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The flood of genome-wide data generated by high-throughput technologies currently provides biol-
ogists with an unprecedented opportunity: to manipulate, query, and reconstruct functional molec-
ular networks of cells. Here, we outline three underlying principles and six strategies to infer
network models from genomic data. Then, using cancer as an example, we describe experimental
and computational approaches to infer ‘‘differential’’ networks that can identify genes and
processes driving disease phenotypes. In conclusion, we discuss how a network-level under-
standing of cancer can be used to predict drug response and guide therapeutics.
Cells contain a vast array of molecular structures that come

together to form complex, dynamic, and plastic networks. The

recent development of high-throughput, massively parallel tech-

nologies has provided biologists with an extensive, although still

incomplete, list of these cellular parts. The emerging challenge

over the next decade is to systematically assemble these

components into functional molecular and cellular networks

and then to use these networks to answer fundamental ques-

tions about cellular processes and how diseases derail them.

For example, how do these cellular components come together

to robustly maintain homeostasis, process exogenous and

endogenous signals, and then coordinate responses? How do

genetic aberrations disrupt the regulatory network and manifest

in disease, such as cancer? In this Perspective, we reason that,

even with a partial understanding of molecular networks, biolo-

gists are currently poised to understand how networks are de-

regulated in cancer cells and then predict how these networks

might respond to drugs.

Quantitative biophysical network models encompassing

a small number of components have made enormous contribu-

tions to our understanding of cellular networks. However, in

this Perspective, we focus on deriving network models at a large

systems scale from high-throughput data, using ‘‘data-driven

network inference.’’ In this process, a set of modeling assump-

tions are defined, such as ‘‘genetic aberrations alter normal

cellular regulation and drive tumor proliferation.’’ Then, data

are used to derive a specific model, such as specifying for

each tumor, which typically harbors many aberrant genes, which

particular genes drive proliferation. In the end, a ‘‘good’’ model of

biological networks should be able to predict the behavior of the

network under different conditions and perturbations and,

ideally, even help us to engineer a desired response. For

example, where in the molecular network of a tumor should we

perturb with drug to reduce tumor proliferation or metastasis?
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Such a global understanding of networks can have transforma-

tive value, allowing biologists to dissect out the pathways that

go awry in disease and then identify optimal therapeutic strate-

gies for controlling them.

To illustrate the potential impact of global models, we note

that the effect of a cancer drug is often hard to predict because

crosstalk and feedback are still poorly mapped in most

signaling pathways. For example, the mammalian target of

rapamycin (mTOR) is critical for cell growth, and its activity is

aberrant in most cancers; hence, it was expected to be

a good therapeutic target. Nevertheless, it shows poor results

in clinical trials. This deviation from our expectations may be

due to feedback and crosstalk between the Akt/mTOR and

the extracellular signal-regulated kinase (ERK) pathways (Carra-

cedo et al., 2008). Inhibition of mTOR releases feedback inhibi-

tion of the receptor tyrosine kinases, which can activate both

ERK and Akt (O’Reilly et al., 2006) and subsequently increase

cell proliferation.

For targeted therapy to succeed, a global view of the inter-

connectivity of signaling proteins and their influences is critical.

In this Perspective, we consider the current state and potential

future of data-driven computational approaches to network

inference, with an emphasis on applications to cancer. We will

describe three principles underlying molecular networks

and inferring these from data. These principles are matched

to current experimental capabilities and will need revamping

as technological leaps produce new types of data (e.g., more

quantitative data and with real-time dynamics). We then

consider six promising experimental-computational strategies

for constructing network-level models. Though not exhaustive,

these principles and strategies illustrate fruitful directions in

network biology and will hopefully stimulate discussion and

experimentation among computational and experimental

biologists.
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Principle 1: Molecular Influences Generate Statistical
Relations in Data
Network biology has been empowered bygenomics technologies

that enable the simultaneous measurement of thousands of

molecular species. Such data offer a global unbiased view of the

entire system, which in turn necessitates computation and statis-

tics. The key underlying assumption frequently used for inferring

networks from genomic data is that influences and interactions

between biological entities generate statistical relations in the

observed data. For example, if protein A induces expression of

protein B, thenwe expect to see high levels of protein Bwhenever

levels or specific molecular states of its activator A are high. The

reverse of this logic is that statistical correlation between protein

states indicates a potential interaction between them. In a data-

driven manner, a computer can comprehensively test millions of

such hypotheses in seconds and provide a statistical score for

each candidate molecular interaction or influence. For example,

one can test the statistical association between the DNA copy

number of a candidate regulator and gene expression of a target

for each locus and gene in the genome (see Strategy 4).

