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Detection of Minimal Residual Disease in B
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Background: Minimal residual disease (MRD) following treatment is a robust prognostic marker in B
lymphoblastic leukemia. However, the detection of MRD by flow cytometric immunophenotyping is techni-
cally challenging, and an automated method to detect MRD is therefore desirable. viSNE, a recently
developed computational tool based on the t-Distributed Stochastic Neighbor Embedding (t-SNE) algo-
rithm, has been shown to be capable of detecting synthetic “MRD-like” populations of leukemic cells
created in vitro, but whether viSNE can facilitate the immunophenotypic detection of MRD in clinical
samples has not been evaluated.

Methods: We applied viSNE retrospectively to 8-color flow cytometric immunophenotyping data from
normal bone marrow samples, and samples from B lymphoblastic leukemia patients with or without sus-
pected MRD on the basis of conventional manual gating.

Results: In each of 14 bone marrow specimens containing MRD or suspected MRD, viSNE identified a
putative MRD population; an abnormal composite immunophenotype was confirmed for the putative MRD
in each case. MRD populations were not identified by viSNE in control bone marrow samples from
patients with increased normal B-cell precursors, or in post-treatment samples from B lymphoblastic leu-
kemia patients who did not have detectable MRD by manual gating.

Conclusion: viSNE shows promise as an automated method to facilitate immunophenotypic MRD detec-
tion in patients treated for B lymphoblastic leukemia. VC 2015 International Clinical Cytometry Society
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INTRODUCTION

In patients who have acute lymphoblastic leukemia
(ALL), “minimal residual disease” (MRD) is the persist-
ence of rare leukemic cells despite the attainment of
morphologic remission. MRD is an important adverse
prognostic factor [reviewed in Refs. 1,2)] that informs
contemporary risk-adapted therapeutic protocols (3,4).
Two principal methodologies have been used to detect
MRD in ALL: flow cytometric immunophenotyping and
PCR-based amplification of antigen-receptor genes (1,2).
Of these methodologies, flow cytometry is technically
simpler, more rapid, and less expensive (2). Moreover,
flow cytometry permits direct quantification of viable
leukemic cells (2), and yields quantitative results compa-
rable with those obtained by PCR (5). Until recently, the
sensitivity of flow cytometry-based methods (1024, or 1
leukemic cell in 10,000 total cells) was inferior to that
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of PCR-based methodologies (1025, or 1 leukemic cell in
100,000 total cells); however, with the identification of
newer immunophenotypic markers, sensitivity of 1 in
100,000 has also been demonstrated by flow cytometry
(2,6).

Arguably, the most challenging aspect of MRD detec-
tion by flow cytometry is the user-dependent expertise
required to identify rare abnormal cells among an over-
whelming preponderance of normal cells, many of
which display composite immunophenotypes that
closely resemble those of the leukemic cells being
sought (2,7). Immunophenotypic data are analyzed in a
series of 2-dimensional dot plots, each with its own
characteristic set of antigenic expression patterns. A 9-
color experiment, for instance, yields 55 unique 2-
dimensional displays of light scatter and fluorescent
parameters (8), any of which might potentially contain
discriminatory phenotypic information. As a practical
matter, the expertise required for immunophenotypic
MRD detection has limited its implementation in multi-
center studies to a relatively small number of reference
laboratories (3,4,6). Standardization of immunopheno-
typic MRD detection among different laboratories has
also been problematic; although standardization has
been achieved to varying extents (9–12), interlaboratory
concordance has been lower for MRD levels below 0.1%
(9), and much of the interlaboratory discordance has
been attributed to discrepancies in data analysis (11).

Automated data analysis represents one potential solu-
tion to the challenges posed by immunophenotypic
MRD detection. Indeed, computational methods for anal-
ysis of multiparametric flow cytometric data have
become increasingly important (reviewed in Ref. 13)) as
conventional manual gating of large single-cell data sets
generated by contemporary fluorescence-based cytome-
ters (14,15), and more recently, time-of-flight mass spec-
trometry (16), is both impractical and unlikely to extract
much of the information contained within the data.
Aghaeepour et al. (13) have assessed numerous auto-
mated methods for clustering subpopulations within
multiparametric data sets, but these methods are insuffi-
ciently sensitive to detect MRD populations. Fi�ser et al.
employed a combination of hierarchical clustering analy-
sis and support vector machine (SVM) learning in an
effort to automate MRD detection, but distinction of
MRD from regenerating normal B-cell precursors (hema-
togones) was problematic for the SVM classifier (17).

