
Extended Experimental Procedures and Tables S1, S4, and S5 

1 Helios Overview 
Helios is a novel Bayesian algorithm that integrates information from heterogeneous data 
sources to identify driver genes within the complex landscape of somatic copy number 
alterations (SCNAs) of cancer.  

Our approach proceeds in two steps (Figure 1A). First, our novel ISAR algorithm identifies 
regions of significant SCNA in the genome. Second, our novel Helios algorithm pinpoints the 
most likely driver gene within each such significant region.  

ISAR estimates the significance of the alterations harbored by a marker based both on 
frequency and the background alteration rate at that genomic location. Instead of computing 
significance based on a genome-wide alteration rate (ref GISTIC), ISAR employs a local window 
to estimate the significance of the alteration with respect to its genomic location. Note that ISAR 
is completely decoupled from Helios and therefore could be substituted with any algorithm that 
identifies significant SCNA regions  (Mermel, Schumacher et al. 2011), (Walter, Nobel et al. 
2011), (Yuan, Yu et al. 2012, Yuan, Zhang et al. 2012) without any further modifications to 
Helios. 

SCNA regions are typically large and it is therefore necessary to perform further analysis to 
pinpoint the target of the amplification. Unfortunately, in many cases, copy number alone is 
insufficient to pinpoint driver genes within altered regions. We utilize a Bayesian integrative 
model to incorporate cues from different genetic and genomic data types to distinguish driver 
from passenger genes. By combining features from different sources, signals that are 
individually insufficient, together could provide strong evidence of the oncogenic role of a gene. 

The problem may be stated as binary classification in which a set of features is used to classify 
genes as either drivers or passengers. The standard setup for a classification problem requires 
a list of positive and negative examples, drivers and passengers in our system, to train the 
model. Unfortunately, the list of known oncogenic drivers is relatively small and strongly biased. 
Instead, Helios takes an unsupervised approach, harnessing a key property of drivers: drivers 
tend to have higher frequency of copy number aberration.  

2 ISAR 
We developed ISAR, an algorithm for detecting regions of statistically significant recurrent 
SCNAs in cancer. ISAR is based on the G-score metric, a significance measure of the 
aberration for each marker, which was originally defined in GISTIC (Beroukhim, Getz et al. 
2007). Specifically, the G-score for a marker m is the summation of the copy number across 
samples that surpass an aberration threshold θ. Therefore, given the copy number for N 
samples, the G-score for a marker m in the case of amplifications is: 
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Where CN(m,i) is the copy number of marker m in sample i and I is the indicator function.  

State of the art algorithms like GISTIC2 compute a null distribution across the entire genome to 
estimate the significance of the alterations harbored by each marker. However, the alteration 
rate can strongly differ across genomic regions, due to features such as DNA secondary 
structure and DNA hypomethylation (De and Michor 2011). ISAR accounts for local differences 
in the alteration rate due to these and other unknown forces by scoring the significance of each 
alteration locally.  

ISAR uses a local sliding window of constant size that moves along the chromosome, 
calculating the null distribution for each window. The use of a window allows the algorithm to 
estimate the local distribution of alterations and assign an accurate q-value to each marker 
based on its local distribution. Once the distribution has been computed in all windows within a 
chromosome, each genomic marker is associated with several overlapping windows. The 
algorithm takes a conservative approach by selecting the least significant q-value among the 
values computed for all overlapping windows containing the marker. By computing the 
significance locally, the algorithm is capable of identifying subtle events, such as a significant 
focal amplification within largely deleted regions, which would be missed if the background 
distribution for the whole genome were employed. For example, the pattern of alterations 
displayed by BCL2 in breast cancer becomes significant when you consider the background 
alteration levels of its region (Figure S1).  

The algorithm is sensitive to the selection of the window size. Different window sizes are 
adequate for capturing events of different granularity: large windows tend to detect regions 
harboring large aberrations while small windows perform better in regions with small focal 
alterations. Therefore, ISAR is executed with several window sizes and the final score for each 
marker, denoted S-score, is the most significant q-value among the different window sizes. 

 𝑆(𝑚) = max
𝑖∈𝑊

−𝑙𝑙𝑙10(𝑞𝑞𝑞𝑙𝑞𝑞𝑖(𝑚)) Eq. 2 
 

Where W is the set of window sizes used and qvaluei(m), denotes the qvalue of marker m, 
using window size i.  

Once the S-score has been computed for each marker, it is straightforward to define 
significantly altered regions. Each marker scoring above the user-defined peak threshold TP is 
considered part of a region of alteration. These regions are extended to consecutive markers 
with a score above a user-defined region threshold TR. Typical values for TP are selected to 
match a q-value for the local window of 0.01-0.001 (TP=2=-log10(0.01) - TP=3=-log10(0.001)), 
while TR is usually selected to match a slightly higher q-value, in the range of 0.1-0.01 (TR=1=-
log10(0.1) – TR=2=-log10(0.01)). 



2.1 Analyzing TCGA breast cancer data with ISAR 
We used ISAR to analyze the amplification landscape of 785 breast cancer samples collected 
by the TCGA project using Affymetrix 6.0 SNP arrays  (TCGA 2012). The segmented data was 
preprocessed to remove common CNVs and obvious technical artifacts. The total execution 
time was 4 hours on a laptop equipped with an Intel i7-2620M 2.7GHz processor and 8 GB of 
RAM. For this analysis, windows sizes of 4000, 5000, 6000 and 7000 markers were used and 
the window shift was set to 1/8 of the window size. TP was set to 2 and TR was set to 1. We 
used default values for the parameters shared with GISTIC (aberration thresholds=[0.15,-0.15], 
aberration caps=[2.0,-2.0], bin size=0.01). 

A few post-processing steps are performed to ensure the quality of the detected regions. 
Adjacent regions closer than 250k base pairs were merged. Extremely small regions 
(size<10bp) were filtered out, as those are possibly due to artifacts. Regions that include the 
edges of the chromosomal arms were also discarded, as the statistical significance of the 
alteration in those regions is usually overestimated due to the difficulty of creating a null 
distribution for these locations of the genome 

ISAR obtained 83 regions of significant SCNA (Table S1). On average these regions span 1256 
Kb and contain 15 genes.  

3 Helios: Bayesian integration for identifying drivers 
Once the regions of significant SCNA have been detected, Helios uses an integrative Bayesian 
approach to rank the driver genes within each region. Helios uses a hierarchical Bayesian 
mixture model to distinguish drivers from passengers among the genes present in significantly 
altered regions. The unsupervised Bayesian algorithm discriminates driver genes (T=1) from 
passenger genes (T=0) by integrating the copy number alteration information (SCNA), with cues 
from different data sources (X). The hierarchical framework naturally separates these two 
components using the following model: 

 𝑃(𝑆𝐶𝐶𝑆) = � 𝑃(𝑆𝐶𝐶𝑆|𝑇 = 𝑡)𝑃(𝑇 = 𝑡|𝑋)
𝑡∈0,1

 Eq. 3 

 

Instead of predicting the classification as driver or passenger directly, the system learns by 
maximizing the likelihood of the observed copy number landscape (P(SCNA)). The graphical 
model has two components, one formalized as a classification 𝑃(𝑇 = 𝑡|𝑋) and a second that 
uses this classification to predict copy number. The assumption is that once the status of a gene 
as driver or passenger is given (T=0 or T=1), the frequency of alteration (𝑆𝐶𝐶𝑆) becomes 
independent from other predictive features (X). In summary, the approach separates the 
modeling of copy number (𝑃(𝑆𝐶𝐶𝑆|𝑇 = 𝑡)) from other sources of information (𝑃(𝑇 = 𝑡|𝑋)) while 
focused on the predictive task of the observed copy number landscape (𝑃(𝐶𝐶𝑆)).  