Various statistical frameworks have been successfully applied

to network inference (Basso et al., 2005; Bonneau et al., 2007;

Friedman et al., 2000); the commonality between the frameworks

is that they model a target’s behavior as a function of its regula-

tors and search for the most predictive regulator set. For

example, Bayesian networks were used to reconstruct detailed

signaling pathway structures in human T cells using only the

concentration of phosphoproteins simultaneously measured in

individual cells (Sachs et al., 2005). Based solely on this data,

this network analysis discovered the majority of known influ-

ences between the measured signaling components without

prior knowledge of any pathways. Moreover, the analysis

uncovered a new point of crosstalk, which was confirmed

experimentally.

The same computational approach and mathematical

formulae correctly reconstructed yeast metabolic networks

from gene expression data (Pe’er et al., 2001). Together, these

studies demonstrate the universal nature of statistical depen-

dencies; the same formalism can be used to reconstruct yeast

metabolic networks from gene expression data and mammalian

signaling networks from phosphoprotein abundances.

Mathematical models of molecular networks have been

derived from basic biochemical principles for decades, combin-

ing chemical reaction equations into a quantitative model. For

example, Michaelis Menten equations are frequently used to

model transcription factor binding to DNA. Nevertheless, most

contemporary data sets lack the quantitative and statistical

power to resolve such models, even for small networks. Data-

driven approaches typically necessitate hundreds of samples

to gain the statistical power to resolve even a partial qualitative

map of molecular interactions. Data requirements are highly

dependent on the number of components modeled, the mathe-

matical complexity of the equations representing the molecular

interactions, and the effect size of the influences themselves.

Thus, at the heart of data-driven modeling is finding the sweet

spot in the tradeoff between more realistic (e.g., chemical reac-

tion equations) and simpler models that can be inferred more

robustly from data (e.g., linear regression).
One option is to build qualitative, rather than quantitative,

models. These models can identify qualitative features such as

‘‘Mek (mitogen-activated protein kinase) activates Erk’’ or that

‘‘Met4 and Met28 are required together to induce sulfur metab-

olism.’’ If quantitative modeling is important for the problem at

hand, linear regression models provide a robust alternative to

nonlinear models (e.g., target gene expression is a linear combi-

nation of its transcription factors). Although nonlinear relations

frequently occur in biology, linear regression models are more

robust, and thus they often give better results, even when the

underlying model is nonlinear. A detailed molecular model that

is exhaustive in its molecular species and in the modeling of their

interactions remains beyond our reach for the near future.

A powerful strategy in systems biology is to abstract and

simplify models. In the ‘‘module-network’’ approach (Segal

et al., 2003), genes are grouped into modules that are assumed

to share a regulatory program. The rationale for this grouping is

based on numerous examples in which the same regulatory

circuits coordinate activation or repression of groups of genes

that are involved in the same process (e.g., the entire ribosome

complex is regulated by common transcription factors). By pool-

ingmany similar genes together, themodule-network framework

significantly increases the statistical power to identify regulatory

influences (Litvin et al., 2009).

Principle 2: Networks Are Not Fixed: The Role of Context
and Dynamics
Molecular networks are not static; rather, they exhibit dynamic

adaptations in response to both internal states and external

signals. Influences that determine network context can be

divided into four categories. (1) Genetic background strongly

determines network behavior and gives rise to significant

differences across individuals (and even cells in the special

case of cancer). (2) Cell lineages have dramatically different

network structures because of epigenetic changes and differen-

tial expression of genes. (3) Tissue milieu can reprogram

networks and their behaviors, as stromal cells do for tumors.

(4) Exogenous signals, such as nutrients and other chemicals,

affect networks (Figure 1). Ultimately, health or disease emerges

from an individual’s integration of internal and external cues.

In cancer, context can have a profound impact on how

patients respond to therapies. For example, in recent clinical

trials of a new generation of rationally targeted therapies (e.g.,

Gleevec, Herceptin, and BRAF inhibitors for chronic myeloge-

nous leukemia, breast cancer, and melanoma, respectively),

even patients that share the targeted mutation and tumor type

displayed substantially variable responses to the drugs (Sharma

et al., 2010a). In addition, in another recent trial (i.e., phase II),

a therapy was extremely effective at reversing tumors in meta-

static melanoma patients carrying the oncogenicBRAFmutation

(Flaherty et al., 2010), in which this drug effectively shuts down

the ERK pathway that is critical for this cancer. Strikingly,

however, the same drug leads to the activation of the ERK

pathway in cells with wild-type BRAF (Poulikakos et al., 2010),

potentially promoting tumors in these cells.

