustering of the same

signaling responses in the AML samples (bottom)

identified a cluster of subpopulations that reca-

pitulated the primitive signaling pattern, but lacked

a consistent surface phenotype. Color scales are

as in Figures 3A and 4A.

(D) Box plots comparing CD34 expression be-

tween signaling clusters identified in (C). CD34

expression was significantly associated with

primitive signaling only in the healthy samples. The

box plots are generated by MATLAB’s ‘‘boxplot’’

function, using default settings.
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Experimental Procedures and Figure 4A). SARA examines the

entire single-cell distribution of phosphoprotein intensities to

detect meaningful changes between two conditions. SARA in-

corporates a measure of statistical significance through permu-

tation testing, producing estimates that are sensitive to small

responsive subsets yet robust to sampling error and noise.

Together, PhenoGraph and SARA distilled high-dimensional

data for 15 million cells into a single matrix of subpopulations

and their signaling phenotypes (Figure 4B), revealing a rich vari-

ety of signaling potential across subpopulations.

Within the healthy samples, surface and signaling phenotypes

were tightly coupled, consistent with previous reports (Bendall

et al., 2011; Gibbs et al., 2011). Hierarchical clustering of a

curated set of progenitor- and lineage-associated signaling fea-

tures produced a complete separation of primitive (CD34+) and

mature (CD34–) cell types among the healthy samples (Figures

4C and 4D; p = 2.0 3 10�52, Student’s t test). In the leukemic

samples, the same procedure produced a similar stratification

of signaling phenotypes, including a set of subpopulations that
Cell 16
recapitulate the signaling profile of

healthy primitive cells. However, this

stratification of primitive (PS) and mature

(MS) signaling had no association with

CD34 expression (p = 0.83, Student’s t

test; Figure 4D). Decoupling of surface

and signaling phenotypes in the leukemic

samples is consistent with evidence that

surface markers are unreliable proxies

of cellular function in AML (Eppert et al.,

2011; Gibbs et al., 2011; Taussig et al.,
2008; 2010). We therefore sought to use signaling phenotypes

rather than surface phenotypes as alternative proxies for func-

tional state.

Classification of Leukemic Maturity by Signaling
Phenotype
PhenoGraph and SARA yielded two alternative representations

for each subpopulation: a 16-dimensional surface phenotype

and a 224-dimensional signaling phenotype (Figure 5A). We

asked if there was a characteristic signaling phenotype of undif-

ferentiated healthy cells that could act as a high-dimensional

generalization of the CD34/CD38 surface phenotype, which

would more faithfully capture the functional aspect of the primi-

tive state.

Harnessing the tight coupling between surface and signaling

in the healthy system, we grounded our analysis in a character-

ization of healthy subpopulations. PhenoGraph metaclustering

of the five normal marrow samples identified 20 healthy cell

types (Figure 5B and Data S3A). Using ANOVA, we examined
2, 1–14, July 2, 2015 ª2015 Elsevier Inc. 7



Figure 5. Data-Driven Scoring of Leukemic Maturity by Either Surface or Signaling Phenotype

(A) Each PhenoGraph subpopulation has two alternative phenotypes: surface and signaling.

(B) Normal cell types identified in healthy samples display characteristic surface and signaling phenotypes, represented by heat maps. Each row represents the

indicated cell type (Mono = Monocyte). Surface markers (left) and signaling responses (right) are colored as in (A). Signaling responses are ordered from left to

right by decreasing significance of association with cell type (Table S2).

(C) The same t-SNE map presented in Figure 3A, labeled by results of PhenoGraph classification. Colors depict whether a subpopulation was assigned to either,

both, or neither primitive class as determined by signaling (IFPC) or surface (SDPC). (see Figures S4A and S4B).