The algorithm iteratively fits a model for each part: 𝑃(𝐶𝐶𝑆|𝑇 = 𝑡) and 𝑃(𝑇 = 𝑡|𝑋) and updates 
the estimations (P(T)) for each gene taking both parts into account. The algorithm continues to 



iterate until the model converges into a stable solution incorporating all the information into a 
single probability score for each gene.  

Figure S2A shows the graphical model for Helios, where N genes are classified by combining 
the information from different data sources X and SCNA. w represents the parameters that 
control the integration of X, while λ parameterizes the influence of T on SCNA. In this model, 
when the values Tn for each gene n are given, the parameters for the different sources (W) and 
copy number (λ) are independent. This property makes it possible to fit the model efficiently 
using the Expectation Maximization (EM) algorithm. 

3.1 Modeling copy number  
A widely used approach to pinpoint driver genes within significantly altered copy number regions 
involves defining a minimal region of maximal alteration, called the peak region. While useful 
(Zender, Spector et al. 2006, Weir, Woo et al. 2007, Bass, Watanabe et al. 2009, Beroukhim, 
Mermel et al. 2010), this approach is insufficient for a number of reasons: (1) Even with a very 
stringent threshold, the minimal region of alteration can be fairly large and still contain multiple 
genes. (2) In many cases, the driver is not in the peak region, such as ADAM15 or BCL2 in the 
TCGA breast cancer dataset (3) While this approach assumes that each SCNA region is 
contains one driver gene, some regions may target several drivers while other regions might not 
contain a single driver gene because they target other regulatory elements (miRNA, lncRNA,…) 
or simply because they are the result of other forces that affect the rate of DNA breakpoints, 
such as genomic structure.  

Helios considers the entire significantly altered region, but prioritizes the genes within each 
region using a Bayesian approach that makes explicit the uncertainty about the actual target/s 
of the SCNA. To achieve such prioritization, Helios uses additional sources of information to 
distinguish between genes which have equivalent copy number statistics and moreover the 
highest scoring gene need not be in the peak region. Finally, Helios can give a high score to 
more than one gene per region, or give low scores to all genes in a region.  

Helios aims to model a distribution of SCNA that reflects the differences between driver and 
passenger genes, independent of the chromosomal region. However, in contrast to the subtle 
differences in SCNA within each altered region, the distribution of alterations differs dramatically 
between regions. Indeed, the median difference in G-score between genes in a region is 
significantly smaller (172) than the difference for genes across different regions (6405). Thus, 
without appropriate normalization, the G-score should not be used to prioritize drivers across 
regions. Ideally, instead of modeling the absolute number of alterations (which is dominated by 
the strongest alterations in the genome), we would like to model whether the gene is among the 
most altered genes in its own region (and therefore more likely to be the driver of that region). 
We therefore define a relative metric that measures the difference of each gene’s G-score to the 
highest G-score in each region. That is, for a single gene g, we define the GSDist score as: 

 𝐺𝑆𝐺𝑖𝐺𝑡(𝑙) = max
𝑗∈𝑟𝑟𝑟𝑖𝑟𝑟(𝑟)

(𝐺𝐺𝐺𝑙𝐺𝑞(𝑗) − 𝐺𝐺𝐺𝑙𝐺𝑞(𝑙)) Eq. 4 
 



The most altered gene(s) in a region will have GSDist=0, while any other gene will have a 
positive value that indicates the “delta” in terms of G-score to the most frequently amplified gene 
in the region. Note that traditional approaches would use a threshold on this metric to make a 
hard decision on whether genes in the altered region are peak genes (Figure 2A). Instead 
Helios models this metric using two exponential distributions (one for drivers and one for 
passengers): 

 𝑃(𝑆𝐶𝐶𝑆|𝜆𝑡) = 𝜆𝑡𝑞−𝜆𝑡𝐺𝐺𝐺𝑖𝐺𝑡 Eq. 5 
 

This model is based in the following intuition: the perturbation of driver genes provides a fitness 
advantage to cancer and therefore driver genes are likely to be among the most altered genes 
of their region, which translates into a GSDist distribution that exponentially decreases from 
zero with small variance. Passenger genes, on the other hand, have no evolutionary pressure to 
be selected for alteration and therefore can be modeled by a uniform distribution, which is 
approximated by an exponential distribution with large variance. This prior information on the 
variances of the two distributions is encoded into the algorithm through conjugate priors for 𝜆𝑡. 
Considering a Gamma function for the prior distribution for 𝜆𝑡, the posterior probability for 𝜆𝑡 
belongs to the following Gamma distribution: 

 𝑃(𝜆𝑡|𝑆𝐶𝐶𝑆) = 𝐺𝑞𝑚𝑚𝑞(𝛼𝑡 + �𝑃𝑟(𝑇 = 𝑡)
𝑟

,𝛼𝑡 ∗ 𝛽𝑡 + �𝑃𝑟(𝑇 = 𝑡)𝐺𝑆𝐺𝑖𝐺𝑡(𝑙)
𝑟

) Eq. 6 

 

3.2 Modeling additional sources of information 
In most cases, the information extracted from copy number alone, is insufficient to pinpoint 
driver genes within altered regions. Helios overcomes this problem by incorporating cues from 
additional data sources that can facilitate the discrimination of driver genes from passenger 
genes. Helios’s major strength is its ability to combine multiple weak pieces of evidence from 
heterogeneous data types to provide a strong indication of the oncogenic role of a gene. 

The great challenge of data integration is to provide a unified framework to utilize all the data, 
despite the disparate nature of the features involved. In Helios, the information is unified by the 
function 𝑃(𝑇|𝑋) that combines cues from all data sources into a single score. From the 
computational standpoint, 𝑃(𝑇|𝑋) is a binary classifier that uses a set of features (X) to estimate 
whether the gene is driver (T=1) or passenger (T=0).  

The features X are extracted from a diversity of data sources such as functional screens, gene 
expression and DNA sequencing. Features do not only help raise confidence in candidates, but 
also help to discard unlikely candidates. Indications like an unexpected frequency of point 
mutations or the oncogene addiction measured in shRNA screens can reinforce our confidence 
in driver candidates. While signals like the absence of variation in gene expression can help the 
algorithm discard passenger genes. We will describe the function 𝑃(𝑇|𝑋) in greater detail after 
detailing some of the specific features X.  



3.3 Features used in the Helios algorithm 
The datasets are processed to extract features that can facilitate the identification of driver 
genes and distinguish these from passenger genes in SCNA regions. Some features, such as 
the significance of the number and location of point mutations harbored by a gene, are based on 
a single data type (DNA-sequencing), while others, like the score for oncogene addiction, are 
computed based on a combination of data types (gene expression and shRNA screens). In the 
following subsections we describe the features currently used in the Helios algorithms. Note that 
Helios provides a general framework where more features can be included as they become 
available and the algorithm can then automatically weigh them appropriately.  

3.3.1 Sequence mutations 
Driver genes can show a footprint of sequence mutations. This footprint consists of a higher 
recurrence of alterations, which in some cases may focus on specific locations such as certain 
functional domains or even a single base pair. In breast cancer and many other tumor types, the 
frequency of SCNAs for driver genes is significantly higher than the frequency of point 
mutations, with a handful of well-known exceptions such as PIK3CA and TP53.  

We use MutSig (Banerji, Cibulskis et al. 2012) to compute the statistical significance of the 
recurrence of point mutations. MutSig tests the null hypothesis that the number of observed 
mutations in a gene can be attributed to a random background mutation processes, taking into 
account the bases covered as well as the length and composition of the gene. The computed p-
value was log transformed to be used a feature for Helios. 