To gauge such network activity, response, and potential, ex-

periments must deliberately perturb the cell. For example, blood

cells from acute myeloid leukemia patients could not be
Cell 144, March 18, 2011 ª2011 Elsevier Inc. 865



Figure 1. Differential Networks Explain Phenotypic Variation across

Contexts
The function of a molecular network is determined by context: genetics, tissue
type, environment (e.g., nutrients), cell-cell communication, and small mole-
cules. These influences combine to determine the phenotypic response. The
‘‘differential network’’ (colored nodes and edges) models the essential
components that determine how and why a phenotypic response will vary
between contexts.
differentiated fromhealthycellswhenonly thebasal levelsofphos-

phorylation of key signalingmoleculesweremeasured.Onlywhen

the samples were interrogated with growth factors and cytokines

did the resulting signaling profiles correlate with tumor genetics,

drug response, anddiseaseoutcome (Irishetal., 2004).The impor-

tance of interrogation with stimuli comes into play because many

important signaling responses, such as ERK2 activation in

response to epidermal growth factor receptor (EGFR), depend

only on fold change, rather than basal protein levels that exhibit

a high degree of variance (Cohen-Saidon et al., 2009).

Cellular responses often involve multiple feedback loops and

additional complexities (see Review by Yosef and Regev on

page 886 of this issue). For example, the transcriptional

response to EGF stimulation induces feedback attenuation

factors, such as dual-specific phosphatases (DUSPs), which

shut down the same pathways that activate EGF signaling

(Amit et al., 2007). Therefore, to understand tumor network func-

tion, drug response, and the emergence of drug resistance,

tumors must be systematically interrogated with different stimuli

and drugs, followed by time series measurements. These

measurements can then be used to derive a model describing

the quantitative temporal sequence of events from the initial

detection of an input to the tumor’s response. The goal would
866 Cell 144, March 18, 2011 ª2011 Elsevier Inc.
be to generate a model that has a reasonable chance of being

able to predict responses to new, previously unmeasured inputs,

such as new drugs or combinations of drugs.

Principle 3: Extracting ‘‘Differential’’ Networks
Given the importance of context, a central challenge for the field

will be to collect data across multiple environments, cell types,

and genetic backgrounds using genome-wide profiling to infer

network connectivity and function in each context. Rather than

explicitly modeling all of the moving parts of a network, we

propose that it is feasible to derive models that focus on key

components by capturing the essential differences in network

wiring, function, and response between contexts (Figure 1).

A ‘‘differential-network’’ model is designed to elucidate the

following: How do a small number of changes to the network

(e.g., genetic, epigenetic) alter the function of the network? At

the center of such a model are the altered nodes (i.e., genes or

proteins), and data-driven computation can be used to: (1) iden-

tify additional components that interact with these altered

nodes; (2) qualify and quantify how these interactions are per-

turbed; and (3) model how these network perturbations continue

to propagate though additional components to generate the

phenotype of interest, such as proliferation, invasion, or drug

response. For example, Carro et al. (2010) identify C/EBPb and

STAT3 as ‘‘master’’ transcription factors for which their overex-

pression synergistically activates expression of mesenchymal

genes and subsequent tumor aggressiveness in malignant

glioma (see Strategy 3).

The network model can be significantly simplified because

only the components that play a role in the modeled response

need identification and inclusion. Importantly, the differential

network strategy does not apply only to disease. It can be

used in any context to address questions such as what is the

difference between two cell types or how does nutrient status

affect cellular behavior?

Here, we present six strategies that combine experimental and

computational approaches to generate network inference

models. Strategies 1 and 2 focus on identifying key components;

Strategies 3 and 4 focus on deriving key network components

concurrently with their regulatory influences; and Strategies 5

and 6 advance toward increasingly detailed quantitative models

of network influences.

Strategy 1: Discovery of Inherited Alleles
and Somatic Mutations
Chromosomal aberrations and mutations are a central charac-

teristic of tumor cells. Multiple genetic aberrations collectively

influence the expression of thousands of genes, altering the

pathways and processes underlying malignant behaviors. The

emergence of high-resolution copy number assays and

massively parallel sequencing technologies opens the possibility

of tracing phenotypic differences back to their genetic source.

Large-scale initiatives are currently sequencing thousands of

tumor genomes to comprehensively catalog the prevalent

sequence mutations and chromosomal aberrations underlying

each cancer type. Indeed, entire cancer genomes have already

been sequenced in dozens of tumors, revealing a surprising

degree of mutations and chromosomal aberrations in each



individual cancer (Stephens et al., 2009). On the other hand, exon

capture techniques, called exome sequencing (Ng et al., 2010),

concentrate on the 1% of coding sequence in the human

genome. This technique enables a more economical cataloging

of coding mutations in cohorts of hundreds of tumors per cancer

type. Finally, transcriptome (or RNA) sequencing identifies ex-

pressed coding and noncoding RNA mutations. Transcriptome

sequencing also reveals fusion genes created by intronic trans-

locations, which are therefore undetected by exon sequencing

techniques (Maher et al., 2009).