(D) Frequencies of primitive cells: %IFPC or %SDPC for each patient sample.
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their signaling profiles for responses that were consistently asso-

ciated with particular cell types and found that a large number

of signaling responses had significant associations with cell

type (Table S2). Many of these were induction responses

specific to undifferentiated cells, including G-CSF/pSTAT3
8 Cell 162, 1–14, July 2, 2015 ª2015 Elsevier Inc.
(Q = 6.4 3 10�42) and SCF/pAKT (Q = 1.0 3 10�9), as previ-

ously reported (Gibbs et al., 2011).

We then asked whether cell types could be distinguished

entirely by their signaling phenotypes, rendering surface pheno-

types dispensable for characterizing the subpopulations. To test
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this, we developed a framework for classifying subpopulations

based on either their surface or signaling phenotypes. We

derived an extension of PhenoGraph that uses the same

graph-basedmodel but assigns observations to classes accord-

ing to user-defined training examples (‘‘PhenoGraph classifica-

tion’’; see Experimental Procedures and Figure S4A). First, we

verified that PhenoGraph was capable of recovering ‘‘held out’’

healthy cell-type labels using a graph derived from surface phe-

notypes. Performance was evaluated using the cross-validated

correct classification rate (CCR) and indeed, PhenoGraph

correctly recovered 99.42% of the cell-type labels in this test.

Next, we constructed a graph based only on similarity among

signaling phenotypes, withholding all surface phenotype infor-

mation. Using this graph, PhenoGraph’s ability to recover the

surface-defined labels was modestly diminished (CCR = 94%)

due to errors distinguishing mature cell types for which charac-

teristic signaling phenotypes had not been measured. Focusing

on the task of distinguishing themost primitive cells (i.e., HSPCs)

from the mature cell types, we found that signaling phenotypes

performed equivalently to surface phenotypes (CCR = 99.85%;

see Experimental Procedures).

Considering that signaling phenotypes were sufficient to

distinguish healthy primitive cells, we hypothesized that the

functional state of AML subpopulations could be inferred by

direct examination of their signaling phenotypes. With the

healthy subpopulations as training examples, we used Pheno-

Graph to classify the AML subpopulations, producing an esti-

mate of functional state for each subpopulation (e.g., HSPC-

like or monocyte-like). Because there were two alternative

phenotypes for each subpopulation—surface and signaling—

we performed two separate classifications (Figure S4B). The

result was a data-driven assessment of each AML subpopula-

tion, indicating which healthy cell type it resembled in its surface

marker expression on one hand and in its high-dimensional

signaling phenotype on the other.

Inferred Functional Maturity Diverges from Surface
Phenotype in AML
The classifiers identified primitive subpopulations within each

patient sample, reflecting the heterogeneous nature of the sam-

ples. At the cohort level, each classifier labeled �25% of sub-

populations as primitive, but only 16% were identified as primi-

tive by both classifiers simultaneously (Figure 5C). In many

cases (32/99), subpopulations with primitive surface marker

phenotypes exhibited signaling that resembled mature cells.

Conversely, many subpopulations displayed primitive signaling

in the absence of primitive surface marker expression (51/118).

We denote cells labeled primitive by the surface phenotype

classifier as Surface-Defined Primitive Cells (SDPCs) and cells

labeled primitive by the signaling classifier as Inferred Function-

ally Primitive Cells (IFPCs). For each patient, the sample propor-

tion assigned to each of these labels produced two alternative

measures of maturity (%SDPC or %IFPC; Figure 5D and Table

S2). This is similar to summarizing the degree of maturation by

the enumeration of CD34+/CD45low blasts, a practice often

used in the clinical diagnosis and classification of leukemias

(Craig and Foon, 2008). Indeed, we found that %SDPC was

highly correlated with this standard manual gating procedure
(Pearson’s r = 0.96, p = 4.4 3 10�9; Figure S4C and Data

S3B). Conversely, %SDPC was only weakly correlated with %

IFPC (Pearson’s r = 0.5; p = 0.05), demonstrating that these

two metrics are not redundant in AML. Instead, examination of

signaling phenotypes in AML often revealed a different degree

of maturation than was indicated by the surface phenotype.