3.3.2 Expression 
Helios uses features extracted from RNA-Seq based gene expression to identify genes that are 
not expressed and those that, although expressed, do not seem to be driven by SCNA. 

3.3.2.1 Expressed genes 
 
Helios first uses RNA-Seq data to identify genes that are unlikely to be expressed in the tumors. 
Ramskold et al. (Ramsköld, Wang et al. 2009) concluded that RPKM measures can be 
employed to estimate whether a gene is expressed and estimated the percentage of genes that 
are expressed in different tissues. We compute the percentage of samples in which each gene 
is above this percentile and use it as a feature for Helios.  

3.3.2.2 Association with alteration 
 
The oncogenic activity of an amplified driver gene is expected to be reflected in the gene’s 
mRNA dosage (Santarius, Shipley et al. 2010, Akavia, Litvin et al. 2011). We therefore 
anticipate the expression of the gene to be significantly higher in samples where the gene is 
amplified. We split the cohort into two groups, those samples in which the gene is amplified and 
those in which the gene is diploid and measure the association of amplification with expression 
using the Normal Approximation for the Wilcoxon rank sum test between these groups. As the 
driver mutation may only be operating in one subtype, this score is also computed for each 
subtype independently.  
 
Genes that contribute to tumor development can also be overexpressed by different 
mechanisms in the absence of amplification. If those mechanisms prevail over copy number 



amplification, the gene can present a lack of correlation between overexpression and 
amplification. We considered that those genes may show significant difference in expression 
between tumor types and therefore we measure the significance of the expression differences 
between subtypes, using the same test performed for association of amplification. Genes that 
do not show any significance in any of these two tests (p-value<0.05) are discarded and not 
scored.  

3.3.3 shRNA 
Although loss-of-function shRNA screens on tumor cell-lines are rapidly accumulating (Marcotte, 
Brown et al. 2012), (Cheung, Cowley et al. 2011), this strategy is still limited as an unbiased 
approach for the identification of tumor dependencies due to challenges such as off-target 
effects, low hairpin efficiency and the noise introduced by the stochastic nature of the pooled 
experiment (Kaelin 2012). Therefore, we calculate composite statistics combining the shRNA 
signatures with gene expression and breast cancer subtype information in order to elicit 
enhanced signal from this data before application of Helios. 

3.3.3.1 Oncogene addiction score 
The lack of reliable information about hairpin efficiency hinders the estimation of a ranking of 
gene lethality based on a single cell line. Therefore, to identify vulnerabilities, binary 
comparisons of hairpin dropout rates across several cell lines are usually performed. These 
comparisons are typically based on the classification of cell lines in tumor types or subtypes. 
Instead, we take a different approach based on the concept of oncogene addiction (Weinstein 
and Joe 2008): the perturbation of an oncogene produces dramatic changes in the cell, making 
it dependent on oncogene activity. Using gene expression as a proxy for the activity of an 
oncogene, we consider genes that show increased lethality when overexpressed to be likelier 
candidates. This idea has recently been used by Shao et Al. to discover the oncogene HNF1B 
(Shao, Tsherniak et al. 2013).  

We score oncogene addiction by building a composite statistic reflecting the extent to which 
shRNA-depletion in a genome-wide screen is correlated with over-expression of the gene at 
baseline. The oncogene addiction score for a hairpin h with shRNA dropout 𝑆ℎ that targets a 
gene with expression profile 𝐸𝐸𝐸𝑡𝑡𝑟𝑟𝑟𝑡(ℎ) is the negative log likelihood of 𝑆ℎ given 𝐸𝐸𝐸𝑡𝑡𝑟𝑟𝑟𝑡(ℎ): 

 𝑂𝑆ℎ = − log �𝑃�𝑆ℎ  � 𝐸𝐸𝐸𝑡𝑡𝑟𝑟𝑟𝑡(ℎ)�� = −log (𝑃(𝜖)) Eq. 7 
 

Where 𝜖 is the residual error vector of the shRNA dropout prediction vector 𝑆ℎ�:  

 𝜖 = 𝑆ℎ − 𝑆ℎ� = 𝑆ℎ − 𝑓(𝐸𝐸𝐸𝑡𝑡𝑟𝑟𝑟𝑡(ℎ)) Eq. 8 
 

It is important to use a nonlinear regression for this prediction due to the strongly non-linear 
relationships observed in several bona fide cases, such as ERBB2 or FOXA1 (see Figure 2B-
C). Therefore we model 𝑓(𝐸𝐸𝐸𝑡𝑡𝑟𝑟𝑟𝑡(ℎ)) using a linear ordering isotonic regression (Barlow, 
Bartholomew et al. 1972). We use the PAVA algorithm (Brunk 1955) to estimate the best fit for 
this regression. 



We assume a Gaussian error 𝜖 ~ 𝐶(0,𝜎). Considering  𝜖𝑖 the error for cell line i, the oncogene 
addiction score for a hairpin is computed as: 

 

 𝑂𝑆ℎ = − log�𝑃(𝜖)� = �−log �
1

√2𝜋𝜎
exp (−

1
2
𝜖𝑖𝜎𝜖𝑖)�

𝑖

 Eq. 9 

 

The variance for the error distribution 𝜎 is estimated from each hairpin independently. Note that 
many hairpins have extremely low variance, as there are a large number of inert shRNA 
hairpins and many others that target genes that are nonessential across all cell lines. To handle 
this situation, in instances where the hairpin’s variance was smaller than the shRNA population 
variance, the latter was used as an estimate of the variance for the error distribution.  

While the previous score is defined for a single hairpin, each gene is usually targeted by several 
hairpins. The final score for each gene is computed as the average of the best two scoring 
shRNA hairpins, as proposed by Marcotte et al. in the GARP score (Marcotte, Brown et al. 
2012).  

3.3.3.2 Subtype lethality score 
For cancer types for which a molecular sub-classification is available, Helios includes a feature 
that scores the association between lethality and tumor subtype. We employ the same scoring 
scheme used for the oncogene addiction score, but in this case the predictor is a binary variable 
indicating the tumor subtype. 

The oncogene addiction score and the subtype lethality score are not independent as in many 
cases (for example FOXA1, ESR1 and GATA3 in luminal breast cancer) overexpression and 
lethality are dominant across a whole subtype. We encode this dependency in the structure of 
the Bayesian network by introducing an additional intermediary node in the network that 
represents the overall lethality score for the gene and connects the two oncogene addiction and 
subtype lethality nodes to the final node (Supplementary Figure 2B). 

3.4 Combining the features into a unified framework 
The function 𝑃(𝑇|𝑋) should be flexible enough to accommodate very diverse data types. At the 
same time, it should be constrained to avoid over-fitting. The key challenge is to combine these 
different features and weigh the relative contribution of each. Multivariate logistic regression is a 
common choice for classification problems with continuous features where over-fitting is a 
concern (Bishop 2006). However, the use of a simple logistic regression model is not well suited 
for this domain due to the strong non-linear nature of some of the features as well as the 
existence of dependencies between features. 