These large-scale sequencing projects have uncovered a

staggering diversity of genetic aberrations across tumors.

Although each individual tumor typically harbors a large number

of aberrations, only a few play a role in pathogenesis. Therefore,

distinguishing between genetic changes that promote cancer

progression (i.e., driver mutations) and neutral mutations (i.e.,

passenger) is like finding needles in haystacks.

Recurrence was a rule of thumb for copy number aberrations

(Weir et al., 2007). Thus, it was unforeseen that only a handful of

genes would recurrently be targeted by sequence mutations in

each cancer type. The current presumption is that the majority

of the driver mutations are unique to each tumor. A key unre-

solved computational challenge is, therefore, to identify the

driver mutations associated with each cancer genome. Indeed,

the identification of these drivers is required before a differen-

tial-network approach can model how the pathogenic behavior

emerges. Computational methods addressing this task are still

under development (Akavia et al., 2010; Beroukhim et al.,

2010; Carter et al., 2009).

Although recurrence may not occur at the gene level, signifi-

cant recurrence does occur at the level of pathways. For

example, in glioblastoma, the majority of tumors have mutations

in each of three signaling pathways: P53, retinoblastoma protein

1 (RB1), and rat sarcoma (RAS)/P13K (Cancer Genome Atlas

Research Network, 2008). Because these findings define path-

ways, rather than genes, as unifying explanations for tumor

progression, it is clear that finding drivers will rely on knowledge

of molecular networks.

Unfortunately, there is currently insufficient information on

pathways in existing databases. First, the majority of signaling

proteins are not associated with any known pathway. Second,

existing databases include only a small part of what is known

and typically do not take context (e.g., cell type) into account.

More sophisticated experimental and computational methods

will be needed to define and catalog the components involved

in each pathway. A promising direction is the use of systematic

experimental and computational approaches to build interaction

maps (Amit et al., 2009; Bandyopadhyay et al., 2010), which can

subsequently be used to identify key aberrant genes. For

example, an algorithm known as interactome dysregulation

enrichment analysis (IDEA) (Mani et al., 2008) uses a specially

derived context-specific molecular network to identify key aber-

rant genes in lymphoma.

Strategy 2: Discovering Key Network Components
Using RNAi
Although naturally occurring genetic alterations help to nominate

causal genes in cancer and other diseases, deliberate perturba-
tion greatly facilitates causal gene identification. Taking advan-

tage of sequenced genomes, mammalian interference (RNAi)

libraries have emerged as a central tool for systematic perturba-

tion of any gene. Indeed, RNAi-based screens have proven to be

a major tool in cancer research in which cell lines are readily

available and cell proliferation and survival provide surrogates

of tumorigenesis.

In one strategy, unbiased genome-wide RNAi screens in vitro

and in vivo are used to identify candidate causative oncogenes

and tumor suppressors that affect cell proliferation or survival.

Typically, candidate genes that are found to have an aberrant

sequencemutation, copynumberalteration, orexpressionchange

in tumors are usually selected for deeper mechanistic character-

ization (Boehm et al., 2007; Ngo et al., 2010). However, one must

always keep in mind that candidate genes that are not aberrant

may be equally important to study and target therapeutically.

In a second strategy, candidate genes are first selected from

cancer genomic data sets and then validated with small-scale

RNAi screens. For example, this strategy was recently used to

identify critical genes within tumor chromosomal deletions (Ebert

et al., 2008) and for finding the small subset of genes that affect

metastasis among hundreds selectively expressed in metastatic

tumor (Bos et al., 2009).

Finally, unbiased screens can also shed light on the suscepti-

bility or resistance of specific tumors to treatment (Hölzel et al.,

2010) and to find ways to enhance the effects of current thera-

pies, such as taxanes (Whitehurst et al., 2007). Indeed, these

types of findings can rapidly influence clinical research and prac-

tice. In all cases, RNAi serves as a ‘‘functional filter’’ to pinpoint

or annotate genes that affect proliferation, death, metastasis, or

any cellular processes.

Combining computationally guided experiment design with

RNAi screens has enormous untapped potential. Although

genome-wide data sets are the most comprehensive, they are

also expensive to perform at the large scale that is required to

cover all contexts. A more economical approach is to refine

our understanding with iterative cycles of experimentation and

computation. Computational hypotheses derived from one

data set are used to design the experiments for collecting the

next data set (Figure 2). For example, protein interaction maps

andmicroarray expression data were used to nominate high like-

lihood genes for characterization in an RNAi screen that dissects

interactions between influenza and its host (Shapira et al., 2009).