We noted that the degree of discordance between IFPC and

SDPC assignments was not constant across patients, indicating

that the tendency of IFPCs to express canonical LSC markers

was itself a variable patient feature. For example, the IFPCs in

patient SJ05 were well represented by the CD34+/CD38mid

phenotype (Figure 6, left column). In other cases, IFPCs were

found exclusively in the CD34– fraction, even when CD34+ blasts

were abundant (e.g., SJ16).

Differences in signaling patterns between primitive and mature

leukemic subpopulations reveal the responses most important

for these classifications (Figure 6; see Figure S5A for all patients).

We used canonical variates analysis (Supplemental Experimental

Procedures for details) to quantify this importance, finding

that the majority of discriminative power could be attributed to 5

responses: G-CSF/pSTAT3, SCF/pAkt, G-CSF/pSTAT5,

Flt3-L/pAkt, and IL-10/pSTAT3 (Figure S5B and Table S2).

Primitive subpopulations displayed strong activation in the first

four of these responses,whichhaveall beenpreviously implicated

in thebiologyofHSPCs (Gibbsetal., 2011) and in thepathobiology

of AML (Irish et al., 2004). Additionally, attenuation of the IL-10/

pSTAT3 response—a response exhibited by mature immune

cells—was also a distinctive feature of IFPCs. Other signaling re-

sponses were strongly associated with primitive subpopulations

despite being less powerful for classification (Table S2).

Evaluating the ability of surface markers to identify IFPCs, it

was clear that no surface phenotype could be applied universally

across patients (Figure 6 and Figure S5A). CD34 was often an

important label for IFPCs, but in a subset of cases. For example,

CD34 marked both primitive and mature subpopulations in pa-

tient SJ03, where HLA-DR was a more specific marker of IFPCs

(p = 0.0007 versus p = 0.003, Student’s t test). In SJ05, where

CD34 expression was tightly associated with IFPCs (p = 7.4 3

10�8), the multiparameter surface measurements revealed that

CD123 was also an important marker (p = 4.4 3 10�6), whereas

CD123 did not identify IFPCs in SJ03. Patient SJ11 lacked CD34

expression almost entirely, as expected for this nucleophosmin-

mutated case (Taussig et al., 2010). In this patient, IFPCs were

distinctly labeled by elevated expression of CD47 (p = 7.1 3

10�6) and CD123 (p = 3.4 3 10�5). Surprisingly, we found that

CD34 expression can be strongly anti-correlated with primitive

signaling, as in patient SJ16, where CD34 expression was higher

in mature-signaling cells (p = 0.0027) and IFPCs were marked

instead by elevated expression of CD117 (p = 0.0026). Complete

median surface marker profiles for IFPC and non-IFPC subpop-

ulations are displayed in heat maps for each patient in Figures 6

and S5A.

Primitive Signaling Phenotype Identifies Clinically
Prognostic Gene Expression Signature
Ultimately, the importance of intratumor heterogeneity depends

on whether functionally distinct subpopulations influence clinical

outcomes, especially patient survival (Pearce et al., 2006). While
Cell 162, 1–14, July 2, 2015 ª2015 Elsevier Inc. 9



Figure 6. Leukemic Subpopulations with Primitive Signaling Exhibit Diverse Surface Phenotypes

Detailed surface and signaling phenotypes of IFPC subpopulations in four representative samples. Each row represents a particular patient using a number of

visuals. Biaxial dot plots (left) show the CD34/CD38 phenotype of IFPCs (red) in each sample. IFPCs displayed the canonical primitive CD34+/CD38mid phenotype

in only a subset of samples. The IFPCs displayed using the t-SNE landscape of Figure 3A (center; IFPCs in green, non-IFPCs inmaroon, healthy cells in gray). Heat

maps (right) display the signaling and surface phenotypes of all non-lymphoid subpopulations of each sample, stratified by IFPC classification (indicated by green

and maroon bars). Signaling responses are ordered as in Figure 5B. Signaling responses marked in bold with vertical lines were especially distinctive of IFPCs