Instead, we extended the logistic regression model by introducing additional layers of sigmoid 
functions (Figure S2B): each individual feature connects to a node representing a single sigmoid 
function and these are either combined into intermediary nodes and/or connected directly to a 
final node. The resulting classification is based on a final sigmoid function computed in this top 



node. For example, as demonstrated in Figure S2B, the network contains two nodes related to 
shRNA which are joined into a single node that summarizes the lethality information for the 
gene. To avoid over-fitting, Helios uses Gaussian priors  (Dan Foresee and Hagan 1997) for the 
parameters of this Bayesian network (W). These parameters serve multiple roles in determining 
how the signal is combined. At the simplest level, one can view the W as a way to weigh the 
different features, based on the importance of their contribution. Higher/lower values for W give 
their respective feature more/less weight in the final score. In addition, each feature goes 
through sigmoid nodes to adapt their input signal and the W parameters fit those as well, 
determining not only how much a feature contributes, but also thresholds defining when and 
how this contribution occurs.  

3.5 Model learning 
To classify genes as drivers (T=1) or passengers (T=0), the model (Figure S2A) requires fitting 
two sets of parameters: the parameters 𝜆𝑡 for the mixture of exponential functions that model 
the SCNA data and the parameters W of the Bayesian network that weigh and integrate other 
data sources. These sets of parameters are learned using the Expectation Maximization 
algorithm (EM) (Dempster, Laird et al. 1977), which iterates between two steps, optimizing the 
likelihood of the model in each step, until convergence. Note that when the classification T for 
the genes is given, the two sets of parameters become independent and they can therefore be 
learned independently. EM iterates between two stages that compute the estimates for T and 
the two sets of parameters respectively.  

In the E-step the posterior odds for T are updated based on the prior odds 𝑃(𝑇 = 𝑡|𝑋,𝑊) 
(computed by the Bayesian network that constitutes the integrative prior, Supplementary Figure 
2B) and the likelihood ratio 𝑃(𝐶𝐶𝑆|𝑇 = 𝑡, 𝜆𝑡) (computed by Eq. 6, which models the SCNA 
distributions): 

 𝑃(𝑇 = 1)
1 − 𝑃(𝑇 = 1)

=
𝑃(𝐶𝐶𝑆|𝜆1)
𝑃(𝐶𝐶𝑆|𝜆0) ×

𝑃(𝑇 = 1|𝑋,𝑊)
1 − 𝑃(𝑇 = 1|𝑋,𝑊) Eq. 10 

 
 

In the M-step the parameters 𝜆𝑡 and W are re-estimated using the updated values of P(T) 
computed in the previous E-step. Specifically: 

- The parameters 𝜆𝑡 are recomputed as the expected value of their posterior Gamma 
distribution described in Eq. 6. Therefore the updated estimation is:  

 

 
𝜆𝑡  =

𝛼𝑡 ∗ 𝛽𝑡 + ∑ 𝑃𝑟(𝑇 = 𝑡)𝐺𝑆𝐺𝑖𝐺𝑡(𝑙)𝑟

𝛼𝑡 + ∑ 𝑃𝑟(𝑇 = 𝑡)𝑟
 Eq. 11 

 

 
- The estimation of the optimal solution for the parameters W for the Bayesian network 

requires the computation of the Hessian matrix. To avoid computational overhead, we 



use the Gauss-Newton approximation (Dan Foresee and Hagan 1997). We used the 
implementation provided by the function trainbr in Matlab’s Neural Network Toolbox. 

3.6 Initializing a starting point  
The EM algorithm is not guaranteed to converge to the global optimum, but rather only to a local 
optimum. Therefore, a reasonably close initialization is key to achieve a good solution 
(McLachlan and Krishnan 2007). Helios needs to initialize the parameters for both the mixture of 
distributions that models the SCNA and the Bayesian network that models additional sources of 
information. Note that given the assignments of T, the two parts of the system are independent 
and all the parameters of each part can be learnt efficiently.  

The initialization of the Bayesian network is based on the SCNA data. By selecting the most 
frequently altered gene in each region we can provide a good “first guess” for which genes are 
drivers. In practice, to initialize the parameters W for the Bayesian network that models 𝑷(𝑻|𝑿), 
we use a rough labeling of the subset of genes based on SCNA and point mutations. Genes 
that are significantly less aberrant than the top of their region (GSDist>150) are labeled 
passenger genes for the initialization process and the most altered genes in each region 
(GSDist=0) as well as those that are significantly mutated in sequence according to MusSig (p-
value<0.01) are labeled driver genes. Using this binary assignment for P(T) Helios can learn the 
parameters for the network in the same way it would in an iteration of the M step. We therefore 
achieve an initial fitting of the parameters W and an initialization of 𝑷(𝑻|𝑿). 

Helios then needs to initialize the parameters for the second part of the system, the mixture 
model that represents the SCNA information. As in the previous case, an assignment for P(T) 
would allow a fit of the parameters of the model (𝝀𝟎 and 𝝀𝟏) using the same procedure 
performed in the M step of the EM algorithm. In this case, we use the current estimate of 𝑷(𝑻|𝑿) 
(obtained after the initial fitting of the Bayesian network) as the initial value of 𝑷(𝑻). 

4 Helios analysis of Breast cancer  

4.1 Datasets used  
We used the following public datasets: 

- Primary tumor data from the TCGA Project (TCGA 2012): copy number Affymetrix 6.0 
SNP arrays (n=785), Illumina HiSeq RNA sequencing (n=732) and whole-exome 
sequencing (n=507). 

- Cell line shRNA screens (n=29) collected by Marcotte et al. (Marcotte, Brown et al. 
2012).  

- Cell line data from the Cancer Cell Line Encyclopedia (Barretina, Caponigro et al. 2012) 
for the cell lines screened with shRNA:  copy number Affymetrix 6.0 SNP arrays (n=27) 
and messenger RNA Affymetrix U133 plus 2.0 arrays (n=27) 

4.2 Copy number 
Helios uses as candidate drivers the 1226 genes belonging to the 83 regions of significant 
SCNA identified by ISAR. The parameters for the Gamma priors for the copy number model are 



set to 𝛽1 = 125 and 𝛼1 = 1000 for driver genes and 𝛽0 = 300  and 𝛼0 = 4000 for passenger 
genes, which emphasizes a smaller GSDist for drivers. Different values were also tested for 
these parameters without displaying any significant impact in the results of the analysis.  

4.3 Subtype Classification 
Breast cancer is a heterogeneous disease with different molecular subtypes. Despite the 
discrepancies between different molecular classifications that have been proposed in the 
literature (Perou, Sorlie et al. 2000),(Prat and Perou 2011), (Curtis, Shah et al. 2012), all 
authors agree on the existence of two main molecular subtypes of breast cancer:  luminal and 
basal. Therefore we considered these two subtypes in our analysis. The subtypes for the cell 
lines were obtained from Marcotte et al. (Marcotte, Brown et al. 2012). The primary tumors are 
classified into subtypes using receptor status recorded in the clinical annotations, where 
estrogen and progesterone negative tumors are considered basal and any other tumor is 
considered luminal. 

The association of alteration with each subtype was estimated using the G-score. The G-score 
for the samples in each subtype was calculated and the significance of this score was estimated 
by permutation testing: 10000 random permutations of the data are generated and the G-score 
for the subtype in each permutation was compared against the subtype G-score. Genes that 
displayed a significant p-value for this score (<0.01) were deemed subtype-specific. 

Features for Helios were computed for the whole cohort and for each subtype independently. 
For alterations that are subtype-specific, the value of the feature computed for the subtype 
associated with the alteration was employed. For alterations that do not display association with 
subtype, the most significant value between the three computed (all cohort, basal and luminal) 
was used.  

4.4 Features 

4.4.1 Sequence mutations 
We use MutSig (Banerji, Cibulskis et al. 2012) to compute the statistical significance of the 
recurrence of point mutations in the 507 samples sequenced by TCGA. The MutSig analysis 
was obtained from the GDAC TCGA pipeline. Specifically, version 2011112800.0.0 (MutSig 
v1.5) was employed.  