This approach deepened our understanding of how the virus

manipulates or is controlled by key host defenses through direct

and indirect interactions with four major host pathways.

In the cancer setting, a good network model combined with

computational inferences can suggest which gene combina-

tions, genetic background, and cell assay (e.g., proliferation,

invasion, metabolism) should be matched in searching for new

components. For example, multiple mutations must occur

together to produce a tumor (Land et al., 1983), necessitating

a combinatorial RNAi approach. However, because a large-scale

combinatorial RNAi screen is not feasible, computational selec-

tion of likely combinations renders the experiments feasible.

Additionally, although most screens are performed in a single

genetic background, in reality, the functional impact of perturba-

tion is highly dependent on genetic background: disrupting the
Cell 144, March 18, 2011 ª2011 Elsevier Inc. 867



Figure 2. Experimental Design for Network Inference
(A) To comprehensively characterize tumor response to a drug, we suggest profiling a cohort of genetically characterized tumors using multiple technologies,
following perturbation with small molecules and RNAi. Then, data-driven algorithms can infer differential network models from these data. The inferred models
subsequently guide the design of experiments for the next iteration of data collection.
(B) This figure illustrates how different genetic backgrounds and experiments can help to identify driver mutations and network structure. Each identifiedmutation
recurs in a subset of samples, and driver targets are identified by knockdown using RNAi or drug.
expression of a gene can cause death in one cell line and have no

effect in another cell line (Luo et al., 2008). Thus, it would be useful

to select cell lines with informative genetic backgrounds. Finally,

a good model can link genes with specific biological processes

(Akavia et al., 2010) and help us efficiently extend RNAi studies

to problems of invasion, metabolism, cell-cell interactions, and

other cancer hallmarks that are poorly understood (Hanahan

and Weinberg, 2011).

Strategy 3: Statistical Identification of Dysregulated
Genes and Their Regulators
After discovering key network components, the next step is to

decipher the wiring of the network. The majority of the computa-
868 Cell 144, March 18, 2011 ª2011 Elsevier Inc.
tional work in this area has been through the analysis of tumor

gene expression profiles that have accumulated on the order

of tens of thousands of microarrays over the past decade. Unlike

the top-down strategies described above, here, the approach

is bottom up: first identify the differentially expressed genes

relevant to a tumor phenotype of interest, and then use these

genes to pinpoint the master regulator that brings about their

dysregulation.

Data-driven approaches (Principle 1) have been particularly

powerful at locating the dysregulated genes and regulatory rela-

tions within tumor-related pathways. Analysis of glioblastoma

gene expression profiles using ARACNE (algorithm for the recon-

struction of accurate cellular networks) (Basso et al., 2005)



revealed two master regulators of mesenchymal transformation

in malignant glioma (Carro et al., 2010): the gene module that

corresponds to the mesenchymal transformation and the tran-

scription factors most likely regulating this module (based on

mutual information between regulator and targets). Both tran-

scription factors were then confirmed experimentally.

By extending this statistical reasoning to higher dimensions,

theMINDY (modulator inference by network dynamics) algorithm

(Wang et al., 2009) could cleverly identify posttranslational acti-

vators and inhibitors ofmaster regulators. Based on the assump-

tion that high (or low) expression of such activators (or inhibitors)

would lead to increased (or reduced) coregulation of MYC with

its known targets, MINDY uncovered new posttranslational

modifiers of MYC in human B lymphocytes, and four of them

were validated using RNAi. Demonstrating the generality of the

statistical approach, the identified modifiers were found to act

by diverse mechanisms, including protein turnover, transcription

complex formation, and selective enzyme recruitment.

As we wait for the development of experimental technologies

that detect most posttranslational changes in high throughput,

thousands of existing mRNA expression data sets can benefit

from this powerful statistical approach to predict keymodulators

of regulatory activity by any biochemical mechanism. We have

thus only begun to tap into the potential of these approaches

to uncover the regulatory mechanisms that lead to tumors and

other pathogenic phenotypes. Moreover, once profiles of cancer

proteomes and their posttranslational modifications become

more readily available, these methods will be dramatically

empowered.

Strategy 4: Integrating Genotype and Gene Expression
into Causal Models
Current analysis has only scratched the surface of existing data

sets, and there is critical need for powerful computational

approaches to expose the wealth of hidden information. A prom-

ising approach is ‘‘data integration’’ that builds a model from

diverse data types (e.g., gene sequence, gene expression

profiles, and protein-protein interactions), which each shed

a different light on the underlying biology. The resulting combina-

tion is more than the sum of the parts (see the MiniReview by

Ideker et al. on page 860 of this issue). A natural integration

that captures the essence of differential networks is sequence

and expression.