More recently, a computational tool called “viSNE”
(after the t-Distributed Stochastic Neighbor Embedding
(t-SNE) algorithm on which it is based (18)), was shown
to be capable of detecting synthetic “MRD-like” popula-
tions of leukemic cells created in vitro by dilution of
leukemic bone marrow samples into normal bone mar-
row samples (19). In viSNE, each cell is represented as a
point in high-dimensional space, each coordinate of
which reflects a single parameter (e.g., the expression
level of one surface protein). An optimization algorithm
searches for a projection of the points in high-
dimensional space (e.g., 8 dimensions when analyzing

the fluorescent parameters of an 8-color experiment)
into two dimensions, so that pairwise distances between
the points are optimally conserved. The resulting low-
dimensional projection, termed the viSNE map, is
visualized as a scatter plot, in which the location of a
cell reflects information from all of its original dimen-
sions. The resulting viSNE map provides a visual repre-
sentation of the single-cell data that is similar to a biaxial
plot, in which the positions of individual cells reflect
their proximity in high-dimensional space. Moreover, the
multiparameteric characteristics of individual cells in the
viSNE map can be visualized interactively by incorporat-
ing color as a third dimension. In the recently published
synthetic example of MRD detection, viSNE accurately
distinguished a leukemic cell population (which com-
prised 0.25% of all cells) from normal bone marrow cells
(19), demonstrating the ability of the algorithm to iden-
tify rare populations on the basis of immunophenotype.

Whether viSNE can facilitate the immunophenotypic
detection of MRD in clinical samples, though, has not
been evaluated. Although viSNE was able to detect a
0.25% MRD population (19), a sensitivity of at least
1024 (0.01%) would be required to be clinically useful
(1,2). Moreover, in the synthetic example described
above, a leukemic sample consisting predominantly of
blasts was used to simulate an MRD sample (19),
whereas clinical samples obtained after treatment not
only contain a potential MRD population, but also nor-
mal B-cell precursors (20). Since normal B-cell precur-
sors are both immunophenotypically similar to leukemic
B-cell lymphoblasts, and particularly numerous in
actively regenerating bone marrow following chemother-
apy (20), their presence in clinical samples represents a
potential impediment to MRD detection by viSNE. An
additional requirement for clinical usefulness would be
the ability of the algorithm to distinguish the spectrum
of abnormal immunophenotypes encountered in clinical
practice, while minimizing identification of rare immu-
nophenotypic subsets of normal B-cell precursors. Here
we apply viSNE retrospectively to 8-color flow cytomet-
ric immunophenotyping data from normal bone marrow
samples, and samples from B lymphoblastic leukemia
patients with or without suspected MRD following ther-
apy. We demonstrate that viSNE overcomes these chal-
lenges, and thus shows promise as an effective aid for
distinguishing MRD populations in clinical samples.

MATERIALS AND METHODS

Patient Samples and Flow Cytometric Immunophenotyping

EDTA-anticoagulated bone marrow aspirate samples
from patients with or without B lymphoblastic leukemia
(Supporting Information Table 1) were received in the
Special Hematology Laboratory of Hartford Hospital for
flow cytometric immunophenotyping between October,
2011 and March, 2014. The diagnosis of B lymphoblastic
leukemia was established in each case using standard
WHO criteria (21,22). Bone marrow suspensions con-
taining 2 3 106 cells were incubated within 12 h of
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their procurement with each of three validated cocktails
containing eight or nine fluorochrome-conjugated anti-
bodies [(23), Supporting Information Table 2] for 15
min at room temperature. Labeled samples were proc-
essed for flow cytometric immunophenotyping as
described previously (24). Up to 1 3 106 cells per sam-
ple were acquired using BD FACSCanto II flow cytome-
ters equipped with violet, blue, and red lasers running
BD FACS-Diva software v. 6.1.3 (BD Biosciences, San
Jose, CA). Instrument performance was verified daily
using the BD Cytometer Setup & Tracking Beads kit (BD
Biosciences). CD45-V500 was compensated using cellu-
lar controls as described previously (25). Compensation
of all other fluorochromes was performed using BD
CompBeads (BD Biosciences) according to the manufac-
turer’s instructions. Compensated list-mode data were
analyzed using WoodList 2.7.7. Doublets and other cellu-
lar aggregates were excluded using a display of FSC
peak area vs.FSC peak height, and viable cells were
gated using standard displays of FSC versus SSC (7,8).
Since all of our samples were procured locally, and proc-
essed within 12 h of procurement, a viability stain was
not found to be necessary to exclude dead cells. Detec-
tion of MRD by conventional manual gating (2,6,7,26)
was performed by one of us (JAD) without any knowl-
edge of the results obtained using viSNE. This study was
approved by the Institutional Review Board of Hartford
Health Care (Project #4214HU).