4.4.2 Expression 
Helios uses several features extracted from RNA-Seq based gene expression from 732 patients 
collected by the TCGA. The RPKM processed data was obtained from the GDAC pipeline. 

We use the procedure described in Section 3.3.2 to compute the feature that estimates whether 
a gene is expressed. The distribution for this feature displayed strongly bimodality and based on 
this bimodality we decided not only to use it as a feature for Helios in this case, but instead to 
filter out genes based on this criteria. Genes that had RPKM values above the threshold in less 
than 30% of the samples were filtered out and removed from consideration.  



4.4.3 shRNA 
For our analysis we use the Breast cancer cell lines from the shRNA screen collected by 
Marcotte et al. (Marcotte, Brown et al. 2012). We use the computed shARP score as defined by 
the authors as a measure of lethality for each cell line. The shARP score was median 
normalized and then standardized using the deviation of the positive values. Because RNA-seq 
data was not available, considering the inherent noise of mRNA microarrays and that part of the 
genome was not measured by the array, we also computed the score using copy number 
instead of mRNA and the most significant score out of the two was selected. For genes not 
assayed in the shRNA screen, we used the mean value of the features across all genes to fill in 
the missing values. 

5 Convergence 
We executed Helios on the dataset following the initialization described in Section 3.5. The 
algorithm converged to a stable solution after 25 iterations as shown in Figure S3A-B. 

6 Stability of Helios 
We performed 100 runs randomly and uniformly sub-sampling 95% of the samples in each 
execution. The percentage of runs in which a region is called by ISAR depends clearly on the 
ISAR score (Figure S3C). Peaks with S-score above 3 were called on average in 98.30% of the 
executions. We observed that although displaying more private focal mutations, several regions 
with scores below 3 contained known driver genes such as FOXA1, PIK3CA, GAB1, MYB or 
NOTCH3. We decided to lower the threshold to 2 considering that the integration of other types 
of data performed by Helios would increase the confidence in the presence or absence of driver 
genes in these regions. 

We tested Helios’ stability by comparing gene rakings across sub-sampled runs using Pearson 
correlation. Figure S3D shows the histogram of pairwise correlations across runs. Helios 
demonstrated exceptional robustness, displaying an average correlation between Helios scores 
across executions of 0.96 and with the lowest correlation being 0.81.  

7 Performance of data integration 
To assess performance, a gold standard set of 330 drivers was compiled from the following 
sources: 

- The set of known amplified oncogenes from Beroukhim et al. (Beroukhim, Mermel et al. 
2010) 

- The set of genes related to Breast cancer according to the University of Copenhagen 
DISEASES database (Frankild and Jensen) with score greater than 2.5. This list 
includes both oncogenes and tumor suppressors. We filtered out genes categorized as 
tumor suppressors according to Uniprot (Consortium 2013). 



We compared Helios to alternative methods both in terms of the number of gold standard genes 
captured and the p-value of the hypergeometric enrichment of gold standard genes in the 
predicted set.  

We first compared the performance of Helios against the simple criteria of selecting the gene 
with the largest G-score per region. Out of the 118 genes that were top of their region (some 
regions have more than a single gene at the top), 15 are annotated in the gold standard. Helios 
identifies the same number of annotated genes but achieved this with only 64 genes that had 
score greater than 0.5 selected. Thus, it achieves the same sensitivity but significantly increases 
the specificity, increasing the enrichment p-value from 8.40E-10 to 8.16E-14. 

We then compared the performance of the integrative approach against the simple selection of 
candidates within SCNA regions based on each data source individually. We also compared 
selecting genes solely based on SCNA, choosing those that were clearly more altered than any 
other gene in the region. We selected top altered genes in their region where the second altered 
gene had a GSDist>150. Similar results were obtained with thresholds between 100 and 200. 
Figure 2F shows the performance of Helios compared to both the analysis of each independent 
data source and the union of genes captured by all independent data sources. Helios clearly 
outperformed each individual data source and the union of all data sources both in terms of 
sensitivity and specificity. This result exemplifies the power and benefits of data integration, in 
which all the information is considered simultaneously in a unified model that leverages subtle 
signals to achieve better performance than what would be obtained by analyzing each data 
source independently. 

To assess the contribution of each data source to the performance of Helios, the algorithm was 
executed excluding each of the data sources (shRNA,expression and sequence mutations) and 
the enrichment of the genes in the gold standard was assessed with GSEA (Subramanian, 
Tamayo et al. 2005). Figure S3E shows that the contribution of functional screens is greater 
than the one of any other feature, but all features contribute to the performance.  

8 Evaluation of Helios’s accuracy 
Here we summarize the different ways in which we evaluated Helios’s performance.  Focusing 
on the Helios score itself, we found that 9/10 (90%) of the highest Helios scoring genes are well 
known breast cancer oncogenes.  

However, Helios’s was designed to rank genes within a region and therefore the better way to 
evaluate Helios is to ask “How often does Helios correctly rank the driver at the top of its 
region”.  The problem is that we don’t know what the correct answer is for the majority of the 
regions and therefore used the ISAR score to select the 17 most significantly amplified regions 
for evaluation. Selecting these 17 regions has two advantages: (1) Any identified drivers will be 
involved aberrant in the largest number of patients. (2) The ISAR score is independent of the 
Helios score and this gives us a wide range of Helios scores at the top of their respective 
regions (0.36 to 0.95).   



Of the top 17 regions, we could only test 14.  One region had no high scoring gene and indeed 
this region contained the oncomir mir21. In addition, we failed to clone the top gene for 2 
otherregions, both lacking any known oncogene, high scoring or other. Among the remaining 14 
regions, 6 contained known oncogenes in breast cancer (ERBB2, CCND1, ZNF217, MYC, 
FGFR2 and IGF1R) and were therefore not considered further. The remaining 8 regions 
contained no known oncogenes in the entire region and were thus subject to further 
experiments. In some cases we experimentally tested more than one gene in a region, when the 
region contained more than one high scoring gene, resulting in 12 genes selected for validation. 
Considering all of the experimentally tested genes, 10/12 (83%) successfully validated. 
Considering only the top scoring gene in each region, 7/8 (88%) successfully validated. 

9 Performance comparison with other methods  
We compared the capabilities of Helios against the state of the art algorithms GISTIC2 (Mermel, 
Schumacher et al. 2011) , Gaia (Morganella, Pagnotta et al. 2011) and DiNAMIC (Walter, Nobel 
et al. 2011)  (Figure 3A). GISTIC2 identified 30 peaks containing 452 genes (TCGA 2012), out 
of which 17 are annotated in the gold standard, yielding a hypergeometric enrichment P-value of 
1.2E-3. 16 of the 83 top Helios genes for each of the 83 amplified regions discovered by ISAR 
are annotated, indicating an enrichment p-value of 4.71E-12. The capability of the Helios score 
to discriminate drivers becomes even more evident if we further select only the 64 genes with a 
Helios score greater than 0.5, yielding a hypergeometric enrichment of 8.16e-14. The other two 
recently published methods tested, Gaia and DiNAMIC, achieved poor specificity compared to 
Helios, as reflected by their enrichment p-value: 7.7E-2 and 9.9E-2 respectively.  

10 Module analysis 
We used a modified version of Multi-Reg (Danussi, Akavia et al, Cancer Research 2013) to 
identify potential targets of RSF1. We ran Multi-Reg once on the Basal samples and once on 
the Luminal samples. For each sample type, we unified all modules generated by Multi-Reg that 
were associated with RSF1 into two modules - genes induced and genes repressed by RSF1 
(see Figure 6A and Figure S6). All other parameters of Multi-Reg were as described in the 
original article. 