(Main Text and Supplemental Experimental Procedures). See Figure S5A for all patients not shown here.
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our cohort was too small for survival analysis, genome-wide

expression arrays for 15 of our 16 patients were available from

a previous study (Radtke et al., 2009), providing a link to larger
10 Cell 162, 1–14, July 2, 2015 ª2015 Elsevier Inc.
cohorts for which gene expression and survival data were avail-

able. Because our samples displayed a wide range of IFPC fre-

quencies (Figure 5D), we reasoned that this variance could be



Figure 7. Frequency of IFPCs Identifies a

Gene Expression Signature that Predicts

Clinical Outcome

(A) IFPC gene signature identified by deconvolu-

tion of bulk expression data using IFPC frequency.

The heat map displays expression of each gene in

the bulk measurements. Rows are alphabetically

ordered; columns are ordered by the mean

expression of the genes in the signature.

(B) The mean of the IFPC signature forms a clini-

cally significant prognostic indicator of overall

survival in 2 independent cohorts of adult AML

(Metzeler et al., 2008). Patients were assigned to

groups for Kaplan-Meier analysis based on

whether their IFPC expression score was below or

above the cohort median. p values obtained from

log-rank test.
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exploited to identify genes whose expression covaried with

these frequencies by in silico expression deconvolution (Lu

et al., 2003). As IFPC frequency varies across samples, genes

expressed specifically by these cells should be detectably

more or less abundant in the bulk gene expression measure-

ments, thereby providing an estimate of %IFPC in independent

samples from the level of this gene signature, measured in bulk.

We developed a deconvolution method based on linear

regression and cross-validation and used both %IFPC and %

SDPC to produce two gene expression signatures, containing

42 and 49 genes, respectively (see Experimental Procedures,

Figure 7A and Table S3). To characterize these signatures, we

queried the Molecular Signatures Database (Subramanian

et al., 2005) for significant annotations overlapping with each.

The SDPC signature—which contained CD34 among its top-

ranked genes—was highly enriched for gene sets associated

specifically with CD34+ AML (Table S3). Alternatively, the most

significant annotation for the IFPC signature was a set of genes

upregulated in CD133+ hematopoietic stem cells (Jaatinen et al.,

2006) (Q = 5.5 3 10�8; Table S3). CD133 marks healthy stem

cells that are possibly more primitive than CD34+ HSCs (Gal-
Cell 162
lacher et al., 2000) and has been linked

to cancer stem cells in multiple cancer

types (Collins et al., 2005; O’Brien et al.,

2007). The mean expression of each

signature was highly correlated with its

corresponding subpopulation frequency

(Figure S6A), indicating that the signature

mean was an appropriate proxy for these

frequencies in independent cohorts.

We tested our signatures in two inde-

pendent cohorts of adult AML for which

both gene expression and survival data

were available (Metzeler et al., 2008).

While the SDPC signature was associ-

ated with survival in one cohort, this was

not replicated in the other (Figure S6B).

Alternatively, the IFPC signature was pre-

dictive of poor survival in both cohorts

(Figure 7B). Combining the data into a
single, large cohort (n = 242), the IFPC signature was highly pre-

dictive of poor survival (p = 4.83 10�6, Hazard Ratio [HR] = 3.4),

while the SDPC signature formed a less significant predictor (p =

0.005, HR = 1.6). To test these signatures against each other, we

placed them together in a bivariate Cox regression model. In

this setting, the IFPC signature retained its predictive power

(p = 8.2 3 10�5, HR = 3.0), while the SDPC signature became

completely uninformative for survival (p = 0.29, HR = 1.2).