viSNE Analysis

cyt, an interactive visualization tool written in Matlab
(19), is available as a download with viSNE (http://
www.c2b2.columbia.edu/danapeerlab/html/cyt-down-
load.html). Matlab (8.1.0.604) was run using a MacBook
Pro (Mac OSX version 10.7.5). Viable singlet CD191 B
cells from each case were gated in WoodList, and
imported into cyt as FCS 2.0 files. Multiple samples are
needed to cover the range of behaviors observed with
normal bone marrow. Additionally, it is important to
include enough cells from each sample, so that rare nor-
mal precursor populations will be represented. How-
ever, computational burden increases with number of
cells. To balance the numbers of samples and cells with
computational burden, we used 10 different bone mar-
row samples from patients with no history of ALL, each
of which contributed �20,000 B cells. To enable direct
comparison among cell populations, all samples must be
simultaneously mapped by viSNE. For each sample eval-
uated, viSNE was run on all viable singlet B-cell files
from each of the three antibody combinations evaluated
(Supporting Information Table 2), together with the 10
control B-cell files from the corresponding antibody
combination. Files from the same 10 control samples
were used for all analyses. All eight fluorescent parame-
ters were incorporated into the analysis. The addition of
viable singlet B cells from each test sample to the nor-
mal reference files resulted in a total of �200,000–
250,000 cells to be mapped at a time, an order of mag-
nitude more than previously demonstrated (19). To over-

come both the computational and crowding burden
imposed by so many cells, we used a newly published
algorithm for t-SNE, the Barnes–Hut approximation (27),
which is currently included within the cyt software (set
as default). Typical run times for the generation of a t-
SNE map for �200,000–250,000 cells were �40 min.

RESULTS

A fundamental principle that enables MRD detection
by flow cytometric immunophenotyping is that leuke-
mic cells typically express a combination of antigens (or
composite immunophenotype) not observed in their
normal counterparts (1–3). In the case of B lymphoblas-
tic leukemia, basic phenotypic patterns of normal B-
lymphopoiesis have been well documented (20,28), and
with a suitable antibody panel, nearly all cases of B lym-
phoblastic leukemia are detectable by their abnormal
immunophenotype (often referred to as a leukemia-
associated immunophenotype) (6). In many studies,
post-treatment samples have been analyzed solely for
residual populations expressing the specific leukemia-
associated immunophenotype documented at the time
of diagnosis. More recently, it has become clear that
treatment may induce phenotypic changes in leukemic
B lymphoblasts (29); for instance, leukemic blasts
expressing both CD10 and CD34 at diagnosis may be
negative for both antigens after induction chemotherapy.
A more robust approach to immunophenotypic MRD
detection, which is neither subject to such treatment-
induced immunophenotypic modulations, nor requires
prior knowledge of the specific diagnostic immunophe-
notype, is to identify B-cell populations whose compos-
ite immunophenotypes differ from those characteristic
of normal B-cell precursors (7,28). Since viSNE plots
healthy and leukemic marrows to distinct areas of 2-
dimensional maps representing high-dimensional immu-
nophenotypic data, and is capable of detecting rare pop-
ulations with distinct immunophenotypes (19), we
hypothesized that viSNE might facilitate identification of
MRD populations as phenotypically different from nor-
mal B-cell precursors.

In conventional immunophenotypic MRD analysis,
post-treatment samples are compared visually with iden-
tically stained normal B-cell precursors using a large
series of 2-dimensional dot plots (7,24,26,28). To distin-
guish potential MRD populations from normal B-cell pre-
cursors with viSNE, one only needs to generate a single
2-dimensional map for each antibody combination. For
each of the three 8-color antibody-staining combinations
employed (A–C, Supporting Information Table 2), we
used viSNE to create a 2-dimensional map of normal
bone marrow B cells. Since a single normal reference
sample would be unlikely to encompass all of the poten-
tial high-dimensional immunophenotypic diversity seen
among individual patients, we created a composite map
incorporating normal bone marrow B cells from multi-
ple individuals. In a series of initial experiments, both
the number of normal samples used to construct the
maps, and the number of normal B cells per sample
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were varied. Reproducible results were obtained using
10 normal samples (“Control Cases,” Supporting Infor-
mation Table 1), each with �20,000 B cells; we there-
fore established that as our standard.