We downloaded the C2 subcomponent of the MSigDB signature database version 3.1 from 
http://www.broadinstitute.org/gsea/msigdb/index.jsp on May 9th, 2013 (Subramanian, Tamayo, 
et al. 2005, PNAS 102, 15545-15550). We ran hypergeometric enrichment using the Genatomy 
software downloaded from http://www.c2b2.columbia.edu/danapeerlab/html/genatomy.html (see 
Figure 6A, Figures S6). 

 

11   Experimental methods 
 

11.1  Cell culture and reagents 



Cell lines were obtained from the American Type Culture Collection (Manassas, VA, USA).  
Both the human normal breast epithelial MCF10A cell line and the MCF10A-TM (Pires et al., 
2012) cell line were grown in DMEM/Ham’s F-12 media (Corning, 10-092-CV) supplemented 
with 5% horse serum (Invitrogen, 16050-122), 20ng ml-1 EGF (Sigma, E9644), 1ng ml-1 Cholera 
Toxin (Sigma, C8052), 10mg ml-1 Insulin (Sigma, I9278), 100mg ml-1 Hydrocortisone (Sigma, 
H0396) and 1% of Penicillin-Streptomycin (Life Technologies, 15140-122). The mouse 
mammary epithelial Comma-1D cell line was grown in DMEM/Ham’s F-12 media (Corning, 10-
092-CV) supplemented with 5% fetal serum (Invitrogen, 16050-122), 10ng ml-1 EGF (Sigma, 
E9644), 5mg ml-1  insulin (Sigma, I9278), 200mg ml-1 Hydrocortisone (Sigma, H0396) and 1% of 
Penicillin-Streptomycin (Life Technologies, 15140-122). The MDA-MB 415 cell line was cultured 
in DMEM media (Sigma, D6429) supplemented with 15% fetal serum, bovine insuline 100mg 
ml-1 (Sigma I0516) and 100mg ml-1 of 85% glutathione (Sigma G-6013). The MDA-MB 361 and 
MDA-MB 453 cell lines were cultured in L-15 media (ATCC 30-2008) supplemented with 1% of 
Penicillin-Streptomycin (Life Technologies, 15140-122) and 20% and 10% of fetal serum 
respectively. 

For generation of cell lines overexpressing RSF1 or other genes, cells were plated at 60% 
confluence in a 6 well plate and after 24 hours, were infected with lentivirus expressing the 
different construct plasmids. Media containing lentivirus was replaced in 12h for fresh media. 
After that cells were re-infected for other 12h. Cells were grown in fresh media for 24h and 
selected with the appropriate drug. Alternatively, to generate MDA-MB 453 deficient in RSF1, 
cells where infected with lentivirus espressing doxycycline-inducible pTRIPz shRNA against 
RSF1 (from Open Biosystems V3THS_341214, V3THS_341216, V3THS_341217) and selected 
with the puromycin (2ug/mL).  

The colony formation assay in semisolid media was performed in 6 well plates. First, a layer of 2 
mls of 0.6% agar ( Fisher #9002-18-0) in regular MCF-10A media was placed at the bottom of 
each well and allowed to undergo gelification. Then, a layer of 2 mls of 0.3% agar containing 
5,000 cells was seeded on top of the bottom agar layer and allowed to form a gel. Finally, 1 ml 
of regular MCF-10A media was placed covering the agar. The colonies were allowed to form for 
1 month. After this period 2 mls of MTT solution (Sigma #M5655) at 0.5mgr/ml was used to stain 
the colonies. A minimum of 6 replicas per gene were plated. The number of colonies was 
independently evaluated by two researchers.       
 
11.2  DNA constructs and gene cloning strategy 
cDNAs from genes of interest were obtained from hORFeome V8.1 and CCSB Broad Libraries. 
The cDNAs from genes not contained in such libraries were amplified from regular RNA 
extracted from MCF-10A and retrotranscribed to cDNA with oligo-dT by PCR using specific 
primers bearing restriction sites (BglI, BamHI, XhoI or EcoRI). Briefly, RNA was extracted using 
RNeasy extraction Kit following the manufacturer‘s recommendations (QIAGEN #74106). 0.5 
micrograms of total RNA was converted into cDNA using the High Capacity cDNA Reverse 
Transcription Kit (Roche #4368814) according to manufacturer's instructions. 
Amplified products were cloned into a modified pLPCX vector (mod-pLPCX) in which we 
inserted an IRES2-EGFP from the donor pIRES2-EGFP.  



Once the cDNAs were cloned into the recipient mod-pLPCX vector, all constructs were 
sequence verified by Sanger sequencing. 
 
Primers used are specified in Supplementary Table 4.  
 
The Firefly Luciferase expressing construct used to generate MCF10A-TM cell line was a gift 
from Jan Kitahewski (Columbia University, NY, NY).  
 
11.3  Determination of RNA levels and RT-PCR analysis 

Total RNA was extracted from cells according to manufacturer’s instruction using RNeasy Kit 
(Qiagen, 74106). 2 μg of RNA was used as a template for reverse transcription using random 
primers. Reverse Transcription of RNA was performed as directed using TaqMan MicroRNA 
Reverse Trancription Kit (Applied Biosystems, 4366596) in a 20μl volume.  2ml RNA was used 
for template for RTQ-PCR using FastStart SYBR Green Master (Roche, 04 673 492 001). 
Reactions were performed in triplicate. The program reaction was: AmpliTaq activation 95ºC for 
3 minutes, denaturation 95ºC for 10 seconds, and annealing/extension 60ºC for 30 seconds 
(repeat 40 times). Triplicate Ct values were further analyzed (2-ΔΔCT) by normalizing to an 
endogenous reference gene (β-actin). Results are presented as the relative mRNA amount 
compared to the samples transduced with control empty vectors. Forward and reverse primer 
sequences are specified in Supplementary Table 5. 
 

11.4   Protein extracts and Western Blot  

Cells were washed with cold PBS and lysed with EZ lysis buffer (1M Tris pH7, 50% glycerol, 
20% SDS, 1mM ortovanadate, 1mM sodium fluoride and 1mM phenylmethylsulfonyl fluoride). 
Protein concentrations were determined by the Protein Assay Kit (Bio-Rad #500-0006). Equal 
amounts of proteins were subjected to SDS-PAGE and transferred to nitrocellulose membranes 
(GE Healthcare #10401197). Non-specific binding was blocked by incubation with TBST (20 
mM Tris-Hcl pH7.4, 150 mM NaCl, 0.1% Tween-20) plus 5% of non-fat milk. Membranes were 
incubated with the primary antibodies overnight at 4ºC and for 1 hour with secondary HRP-
conjugated antibodies at room temperature (Amersham #NA9350V, #NA931V and #NA934V). 
Signal was detected with Lumi-Light Western Blotting Substrate (Roche #12015200001 and 
#12015196001).  
 