For example, the CONEXIC (copy number and expression in

cancer) algorithm (Akavia et al., 2010) combines DNA copy

number with gene expression levels to identify driver mutations

and predict the processes that they alter. Themodeling assump-

tions underlying the data integration are: (1) A driver mutation

should co-vary with a gene module involved in tumorigenesis

(i.e., it assumes that the module’s expression is ‘‘modulated’’

by the driver); and (2) Expression levels of the driver control the

malignant phenotype rather than copy number (because other

mechanisms may lead to similar dysregulated expression of

the driver gene).

This approach predicted two new tumor dependencies in

melanoma and the processes that they alter. Moreover, these

predictions were then confirmed using RNAi. CONEXIC thus

uses gene expression as an intermediary to connect genotype
to phenotype, building a cascade of events from DNA, through

modulated gene expression, to tumorigenic phenotype. Anchor-

ing the model at the DNA provided support for causality of influ-

ence between driver andmodule, although this influence can still

be indirect by a cascade of unknown mechanisms.

Though such modeling approaches have only recently taken

hold in cancer genomics, these have been developing in genetic

association for a few years. Chen and colleagues identified gene

networks that are perturbed by quantitative trait loci (QTL), which

in turn lead to metabolic disease (Chen et al., 2008). A single

comprehensive computation locates the QTL, identifies how it

perturbs the molecular network, and in turn leads to variation

in disease traits. As more data types that capture the ‘‘state’’

of the network are collected (e.g., metabolite concentrations

using mass spectrometry), these differential-network (Principle

3) approaches will lead to increasingly mechanistic and causal

models of disease.

Although this strategy can be applied to any process or

disease, cancer is particularly suited for these approaches

because somatic mutations driving tumorigenesis typically

have a large impact on multiple genes and cellular processes,

and thus their effect is more easily detected. Disease genes

based on germline mutations that persist though the powerful

evolutionary filters are typically more subtle and harder to detect;

indeed, disease is frequently invoked only by the combinatorial

interaction of many genes.

As proof of concept of ‘‘personalized medicine’’ and using

yeast as a model system, CAMELOT (causal modeling with

expression linkage for complex traits) (Chen et al., 2009) inte-

grated genotype and gene expression levels (measured prior

to drug exposure) to quantitatively predict drug sensitivity.

Applying a differential network approach, a small number of

causative genes are identified and then used to build regression

models to predict drug response for each yeast strain. The

algorithm faithfully predicted both the causal genes (24/24

predictions validated) and drug response. Although epistatic

relations existed between genes, the statistical simplicity of

linear models led to more robust and accurate models from

data. We anticipate that a comparable data set from patient

tumors (including genotype, basal gene expression, and quanti-

tative drug response) could be used to rationally select each indi-

vidual patient’s drug treatment, essentially customizing and opti-

mizing patient care.

Strategy 5: Integration of Single Cell Data to Account
for Cell-to-Cell Heterogeneity
Whereas the measurements discussed thus far were taken over

population aggregates using bulk assays, most signal process-

ing occurs at the level of the individual cell. Over the past

decade, studies have repeatedly demonstrated a large degree

of heterogeneity between individual cells, even within clonal

populations. This variation arises from differences in protein

concentrations and stochastic fluctuations in biochemical reac-

tions involving molecules with low copy numbers. A common

finding is that a response appears dose dependent in bulk

assays but is actually an ‘‘all or nothing’’ response in single cells.

That is, the intensity of the single cell response remains constant

under dose, but the fraction of the cells that respond increases
Cell 144, March 18, 2011 ª2011 Elsevier Inc. 869



with dose (e.g., NF-kB in response to TNFa) (Tay et al., 2010). In

these cases, there are a number of distinct subpopulations, and

no individual cell behaves in accordance with the population

average. Such subpopulations confound network inference

algorithms when two molecules exhibit statistical dependency

at the population level but actually reside in mutually exclusive

cells.

Heterogeneity of molecules at the single cell level can have

crucial functional impact. Even clonal cell lines treated with

drugs under carefully controlled conditions exhibit a large, previ-

ously unappreciated degree of variation in cell survival and other

parameters (Cohen et al., 2008). A bulk growth assay can mask

a small subpopulation of drug-resistant cells, which can later

form a drug-resistant tumor. Though much debate still exists

regarding the origins and emergence of these subpopulations,

it is clear that such populations often exist in tumors. For

example, Sharma and colleagues identified a drug-tolerant state

that can be transiently acquired and relinquished through revers-

ible epigenetic changes that occur at low frequency (Sharma

et al., 2010b). Therefore, to model drug response in tumors, it

is vital to observe the system at the single cell level and take

heterogeneity (stochastic, genetic, and microenvironment) into

account.