The normal viSNE map obtained for one of the three
antibody combinations (tube A) is shown in Figure 1.
Note that the map has a structure, and that each of the
10 control samples conforms to that structure (Fig. 1A).
Furthermore, there is extensive mixing of cells, such
that each region of the map comprises cells from multi-
ple control samples from different individuals (Fig. 1A).
As shown in Figure 1B, the structure of the map reflects
the patterns of antigens expressed by the cells in any
given region; despite the contribution of multiple sam-
ples to each region of the map (Fig. 1A), antigenic
expression in each region is homogeneous (Fig. 1B). In
aggregate, the control samples faithfully recapitulate
expected patterns of normal B-lymphopoiesis, including
the least-mature B-cell precursors (with high expression
of CD10 and CD34, and low expression of CD45),
mature B cells (with low expression of CD10 and CD38,
and high expression of CD22), as well as intermediate
forms (Fig. 1B). As expected, individual control samples
are non-uniformly represented among different matura-
tional stages; for example, control sample 1 contains rel-
atively few mature B cells, and instead contributes cells
predominantly to regions corresponding with the least-
mature and intermediate forms (Fig. 1A).

Pairwise immunophenotypic relationships that exist
among individual cells in high-dimensional space are con-
served in 2-dimensional viSNE maps (19), and as noted
above, leukemic B-lymphoblasts typically differ pheno-
typically from normal B cells. We therefore tested
whether leukemic B-lymphoblast populations would
occupy a unique space in the resulting viSNE map when
analyzed in conjunction with the 10 control samples. As

illustrated in Figure 2A using four representative patients’
diagnostic bone marrow samples, leukemic B-lymphoblast
populations occupy a unique space in their respective
viSNE maps, which is distinct from the space occupied
by normal B cells. These results are in keeping with
those reported previously using whole bone marrow sam-
ples (19). However, we demonstrate here that eight sur-
face antigens are sufficient to achieve distinct separation,
whereas such separation was previously demonstrated
with 31 markers (19). In Figure 2B, the viSNE map incor-
porating one of the leukemic samples (ALL 1, circled) is
colored for expression of several antigens. In this exam-
ple, the leukemic population expresses CD34, CD49f,
and CD58 at higher levels than the normal B cells (Fig.
2B). Having used viSNE to facilitate the characterization
of abnormal antigen expression in the leukemic popula-
tion, we can now visualize these abnormally expressed
antigens in a conventional 3-dimensional plot; indeed,
abnormally increased expression of these three antigens
by the leukemic cells relative to normal B cells is also
apparent in the 3-dimensional dot plot (Fig. 2C).

In some instances, the phenotype of leukemic B-
lymphoblasts may differ substantially from that of their
normal B-cell counterparts, yet display partial immuno-
phenotypic overlap with normals. Such a relationship is
reflected in the viSNE map illustrated in Figure 3A. In
this example, the leukemic cells occupy a space in the
map that is distinct from a preponderance of the normal
B cells, but rare normal B cells (enlarged) nonetheless
map to the leukemic rather than normal B-cell space.
Since the viSNE map reflects high-dimensional pairwise
distances among all cells included in the analysis (both
normal and abnormal), the inclusion of leukemic cells
in the analysis should affect the two-dimensional loca-
tion of individual normal cells in the resulting map. Spe-
cifically, the presence of a prominent abnormal (i.e.,

FIG. 1. viSNE map of normal bone marrow B cells labeled with a single 8-color antibody combination (tube A). Panel A: Each of the 10 control
bone marrow samples used to construct the map (C1 through C10) is identified individually with a unique color. Each point in the viSNE map repre-
sents an individual cell colored by sample identity. Panel B: viSNE map shown in Panel (A), in which each cell is colored to reflect intensity of anti-
gen expression for six different markers in tube A. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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leukemic) population would be expected to increase
the number of repelling forces pushing normal cells
away from that region of the map, whereas a smaller
number of cells (i.e., �1–3) may fail to create such sepa-
ration. This finding recapitulates an observation made
initially with a synthetic MRD sample, in which the sus-
pect region in the viSNE map containing ALL cells
included rare normal cells (19). The basis for this over-
lap of rare normal cells with leukemic cells in the viSNE
map is illustrated in the dot plot in Figure 3B, in which
it is apparent that these rare normal B cells are more
phenotypically similar to a subset of leukemic cells than
to any of the remaining normal B cells. This observation
has implications for MRD detection using viSNE. Specifi-
cally, the presence of rare normal cells within a suspect
region in the viSNE map does not preclude identification
of leukemic cells in that region, provided that the

region contains a distinctly identifiable population of
cells with an abnormal immunophenotype.