We examined the relationship between the IFPC signature and

three signatures reported by (Eppert et al., 2011), which were

also developed to capture primitive gene expression programs

in AML. For each Eppert signature, we were able to reproduce

the significant correlation with survival in the data from Metzeler

et al. (2008). To assess the prognostic value of the IFPC signa-

ture when these other signatures were known, we tested three

bivariate Cox regression models in which each of the Eppert sig-

natures was used as a predictor alongside the IFPC signature

(Supplemental Experimental Procedures). The IFPC signature

proved to be a stronger predictor of survival than any of the Ep-

pert signatures (Table S3). In each model, the IFPC signature re-

tained significance (p < 0.005), while each Eppert signature
, 1–14, July 2, 2015 ª2015 Elsevier Inc. 11
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became statistically insignificant (p > 0.07). In a multivariate Cox

regression model containing all signatures (IFPC, SDPC, and the

Eppert signatures), only the IFPC signature retained significance

(p = 0.012, HR = 2.4; Table S3).

DISCUSSION

Tissues are complex populations of cells residing in phenotypi-

cally and functionally diverse states. A key challenge is to dissect

the high-dimensional structure of these complex populations

into components that can be studied individually and collec-

tively. In AML, where the relationship between phenotypic and

functional heterogeneity has been elusive, we usedmass cytom-

etry to profile both surface and signaling features simultaneously

in millions of leukemic cells.

PhenoGraph revealed a phenotypic landscape of a pediatric

AML cohort, providing a comprehensive overview of the major

phenotypes and an explicit characterization of intra- and intertu-

mor heterogeneity. The landscape resembled normal myeloid

development, but with aberrations resulting from malignant

accumulation of cells and neoplastic divergence from normal

phenotypes. However, this AML landscape was surprisingly

restricted to a limited repertoire of 14 MCs, each defined by

distinct surface marker patterns. Importantly, these MCs were

shared among a wide variety of AML genetic subtypes, yet ge-

netics had a detectable influence on the phenotypic composition

of each patient. Together these observations suggest the persis-

tence of developmental mechanisms that control the available

repertoire of phenotypes even in the context of genetic dysregu-

lation associated with cancer.

We used mass cytometry in conjunction with molecular inter-

rogation to construct signaling phenotypes that reflect differ-

ences in functional potential between subpopulations. Surface

and signaling phenotypes displayed tight coregulation in healthy

samples, whereas this coregulation was broken in AML. This

substantial decoupling of surface and signaling phenotypes in

the leukemic cells renders the surface markers typically used

in diagnostics unreliable proxies of cellular state and function

in AML.

Our demonstration that surface markers are unreliable re-

porters of signaling state in AML sheds light on the controversies

surrounding the LSC model, which rely on manual gating and

surface marker expression to define subpopulations. To avoid

the assumption that surfacemarkers indicate the functional state

of leukemic cells, we used healthy HSPCs to define a primitive

signaling phenotype, reflecting the functional state of undifferen-

tiated hematopoietic cells. We found that the primitive signaling

phenotype was present in most AML samples and could be used

to identify intratumor functional heterogeneity. Leukemic cells

displaying primitive signaling (Inferred Functionally Primitive

Cells [IFPCs]), were thereby identified using data-driven tech-

niques and without reference to surface phenotypes.

The IFPC phenotype was found to occur in most AML samples

at varying frequencies and with variable surface phenotypes,

often with low or absent CD34 expression. While no universal

surface phenotype captured IFPCs across patients, within

each patient IFPCs displayed homogeneous expression in

certain markers—markers whose importance was neither uni-
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versal nor unique. Our results suggest that a subset of leukemic

cells maintains a conserved, progenitor-like signaling program

that phenocopies the regulatory state of normal HSPCs, regard-

less of surface marker expression and underlying genetic

mutations.

Deconvolution analysis of microarray data identified a gene

expression signature associated with the IFPC phenotype that

can serve as a proxy for the frequency of this phenotype in a

given sample. This gene expression signature was enriched for

annotations related to primitive hematopoietic cells and included

genes—such as PROM1, SOCS2, and CD96—that have been

previously associated with healthy and/or leukemic stem cells

(Toren et al., 2005). Importantly, this gene expression signature

predicted survival in independent AML patient cohorts, suggest-

ing that this signaling-based definition describes a clinically rele-

vant cellular phenotype.