A unique and beneficial feature of single cell data is the simul-

taneous observation of multiple signaling proteins in each indi-

vidual cell. The stochastic variation observed across individual

cells can be harnessed as a data-rich source for network infer-

ence, in which each of many thousands of cells can be treated

as an individual sample (Sachs et al., 2005). This strategy

provides significantly more samples than are available in bulk

assays (e.g., each microarray is only a single sample).

Nevertheless, this amount of data comes with a technical

tradeoff. To identify interactions and their function, the partici-

pating signaling proteins need to be measured simultaneously

in the same sample. Typically, single cell measurement technol-

ogies are limited to a small number of simultaneous channels

(approximately four to ten channels for flow cytometry and

approximately three channels for microscopy), with microscopy

having the unique advantage of real-time tracking across space

and time. A promising emerging technology is mass spectrom-

etry-based single cell cytometry (Ornatsky et al., 2008), which

currently can measure up to 35 antibodies in a single cell, with

the potential scale up to 100. This approach will likely break

new ground by enabling the study of midscale networks in indi-

vidual cells. We hope and must rely on clever chemists, engi-

neers, and physicists to take on this important challenge of

measuring many molecular states in live, single cells over time

and space.

In the meantime, computational approaches can help bridge

the gap by: (1) pointing to a small number of key components

in a differential network, which would be valuable to analyze

at the single cell level, and (2) stitching together small, overlap-

ping subnetworks into larger network models (Sachs et al.,

2009). But there remains a need to develop methods for inte-

grating genomic data sets at the population level with single

cell measurements over small subsets of components at critical

network junctures, leading to a more accurate model of the

underlying cellular computations.
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Strategy 6: Using Perturbations to Reveal Network
Wiring
To infer network models that describe how a network responds

to stimuli, as well as through what molecular interactions and

mechanisms this sensing and response occurs, comprehensive

profiles must be measured following perturbations. We consider

three methods to perturb the system: RNAi, drugs, and natural

variation. As this strategy is still under development, this section

is more speculative.

Measuring network behavior following an RNAi perturbation

uncovers the functions of a gene and provides definitive causal

links between network components. A key strength of RNAi is

that it can be used effectively to target any desired gene.

However, RNAi also has limitations due to its slow kinetics and

potential nonspecific cellular responses (e.g., innate immune

response to double-stranded RNA, overloading of the RNAi

machinery, and off-target effects). Using RNAi-based perturba-

tions followed by comprehensive measurements, Amit et al.

(2009) recently developed a network model of transcriptional

regulation in the pathogen-sensing response. Candidate regula-

tors and a reduced signature response were first selected from

microarray data of cells stimulated with pathogens. Each candi-

date was then knocked down with RNAi, and the effect on the

signature was quantified. This strategy uncovered many new

factors involved in pathogen sensing and generated an informa-

tive network wiring diagram that revealed new crosstalk and

feedback in these pathways. This strategy and its variations

should succeed in reconstructing medium-size molecular

networks in other systems.

A second perturbation to consider is small molecules, which

often have unique and valuable properties for network modeling

and direct relevance to patient care. First, in contrast to RNAi

kinetics, the instantaneous action of small molecules allows for

accurate control of both dose and timing, leading to simpler

interpretations of its effects, without the need to consider

network adaptation. Second, small molecules can have specific

biochemical effects on proteins, leading to elimination of edges

in the network, rather than entire nodes as RNAi does. By

comprehensive monitoring of the resulting changes in the

network upon drug perturbation, we can refine network models

and, importantly, discover how pathway activation, crosstalk,

and feedback differ across individual tumors with variable levels

of drug sensitivity.

Third, variation in the DNA across individuals is a powerful

resource for studying the effects of perturbation on network

function. It is also effective for detecting regulatory interactions,

uncovering complex phenotypes, and inferring networks (Lee

et al., 2006). In contrast to deliberate and somewhat dramatic

disruption of a gene’s function through RNAi or drugs, more

subtle effects, such as the attenuation or alteration of function,

can be observed in genetically divergent individuals. Natural

variation provides us with numerous genetic alterations in

various combinations, as selected by evolution to produce func-

tional pathways. By monitoring functional pathways in action,

we can infer how network components work together under

different conditions. Each individual’s genetic variation provides

distinct information linking genotype and phenotype and helps to

explain network behavior.