Having established viSNE maps for normal bone mar-
row B cells and demonstrated that leukemic B-cell popula-
tions with abnormal composite immunophenotypes
occupy spaces distinct from normal B cells in viSNE
maps, we sought to test whether rare MRD populations
would also be distinguished from normal B cells by viSNE.
For each of 14 samples in which a suspect MRD popula-
tion had been identified by manual gating, we generated
viSNE maps for three different 8-color antibody combina-
tions in conjunction with their corresponding identically
stained control samples. Representative examples of these
analyses are illustrated in Figure 4. In the cases illustrated
(Fig. 4), most of the B cells from the suspect files localize
to regions of the viSNE maps that are also populated by
normal B cells from the control files. In addition, though,

FIG. 2. Leukemic B-lymphoblast populations occupy different regions of the viSNE map from normal bone marrow B cells. Panel A: viSNE maps
for leukemic B-lymphoblast populations from four different patients (ALL 1 through ALL 4) run concurrently with identically stained B cells from 10
control bone marrow samples (C1 through C10). As in Figure 1, each cell is colored to reflect sample identity. Panel B: viSNE map of leukemic B-
lymphoblasts from ALL 1 and B cells from 10 control bone marrow samples colored for antigen expression (tube B). The location of the leukemic B
cells is shown by the circle. Panel C: Data from Panel (B) are shown in a conventional 3-dimensional dot plot, in which the axes represent expression
of the three most discriminatory antigens. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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each suspect file contains a population that does not
localize to an area of the viSNE map populated by control
B cells (Fig. 4). In conventional 3D-dot plots, these outlier
populations represent clusters of cellular events, whose
composite immunophenotypes differ from those of the
normal B cells in patterns typical of leukemic B-
lymphoblasts (Fig. 4). For example, abnormally increased
expression of CD10 and CD86, and diminished expression
of CD38, as seen in Figure 4A, are common phenotypic
aberrancies in B lymphoblastic leukemia (6,7).

Of the 42 viSNE maps generated from the 14 MRD-
containing samples stained with three different antibody
combinations, a putative MRD population residing out-
side of regions populated by normal B cells was present
in 34 (Table 1); in each instance, an abnormal immuno-
phenotype consistent with MRD was verified by visual
inspection of dot plots, as illustrated in Figure 4. (The
cyt software enables one to identify uniparametric differ-
ences between two populations (e.g., the putative MRD
highlighted by viSNE and normal), thereby highlighting
the distinguishing features of such populations, and facil-
itating rapid generation of the most relevant conven-
tional dot plots.) Note also that multiple cells that are
phenotypically similar in high-dimensional space may be
represented in the 2-dimensional viSNE map as very
close together (Fig. 4A) or overlapping (Figs. 4B and
4C). Importantly, in each of the 14 MRD-containing sam-
ples, viSNE distinguished a putative MRD population
with at least one of the three antibody combinations
(Table 1). Whereas the manual identification of candi-
date MRD populations is an iterative process, requiring
the examination of multiple 2-dimensional dot plots by a
trained analyst to recognize potential MRD populations
with abnormal phenotypic features, a single 2-
dimensional viSNE plot was capable of segregating each
of these abnormal immunophenotypes, demonstrating
the ability of the algorithm to detect “different from nor-
mal” across a wide range of phenotypes.

Although viSNE distinguished a putative MRD popula-
tion in each of the 14 MRD-containing samples with at
least one of the three antibody combinations, in some
instances, the algorithm failed to detect an abnormal
population in individual tubes in which MRD was
detectable by manual gating. In some of these instances,
the most discriminatory phenotypic abnormalities were
not evaluated in the tube in question, and MRD was
only recognizable by manual gating through inference.
For example, in Case 9, aberrant phenotypes sufficiently
distinct from normal B-cell precursors to permit defini-
tive characterization as MRD were only demonstrable in
tubes B and C. In this case, overexpression of CD49f (in
tube B) and CD86 (in tube C) clearly distinguished an
abnormal B-cell population, which was further charac-
terized by CD10 expression and dim CD45 expression.
Although no specific phenotypic aberrancies diagnostic
of MRD were revealed by the antibodies included in
tube A, the 694 cells identified by manual gating (Table
1) were nonetheless recognizable in tube A inferentially,
by virtue of their shared phenotypic features [i.e.,
CD101/CD45(dim)1] with the corresponding popula-
tion in the other tubes, in which definitive aberrant phe-
notypes [i.e., overexpression of CD49f and CD86 in
tubes B and C, respectively] were demonstrable. In this
case, therefore, it is not surprising that viSNE detected
an abnormal population in tubes B and C, but not in
tube A. In other cases, the precise reason for the failure
of viSNE to detect the abnormal population was unclear.
For example, in case 14, viSNE failed to detect an abnor-
mal population in tube C, in which overexpression of
CD86 readily permitted direct manual identification of a
population of 103 cells.