It was previously demonstrated (Eppert et al., 2011) that func-

tional characterization by physical sorting and xenotransplanta-

tion could be used to identify genes correlated with patient sur-

vival. Our analysis is conceptually related, but instead of

differential expression between sorted cells, we used in silico de-

convolution to identify genes, based on the measured cellular

frequencies of the IFPC phenotype. Ultimately, both approaches

seek to identify primitive cells by means that emphasize func-

tional over surface phenotypes, and to test whether the predom-

inance of primitive cells—approximated by expression of a gene

signature—is associated with poor survival.

Our findings were enabled by computational dissection of

intratumor heterogeneity. PhenoGraph creates a graph-based

model of cellular phenotypes, similar to that used previously to

identify developmental trajectories (Bendall et al., 2014) and in

this case defining phenotypes as communities of densely inter-

connected nodes. PhenoGraph is general and highly scalable

both in terms of dimensionality and sample size, making it suit-

able in a wide range of settings for which single-cell population

structure is of interest, including other cancers or healthy tissues,

and for use with other emerging single-cell technologies such as

single-cell RNA-seq. Many such cases are presented by the

tumor microenvironment, including drug-resistant tumor sub-

populations, infiltrating immune cells, and reactive stromal com-

ponents. These methods are also applicable to healthy tissues,

within which a large diversity of cell types remains uncharted.

Our signaling-based definition of primitive cells warrants

further investigation as it may indicate pathways that influence

the maturation of leukemic cells and could be leveraged thera-

peutically to block survival or direct differentiation. More broadly,

this molecular interrogation approach could be used to charac-

terize primitive cells in any cancer where a cognate healthy prim-

itive cell type is available to serve as a reference point. This study

provides a framework for interrogating and discovering other

features of cell biology that define network response states

and their associated mechanistic or clinical outcomes.
EXPERIMENTAL PROCEDURES

Patient Samples

Sixteen (16) cryopreserved diagnostic bone marrow mononuclear cells

(BMMC) of pediatric AML patients were supplied by St. Jude Children’s



Please cite this article in press as: Levine et al., Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with
Prognosis, Cell (2015), http://dx.doi.org/10.1016/j.cell.2015.05.047
Hospital (Memphis, TN) (Table S1). For healthy adult controls, cryopreserved

healthy BMMCs were purchased from AllCells (Emeryville, CA). All human

samples were obtained with informed consent in compliance with IRB-

approved protocols.

Mass Cytometry Analysis

Mass cytometry measurement and data pre-processing was performed as

previously described (Bendall et al., 2011; Finck et al., 2013; Zunder et al.,

2015). Surface marker expression was normalized based on the maximum in-

tensity observed in healthy samples, determined as the 99.5th percentile of the

�3M healthy bone marrow cells. Data from all samples were divided by these

maximum values, yielding expression values that can be interpreted as x-fold

of the maximum observed in healthy. Mass cytometry data are publicly avail-

able at http://cytobank.org/nolanlab/reports. See Supplemental Experimental

Procedures for full details.

Microarray Data and Normalization

Matched Affymetrix U133A gene expression arrays for 15 pediatric AML

patients (Radtke et al., 2009) were downloaded from the Gene Expression

Omnibus (GEO: GSE14471). Gene expression and survival data for 242 cyto-

genetically normal adult AML patients from two independent cohorts (Metzeler

et al., 2008) were downloaded from the Gene Expression Omnibus (GEO:

GSE12417). All microarray data were processed and normalized as described

previously (Akavia et al., 2010).

The PhenoGraph Algorithm

PhenoGraph takes as input a matrix of N single-cell measurements and parti-

tions them into subpopulations by clustering a graph that represents their

phenotypic similarity. PhenoGraph builds this graph in two steps. First, it finds

the k nearest neighbors for each cell (using Euclidean distance), resulting in N

sets of k-neighborhoods. Second, it operates on these sets to build a weighted

graph such that the weight between nodes scales with the number of neigh-

bors they share. The Louvain community detection method (Blondel et al.,

2008) is then used to find a partition of the graph that maximizes modularity.