The antibodies used in this study were the following: human RSF1 (GenTex #GTX62703), 
CCND1 (BD Pharmingen #556470) and b-Actin (USBiological #A0760-40),) 

 

  



11.5  Tumorigenicity in mice 

Animal maintenance and experiments were performed in accordance with the animal care 
guidelines and protocols approved by Columbia University animal care unit. For the Comma-1D 
cell line, 21 days old female NOD.CB17-Prkdcs SCID mice (Harlan) mice were injected with 
5x105 cells, resuspended in PBS, into a fat mammary gland. For the MDA-453 cell line, eight-
weeks old female NOD.CB17-Prkdcs SCID mice (Harlan) mice where injected with 5x106 cells, 
resuspended in 1:2 Matrigel (BD Biosciences) plus normal growth media, into a fat pad 
mammary gland. Doxicyclin was added to drinking water at a final concentration of 2.0 mg/mL. 
Tumor growth was monitored twice a week with callipers at the site of injection. Animals were 
sacrificed as soon as tumor size reached 1.5 cm diameter. 
In the experimental metastasis assays, eight-weeks old female NOD.CB17-Prkdcs SCID mice 
(Harlan) where injected with 5x106 cells, resuspended in PBS, via the tail vein. To measure the 
luciferase intensity of injected cells, 2.25 g ml-1 luciferin was injected intravenously through the 
tail and luciferase activity was assessed 5 minutes after luciferin injection using a IVIS Spectrum 
pre-clinical in vivo Imaging System (PerkinElmer, IVISSPE) machine. The presence of 
established metastases was visually confirmed after euthanizing the mice.  
 
11.6   H&E and Immunohistochemistry 
 
Mammary glands were fixed in formalin (Fischer #175) for immunohistochemistry (IHC) 
analysis. Formalin-fixed paraffin-embedded samples were firstly heated at 100ºC for 3 minutes 
on a heat block to melt the paraffin. Subsequently, samples were deparaffinised by a serial 
incubation with xylene for 3 minutes, 100% EtOH for 3 minutes, 95% EtOH for 3 minutes and 
distilled water for 2 minutes. Peroxidase inactivation and antigen retrieval were achieved by 
incubating samples in 1% H2O2 for 15 minutes at room temperature and incubating slides with 
citric buffer (2mM citric acid, 8mM sodium citrate) in a steamer for 30 minutes. Samples were 
washed twice in PBS for 5 minutes and incubated in 10% whole goat blocking serum diluted in 
2% BSA-PBS for 30 minutes at room temperature. Thereafter, samples were incubated in 
primary antibody [1:200 Ki67 (Abcam  #ab15580), 1:300 Anti-Cytokeratin 18 antibody (Abcam 
#ab668), 1:1000 Anti-Cytokeratin 5 (Covance  #PRB-160P) and 1:500 Cleaved Caspase-3 (Cell 
Signaling #9664)] and diluted in 2% BSA-PBS+0.01% sodium azide for 2 hours at room 
temperature.  
 
Samples were then washed in PBS and incubated in 1:500 biotinylated anti-Rabbit IgG made in 
goat diluted in 2% BSA-PBS for 30 minutes at room temperature. Afterwards, samples were 
washed and exposed to peroxidase substrate (Vector Laboratories #PK-6100) for 30 minutes at 
room temperature and subsequently permeabilized with PBS-0.5% Triton. Thereafter, samples 
were incubated in chromogen 3,3' Diaminobenzidine (DAB) and then washed in distilled water 
and counterstained. Counterstaining was performed by treating samples with hematoxylyn for 1 
second, dipped in 1% Hydrochloric acid and finally washed in ammonia water for 1 second. 
Finally, dehydration was performed by incubating samples in 95% EtOH for 2 minutes, 100% 
EtOH for 2 minutes and xylene for 4-5 minutes and ultimately mounted with a coverslip. 
Supplemental References 



Akavia, U. D., et al. (2011). "An Integrated Approach to Uncover Drivers of Cancer." Cell 143(6): 1005-
1017. 

  
Banerji, S., et al. (2012). "Sequence analysis of mutations and translocations across breast cancer 
subtypes." Nature 486(7403): 405-409. 

  
Barlow, R. E., et al. (1972). Statistical inference under order restrictions. New York, Wiley. 

  
Barretina, J., et al. (2012). "The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer 
drug sensitivity." Nature 483(7391): 603-307. 

  
Bass, A. J., et al. (2009). "SOX2 is an amplified lineage-survival oncogene in lung and esophageal 
squamous cell carcinomas." Nat Genet 41(11): 1238-1242. 

  
Beroukhim, R., et al. (2007). "Assessing the significance of chromosomal aberrations in cancer: 
Methodology and application to glioma." Proceedings of the National Academy of Sciences 104(50): 
20007-20012. 

  
Beroukhim, R., et al. (2010). "The landscape of somatic copy-number alteration across human 
cancers." Nature 463(7283): 899-905. 

  
Beroukhim, R., et al. (2010). "The landscape of somatic copy-number alteration across human 
cancers." Nature 463(7283): 899-905. 

  
Bishop (2006). Pattern Recognition And Machine Learning, Springer-Verlag New York, Inc. 

  
Brunk, H. D. (1955). "Maximum Likelihood Estimates of Monotone Parameters." The Annals of 
Mathematical Statistics 26(4): 607-616. 

  
Carter, S., et al. (2011). "Accurate estimation of homologue-specific DNA concentration-ratios in cancer 
samples allows long-range haplotyping." Nature Precedings. 

  
Carter, S. L., et al. (2012). "Absolute quantification of somatic DNA alterations in human cancer." Nat 
Biotech advance online publication. 

  
Cheung, H. W., et al. (2011). "Systematic investigation of genetic vulnerabilities across cancer cell lines 
reveals lineage-specific dependencies in ovarian cancer." Proceedings of the National Academy of 
Sciences 108(30): 12372-12377. 



  
Consortium, T. U. (2013). "Update on activities at the Universal Protein Resource (UniProt) in 
2013." Nucleic Acids Research 41(D1): D43-D47. 

  
Curtis, C., et al. (2012). "The genomic and transcriptomic architecture of 2,000 breast tumours reveals 
novel subgroups." Nature 486(7403): 346-352. 

  
Dan Foresee, F. and M. T. Hagan (1997). Gauss-Newton approximation to Bayesian learning. Neural 
Networks,1997., International Conference on. 

  
De, S. and F. Michor (2011). "DNA secondary structures and epigenetic determinants of cancer genome 
evolution." Nat Struct Mol Biol 18(8): 950-955. 

  
Dempster, A. P., et al. (1977). "Maximum Likelihood from Incomplete Data via the EM 
Algorithm." Journal of the Royal Statistical Society. Series B (Methodological) 39(1): 1-38. 

  
Frankild, S. and L. J. Jensen University of Copenhagen DISEASES database. http://diseases.jensenlab.org. 

  
Kaelin, W. G. (2012). "Use and Abuse of RNAi to Study Mammalian Gene Function." Science 337(6093): 
421-422. 

  
Marcotte, R., et al. (2012). "Essential Gene Profiles in Breast, Pancreatic, and Ovarian Cancer 
Cells." Cancer Discovery 2(2): 172-189. 

  
McLachlan, G. J. and T. Krishnan (2007). The EM Algorithm and Extensions, Wiley. 

  
Mermel, C., et al. (2011). "GISTIC2.0 facilitates sensitive and confident localization of the targets of focal 
somatic copy-number alteration in human cancers." Genome Biology 12(4): R41. 

  
Morganella, S., et al. (2011). "Finding recurrent copy number alterations preserving within-sample 
homogeneity." Bioinformatics 27(21): 2949-2956. 

  
Perou, C. M., et al. (2000). "Molecular portraits of human breast tumours." Nature 406(6797): 747-752. 

  
Prat, A. and C. M. Perou (2011). "Deconstructing the molecular portraits of breast cancer." Molecular 
Oncology 5(1): 5-23. 

  

http://diseases.jensenlab.org/


Ramsköld, D., et al. (2009). "An Abundance of Ubiquitously Expressed Genes Revealed by Tissue 
Transcriptome Sequence Data." PLoS Comput Biol 5(12): e1000598. 

  
Santarius, T., et al. (2010). "A census of amplified and overexpressed human cancer genes." Nat Rev 
Cancer 10(1): 59-64. 