The suspect MRD populations in these 14 samples
comprised between 0.001% and 0.7% of viable single
cells in the original samples. Since the total number of
viable bone marrow cells obtained from different
patients’ samples also varies, the actual number of MRD

FIG. 3. Normal bone marrow B cells may display partial immunophenotypic overlap with leukemic B-lymphoblast populations. Panel A: viSNE map
showing co-localization of rare normal B cells from several different control samples with a single leukemic B-lymphoblast population. Panel B: Data
from Panel (A) are shown in a conventional 3-dimensional dot plot, illustrating the phenotypic similarity between the rare normal B cells that co-localize
with the leukemic B-lymphoblasts in the viSNE map. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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cells varies widely among the different samples eval-
uated (Table 1). As shown in Figure 5, the number of
putative MRD cells identified by viSNE correlated well
with the number of cells that had been previously iden-
tified as MRD by manual gating (r2 5 0.99; two-tailed
P< 0.0001). Moreover, in two different samples, MRD
populations comprising as few as six cells were
detected by viSNE (Table 1). For comparison, visual
identification of cellular populations comprising fewer
than 10–20 cells is technically difficult (7,30).

To evaluate the specificity of abnormal population
identification by viSNE, we studied seven bone marrow

samples from patients with no history of B lymphoblas-
tic leukemia (“Negative Controls,” Supporting Informa-
tion Table 1), eight samples from patients with B lym-
phoblastic leukemia in remission who had no detectable
MRD by conventional manual gating (“No detectable dis-
ease in bone marrow,” Supporting Information Table 1),
and three samples from a patient with B lymphoblastic
lymphoma who had no detectable leukemic blasts in the
bone marrow by conventional manual gating (“No
detectable disease in bone marrow,” Supporting Informa-
tion Table 1). Each sample was stained with the identi-
cal 8-color antibody combinations used for MRD

FIG. 4. viSNE detects rare populations with abnormal immunophenotypes consistent with MRD. Left: viSNE maps from three different patients’
samples in which MRD had been detected by manual gating (Panel (A) MRD case 10, tube C; Panel (B) MRD case 4, tube C; Panel (C) MRD case
3, tube A). In each panel, the post-treatment sample containing the candidate MRD population is identified in red. In each case, most of the B cells
from the post-treatment sample (red) co-localize with normal B cells from the 10 control samples (each identified with a unique color as in the
legend). In addition, an outlier population is detected in each of the post-treatment samples (arrows), which occupy a region of the map different
from the normal B cells. Right: The outlier population from each patient’s post-treatment sample (red) is plotted against normal B cells from the 10
control samples (again identified with a unique color as in the legend) in conventional 3-dimensional dot plots, in which the axes represent expres-
sion of the three most discriminatory antigens. In each case, the outlier population detected by viSNE displays an abnormal composite immunophe-
notype consistent with MRD. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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detection, and viSNE maps were generated in conjunc-
tion with the 10 control samples, as with the MRD-
containing samples. No outlier populations were identi-
fied in 17 of the 21 viSNE maps generated from patients
with no history of B lymphoblastic leukemia; a represen-
tative map is illustrated in Figure 6A (left panel). Simi-
larly, no outlier populations were identified in 22 of the
24 viSNE maps generated from patients with B lympho-
blastic leukemia in remission, or in eight of the nine
maps generated from a patient with B lymphoblastic
lymphoma without detectable marrow involvement; a
representative map is illustrated in Figure 6A (right
panel).

Outlier populations were identified in 7 of the 54
maps generated. In three of these samples, the outlier
population comprised a single cell, and therefore could
not be confirmed as a distinct cell population; as noted
above, a population consisting of at least 10 cells with

an abnormal immunophenotype is generally required for
reliable identification (30). In the remaining four sam-
ples, no outlier population comprised [mt]4 cells. The
map containing the largest outlier population (4 cells) is
shown in Figure 6B (left panel). These cells express a
mature composite immunophenotype, with bright
expression of CD20, CD22, and CD45, and absence of
CD10 and CD34; in conventional dot plots, the outlier
population cannot be distinguished from normal B cells
(Fig. 6B, right panel). Likewise, in no instance did any
of these small outlier populations display an abnormal
composite immunophenotype consistent with MRD.
These data indicate that outlier populations segregated
by viSNE as “different from normal” must still be con-
firmed to express an abnormal composite immunophe-
notype consistent with MRD before being classified
definitively as such. viSNE comes accompanied with cyt

and an interactive tool that automatically identifies dif-
ferences in the expression of individual antigens
between populations of interest in the viSNE map (e.g.,
between an outlier population and normal controls),
thereby facilitating the process of confirmation of a
putative outlier population as MRD.