What still needs to be developed is an integrated experi-

mental-computational strategy that combines stimulations and

perturbations with functional measurements from the same cells

to build network models. Variation in stimuli and environment

allows us to derive what the network is computing, and perturba-

tions to its components elucidate how the network is computing.

This suggests expanding the framework set forth by Amit and

colleagues (Amit et al., 2009) to additional dimensions, including

a time series of gene expression and proteomic measurements,

following each combination of stimuli and perturbations. Natural

variation between individuals and tumors combined with tar-

geted perturbations using RNAi or drugs will provide particularly

powerful data for deriving tumor network models.

Executing the experimental design proposed above requires

technological developments. Much of the dynamics occurs at

the level of proteins and their modifications, raising the need

for high-throughput proteomics to measure protein abundances

and activity states. Importantly, the proposed design requires

assaying a prohibitively large number of samples. To make

significant progress in the understanding of molecular networks,

there is a critical need for the development of more economical

multiplex functional assays that can measure thousands of

molecular species per sample at low sample cost. An iterative

approach, in which computational modeling with existing data

guides the selection of the next set of experiments, will provide

the most cost-effective design (Figure 2).

New experimental technologies are rapidly progressing, with

computational efforts lagging behind. For example, generating

transcriptome sequence reads is easy, but their assembly

remains challenging. To utilize the enormous potential of the

data types delineated above, significant advances in computa-

tional modeling are required. Specifically, there is need for a

transition from static and qualitative models to temporal and

quantitative models.

Future: Personalized Cancer Medicine
Networks govern fundamental processes, such as the develop-

ment of a multicellular organism from a single cell and communi-

cation between immune cells in response to a pathogen.

Fueled by technology and computation, research in the coming

decade is expected to unravel the details and principles behind

diverse molecular networks and how they compute life’s func-

tions. For example, the ongoing revolution that has enabled the

sequencing of individuals provides the first opportunities to

systematically study and explain how DNA variation results in

our phenotypic diversity. Reaching these goals, however, will

also necessitate a deeper understanding of the biophysical prin-

ciples underlying signal processing in small biological circuits

and how these come together in systems of increasing size

and complexity.

Within cancer research, systems biology is dramatically

advancing our mechanistic understanding of tumor progression

and the design of personalized therapeutics. Continued success,

however, will depend on critical advances in both experimental

andcomputationalmethods. Improvements in tools formeasure-

ment—especially mass spectrometry and cost-effective multi-

plex detection—and perturbation—especially RNAi and small

molecules—will fill in our understanding of the many molecular
layers that underlie network function. On the computational

end, the key bottleneck is the development of validated

computational methods that integrate heterogeneous data and

build differential-network models on a per tumor basis. These

methods are required to: (1) identify the genetic aberrations and

the master regulators that drive proliferation, survival, metas-

tasis, and drug resistance; (2) model the adaptive/feedback

mechanisms that thwart the efficacy of potent drugs; and (3)

predict additional target pathways for combinatorial drug treat-

ment. Based on these predictions, more data can be collected

to refine the models in iterative rounds of computation and

experiments. As three-dimensional models of cancer (Ridky

et al., 2010) continue to develop, we can also profile multiple

cell types in a tumor environment and model the interactions

between these. In short, these studies should teach us what

drives cancers and what part of the networks we should target,

both initially and after the network adapts and mutates.

Many of us believe that the ultimate solutions to minimizing

cancer reside in the regime of combinatorial patient-specific

drug therapy, immunotherapy, and gene therapy. Accurate

quantitative models of tumor networks should predict the effects

of drug perturbations and thus enable sophisticated rational

therapy with optimized dosage, timing, and drug combination

for each individual tumor. Drug combinations can address

feedback and network adaptation, ensuring shutdown of the

necessary pathways. Additionally, drug combinations can target

distinct subpopulations within a tumor.

Tumor networks are armedwith the ability to adapt and rapidly

evolve and, thus, are a powerful adversary. These need to bemet

with equally sophisticated and flexible therapy regimes that can

track these adaptations and dynamically adapt over time,

placing us several moves ahead of the tumor. Studying the emer-

gence of drug resistance both in vitro (Johannessen et al., 2010)

and in vivo can better inform methods to anticipate potential

paths of resistance. The ultimate therapies would involve

sending ‘‘networks’’ in vivo to track tumor behavior and control

the dosage and timing of drug release in response to tumor

behavior. This long-term goal should become feasible as the

fields of network biology, synthetic biology, and appropriate

drug delivery methodsmature. In the immediate future, however,

our goal should be to anticipate andmonitor real-time changes in

the tumor’s network and adapt our therapies accordingly.
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