See Supplemental Experimental Procedures for full details on the method

and an assessment of its accuracy, efficiency, and robustness compared to

other methods. Source code for PhenoGraph is available online for MATLAB

and Python (www.c2b2.columbia.edu/danapeerlab/html/software.html).

PhenoGraph Classification

Given a dataset of N d-dimensional vectors, M distinct classes and a vector

providing the class labels for the first L samples, the PhenoGraph classifier as-

signs labels to the remaining N � L unlabeled vectors. First, a graph is con-

structed as described above. The classification problem then corresponds

to the probability that a random walk originating at unlabeled node x will first

reach a labeled node from each of the M classes. This defines an M-dimen-

sional probability distribution for each node x that records its affinity for each

class. See Supplemental Experimental Procedures for full details on this

method, as well as an evaluation of its performance on benchmark data.

Applying PhenoGraph and SARA to AML Cohort

We ran PhenoGraph on each sample individually, defining subpopulations

based on expression of the 16 surface markers. For each sample, all ex vivo

conditions were pooled, as we previously demonstrated that surface marker

distributions are not altered by these short-term perturbations (Bendall et al.,

2011). PhenoGraph was run on the normalized surface phenotype matrices

for each sample, with the parameter k = 50.

Subpopulation signaling phenotypes were computed for each cluster using

SARA, followed by Z score standardization. See Supplemental Experimental

Procedures for full details.

Defining AML Metaclusters

Each AML subpopulation was represented by its centroid, resulting in a 4253

16 matrix. PhenoGraph was run on 425 subpopulation centroids with the

parameter k = 15, resulting in 14 metaclusters (MCs) delineating the major

cohort phenotypes. These MCs are a robust feature of the data and remained

consistent when the metaclustering was performed on subsets of patients
(Supplemental Experimental Procedures and Figure S3B). To characterize

these MCs, we systematically matched cells from healthy bone marrow (H1–

H5) with the MC surface marker profiles using linear discriminant analysis.

See Supplemental Experimental Procedures for full details.

PhenoGraph Classification of Leukemic Subpopulations

We used the PhenoGraph classifier to classify leukemic subpopulations

based on training examples provided by the healthy subpopulations. Using

similarities derived either from surface or signaling phenotypes, k-neighbor

graphs (k = 15) were constructed over 616 subpopulations (healthy and

leukemic). Specifically, we used a weighted Euclidean distance in which

each phenotypic feature was weighted according to its statistical association

with known cell types in the healthy samples. Each AML subpopulation was

classified based on its phenotypic proximity to the healthy training exam-

ples. Classification was performed using surface and signaling classifiers

separately, resulting in two alternative classifications per AML subpopulation

(Figures 6 and S4B). See Supplemental Experimental Procedures for full

details.

Gene Expression Signatures and Survival Analysis

For each score, %SDPC or %IFPC, a set of associated genes was defined

based on correlation with the expression patterns across patients, using

linear regression. This in silico gene expression deconvolution assumes that

changes in bulk expression of certain genes will track with changes in subpop-

ulation frequency. We used leave-two-out cross-validation across 15 patients

to select genes that placed in the top one percentile and had a SD across

subsets < 5%.

We used gene expression and survival data for 242 cytogenetically normal

adult AML patients from two independent cohorts (Metzeler et al., 2008). For

each patient, the frequency of a cell type (%IFPC or %SDPC) was estimated

as the mean expression intensity of the associated gene signature. For

Kaplan-Meier analysis, patients were stratified into two groups based on the

median expression value of the signature of interest. See Supplemental Exper-

imental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, three tables, and three datasets and can be found with this article

online at http://dx.doi.org/10.1016/j.cell.2015.05.047.
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