DISCUSSION

We demonstrate here for the first time in clinical sam-
ples facilitated immunophenotypic detection of MRD in
B lymphoblastic leukemia using viSNE. It is well estab-
lished that the presence of MRD following treatment is
among the strongest prognostic factors in patients with
B lymphoblastic leukemia (1,2), and contemporary pro-
tocols employ MRD detection to stratify patients more
precisely for risk-adapted therapy (3,4). However, the
expertise and experience required for accurate immuno-
phenotypic MRD detection have limited its implementa-
tion in multicenter studies to a relatively small number
of reference laboratories (3,4,6). Moreover, despite
efforts to standardize immunophenotypic MRD detection
(9–12), interlaboratory concordance for MRD levels
below 0.1% has been problematic (9), and much of the

Table 1
Number of Cells in MRD Populations as Identified by Manual Gating and viSNE

MRD sample Tube A manual Tube A viSNE Tube B manual Tube B viSNE Tube C manual Tube C viSNE

1 557 596 536 573 485 487
2 4 ND 6 6 7 7
3 8 8 6 6 4 ND
4 61 57 61 61 69 68
5 22 ND 41 ND 14 14
6 549 610 445 512 424 480
7 256 257 292 296 304 302
8 63 61 58 58 67 69
9 694 ND 701 684 652 592
10 243 240 259 258 266 264
11 8 ND 19 ND 11 11
12 79 86 65 64 57 72
13 31 27 32 30 35 35
14 148 113 162 138 103 ND

ND: not detected.

FIG. 5. Correlation between the number of putative MRD cells identi-
fied by viSNE and conventional manual gating (r2 5 0.99; two-tailed
P<0.0001). [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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interlaboratory discordance has been attributed to dis-
crepancies in data analysis (11).

Automated data analysis represents one potential solu-
tion to the challenges posed by immunophenotypic
MRD detection. Numerous automated methods for clus-
tering subpopulations within multiparametric data sets
have been developed [reviewed in Ref. 13)], but these
methods are insufficiently sensitive to detect MRD popu-
lations. In one study, a combination of hierarchical clus-
tering analysis and SVM learning was used in an attempt
to automate MRD detection. However, distinction of
MRD from regenerating normal B-cell precursors (hema-
togones) was problematic for the SVM classifier (17).
More recently, viSNE, a computational tool based on the
t-SNE algorithm (18), was shown to be capable of
detecting a synthetic “MRD-like” population of leukemic
cells created in vitro by dilution of a leukemic bone mar-
row sample into a normal bone marrow sample (19).

Although viSNE has been shown to be capable of
detecting a synthetic “MRD-like” population of leukemic
cells (19), this synthetic example fails to take into
account several of the potential challenges inherent in
MRD detection in clinical samples. For example,
whereas the target population represented 0.25% of all
cells in the synthetic example (19), a sensitivity of at
least 0.01% (and up to 0.001% with newer markers) is
standard in clinical MRD detection (1,2,6). The incorpo-
ration of a newly-published algorithm for t-SNE [the
Barnes–Hut approximation (27), which is currently
included within the cyt software] has overcome both
the computational and crowding burden imposed by the
large numbers of cells required for MRD detection.
Indeed, we have shown here that viSNE is capable of
accurately identifying MRD populations comprising as
few as six cells, and representing as little as 0.001% of
viable cells in clinical samples. In this regard, it should

FIG. 6. Specificity of abnormal population identification by viSNE. Panel A: Representative examples of viSNE maps from a patient with no history
of B lymphoblastic leukemia (left, negative control 2, tube A) and a patient with B lymphoblastic leukemia after treatment in whom no MRD was
detectable by manual gating (right, no detectable disease in bone marrow 7, tube A). No candidate MRD populations are identified. Panel B: Left: A
candidate outlier population in the viSNE map from a patient with B lymphoblastic lymphoma but no detectable leukemic B-lymphoblast population
in bone marrow by manual gating (no detectable disease in bone marrow 9, tube A). Right: In a conventional 3-dimensional dot plot, the candidate
population (red) is indistinguishable from normal bone marrow B cells, and cannot be confirmed as MRD. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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be noted that the visual identification of cellular popula-
tions comprising fewer than 10–20 cells is technically
difficult (7,30).

Since viSNE takes into account differences in all
dimensions simultaneously, it may potentially be more
sensitive than manual gating when identifying small
(i.e., <10 cells) abnormal populations. Determination of
the minimum number of events required for reliable
detection of an abnormal population by viSNE, though,
would require comparison with an alternate method,
such as next-generation sequencing (31). Moreover, the
minimum number of events required for reliable detec-
tion of an abnormal population by viSNE would likely
be affected by the degree of phenotypic differences
between the abnormal population and the control cells
within the context of each antibody combination eval-
uated; determination of this detection limit would there-
fore require extensive testing, which is beyond the
scope of this study. Nonetheless, in the example illus-
trated in Figure 4C (Case 3, tube A), we have performed
preliminary experiments to address the detection limit
of viSNE. We randomly subsampled the MRD popula-
tion, which comprised eight cells, to represent four
cells, two cells, or one cell. We then subjected each sub-
sample to analysis by viSNE in conjunction with the 10
standard control samples. We found that the subsample
containing four putative MRD cells still appeared as an
outlier in the resulting viSNE map, whereas neither the
2-cell nor 1-cell subsamples was distinguished from nor-
mal in the corresponding viSNE maps.

Other potential challenges inherent in MRD detection
in clinical samples not reflected in the synthetic exam-
ple include the presence within regenerating bone mar-
row of normal B-cell precursors (20), the wide spectrum
of abnormal immunophenotypes encountered in clinical
practice, and day-to-day variability in instrument and rea-
gent performance. In spite of these potential pitfalls, our
data demonstrate the ability of viSNE accurately to iden-
tify MRD populations in clinical samples. Normal B-cell
precursors in samples from patients with ALL, and indi-
viduals with no history of leukemia were appropriately
classified by the algorithm as being similar to their coun-
terparts in the normal viSNE map. Furthermore, MRD
populations were correctly identified in all 14 samples
from 10 different patients, each with a different abnor-
mal composite immunophenotype. Finally, in spite of
efforts to minimize variability in the day-to-day perform-
ance of instrumentation and reagents (8), it remained
possible that the algorithm might be sensitive to slight
technical perturbations that are not, in fact, indicative of
an abnormal immunophenotype. That our data were
acquired over a time frame in excess of two years, yet
no such technical artifacts were detected, indicates that
the sensitivity of viSNE to differences in phenotype does
not preclude its use in the setting of a clinical laboratory
employing routine quality-assurance measures.

Although this study demonstrates in principle that
viSNE may facilitate MRD detection in clinical samples,
it will be important to confirm these findings in a sepa-

rate cohort. Since cyt (which includes viSNE) is freely
available as a download (http://www.c2b2.columbia.
edu/danapeerlab/html/cyt-download.html), this
approach may easily be applied to any existing large
data sets from cooperative groups or other large collabo-
rative efforts. Moreover, since the ability of the algo-
rithm to distinguish abnormal from normal depends
upon the precise antibody combination used, it will be
of interest to evaluate this approach using different anti-
body panels. Newer instruments approved for clinical
use are capable of 10-color analysis, enabling the incor-
poration of additional discriminatory markers per tube
in addition to those required for standard gating (2); the
number of available parameters is expected to increase
further as the technology advances. A key advantage to
viSNE is that it is designed to deal with higher dimen-
sionality, and can easily accommodate 50 markers (we
note that 50 markers result in 1,225 biaxial plots, which
would be daunting for any expert). The incorporation of
additional discriminatory markers is likely to improve
the specificity of candidate MRD population identifica-
tion by viSNE.

In this context, it is important to note that viSNE
does not entirely replace the requirement for an analyst
in immunophenotypic MRD detection. Detection of
MRD by manual gating fundamentally includes two dis-
tinct steps: identification of candidate populations, and
confirmation that a given candidate population in fact
represents a population of leukemic blasts rather than a
technical artifact (e.g., non-specific staining). The first
step, identification of candidate MRD populations, is
time-consuming, requiring visual inspection of many 2-
dimensional dot plots for potential outlier populations,
and is subject to false-negative errors. It is this first step
that is facilitated by viSNE. As with manual gating,
though, the candidate outlier populations identified by
viSNE proved not to represent actual MRD in a minority
of instances. This observation indicates that, at least
with the antibody combinations and control samples
employed in this study, confirmation of candidate popu-
lations detected by viSNE as actual MRD is required. It
is possible that the specificity of detection might
increase with the inclusion of additional control samples
from patients of widely varying ages. Nonetheless, the
availability of a sensitive automated screening method
for candidate MRD populations should facilitate more
widespread implementation of immunophenotypic MRD
detection in clinical flow cytometry laboratories.

Finally, although this study has focused on facilitated
immunophenotypic MRD detection in B lymphoblastic
leukemia, flow cytometry is also used to detect MRD in
other hematolymphoid malignancies, including acute
myeloid leukemia (32), chronic lymphocytic leukemia
(33), and plasma cell myeloma (34). As in ALL, immuno-
phenotypic MRD detection in these other malignancies
relies upon the identification of abnormal composite
immunophenotypes, which differ from those seen in
their respective normal cellular counterparts. The general
approach used in this study, including the generation of a
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reference viSNE map with a series of normal samples,
may also serve as a model for analysis in these different
systems. Further study is warranted to test the applicabil-
ity of viSNE in these and other settings.
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