  
Shao, D. D., et al. (2013). "ATARiS: Computational quantification of gene suppression phenotypes from 
multisample RNAi screens." Genome Research. 

  
Subramanian, A., et al. (2005). "Gene set enrichment analysis: A knowledge-based approach for 
interpreting genome-wide expression profiles." Proceedings of the National Academy of Sciences of the 
United States of America 102(43): 15545-15550. 

  
TCGA (2012). "Comprehensive molecular portraits of human breast tumours." Nature 490(7418): 61-70. 

  
Walter, V., et al. (2011). "DiNAMIC: a method to identify recurrent DNA copy number aberrations in 
tumors." Bioinformatics 27(5): 678-685. 

  
Weinstein, I. B. and A. Joe (2008). "Oncogene Addiction." Cancer Research 68(9): 3077-3080. 

  
Weir, B. A., et al. (2007). "Characterizing the cancer genome in lung adenocarcinoma." Nature 
450(7171): 893-898. 

  
Yuan, X., et al. (2012). "Genome-wide identification of significant aberrations in cancer genome." BMC 
Genomics 13(1): 342. 

  
Yuan, X., et al. (2012). "TAGSCNA: A Method to Identify Significant Consensus Events of Copy Number 
Alterations in Cancer." PLoS ONE 7(7): e41082. 

  
Zender, L., et al. (2006). "Identification and validation of oncogenes in liver cancer using an integrative 
oncogenomic approach." Cell 125(7): 1253-1267. 

  

  

 



Table S1. Regions of Recurrent Amplification Detected by ISAR, Related to Figure 1 

Significantly amplified regions identified by ISAR in the TCGA Breast cancer cohort. 

Index Chromosome Start End ISARScore 
1 1 1720000 2940000 7.332 
2 1 38400000 40400000 2.108 
3 1 41800000 43400000 4.479 
4 1 61000000 62400000 3.335 
5 1 93800000 94100000 2.243 
6 1 149000000 149000000 4.893 
7 1 153000000 154000000 3.206 
8 1 159000000 161000000 6.57 
9 1 201000000 204000000 3.483 

10 1 233000000 233000000 3.257 
11 2 9820000 10200000 3.138 
12 2 38400000 38600000 2.342 
13 3 4370000 5230000 3.882 
14 3 14500000 15400000 2.821 
15 3 171000000 172000000 2.047 
16 3 180000000 181000000 2.204 
17 4 1290000 2080000 3.706 
18 4 73400000 75900000 6.632 
19 4 76400000 77800000 2.516 
20 4 144000000 145000000 2.665 
21 5 936053 1350000 2.527 
22 5 13000000 14600000 4.778 
23 5 44300000 44800000 3.492 
24 5 176000000 177000000 2.595 
25 6 41600000 42200000 2.121 
26 6 43700000 44200000 2.016 
27 6 63800000 64800000 2.119 
28 6 105000000 109000000 19.9 
29 6 135000000 136000000 2.921 
30 6 151000000 152000000 4.549 
31 7 5370000 5660000 2.396 
32 7 23000000 23500000 2.671 
33 7 32900000 33000000 2.073 
34 7 55000000 56400000 4.989 
35 7 68500000 68800000 2.083 
36 7 98400000 100000000 5.278 
37 7 156000000 157000000 4.341 



38 8 9800000 10600000 2.369 
39 8 37100000 39300000 15.74 
40 8 81000000 82100000 5.064 
41 8 101000000 103000000 4.131 
42 8 116000000 118000000 5.829 
43 8 128000000 129000000 14.65 
44 9 33400000 36600000 5.477 
45 9 127000000 130000000 5.444 
46 10 61200000 63700000 3.859 
47 10 76000000 76900000 3.048 
48 10 80000000 81700000 3.048 
49 10 123000000 124000000 6.728 
50 11 19100000 19900000 2.11 
51 11 32000000 35700000 4.843 
52 11 68300000 70700000 54.1 
53 11 76400000 78000000 8.904 
54 11 118000000 118000000 3.258 
55 12 416712 1000000 3.52 
56 12 26700000 27100000 2.757 
57 12 56300000 56600000 3.433 
58 12 67000000 69300000 11.36 
59 12 122000000 123000000 3.98 
60 13 26300000 26900000 2.17 
61 13 29100000 30200000 4.17 
62 14 34300000 35400000 2.202 
63 14 37000000 37400000 2.202 
64 14 48900000 49900000 4.096 
65 14 102000000 103000000 2.162 
66 15 47900000 51000000 3.395 
67 15 96000000 97600000 6.478 
68 16 10300000 11800000 2.857 
69 17 23600000 25100000 11.66 
70 17 33700000 35800000 73.95 
71 17 44300000 46900000 7.123 
72 17 54500000 56900000 14.53 
73 17 57300000 58700000 2.527 
74 18 13400000 13700000 2.059 
75 18 22100000 24000000 3.531 
76 18 58200000 60100000 4.498 
77 19 14800000 15500000 2.724 
78 19 34400000 35300000 4.223 



79 19 60200000 61000000 3.265 
80 20 33100000 34400000 3.246 
81 20 51000000 52600000 17.84 
82 21 15600000 16300000 2.844 
83 23 23600000 24400000 3.274 

 

  



Table S4. Primers Used for DNA constructs, Related to Extended Experimental Procedures 

 

Primer Sequence 
BglAGFG2-kozak-F AAAGATCTCGCCACCATGGTGATGGCGGCGAAGAA 
EcoAGFG2-R AAGAATTCCTACAAGAAGGGGTTGGTGGTT 
EcoBRF2-kozak-F AAGAATTCCGCCACCATGCCAGGCAGAGGCCGCTGCCCGGACT 
BamBRF2-R AAGGATCCTCAGGGAGGGTTAGGGACACT 
EcoC6orf203-kozak-F AAGAATTCCGCCACCATGGCTATGGCTAGTGTTAAATTGCTT 
BamC6orf203-R AAGGATCCTTATTTAGACATTCTCTTCTTAGGCAA 
EcoGNB1-kozak-F AAGAATTCCGCCACCATGAGTGAGCTTGACCAGTTA 
BamGNB1-R AAGGATCCTTAGTTCCAGATCTTGAGGAA 
XhoNIT1-kozak-F AACTCGAGCGCCACCATGCTGGGCTTCATCACCAGGCCTCCTCACA 
EcoNIT1-R AAGAATTCTCAAGAGGAGACGGGCTCCCAGT 
XhoPRKCZ-kozak-F AACTCGAGCGCCACCATGCCCAGCAGGACCGGCCCCAAGAT 
EcoPRKCZ-R AAGAATTCTCACACCGACTCCTCGGTGGACA 
EcoTRPS1-kozak-F AAGAATTCCGCCACCATGGTCCGGAAAAAGAACCCCCCTCTGA 
BamTRPS1-R AAGGATCCCTACAGGAATCCCTTGGTTTCCA 
XhoZNF652-kozak-F AACTCGAGCGCCACCATGAGCCACACAGCCAGTTCTTGT 
BamZNF652-R AAGGATCCTTAATGATGCTGTGCTGAACT 
 



Table S5. Forward and Reverse Sequences for Determination of RNA Levels, Related to Extended 
Experimental Procedures 

 

Gene Forward/Reverse Sequence 
C6ORF203 F GAAGACGGGGCTAGATATTGGG 
C6ORF203 R CACTTTCACCGTTCTGCTTTTC 
BEND3 F ACTATGTGGAGGTCTACTACCCC 
BEND3 R GCTCCGGTCAAGAGACAGG 
BRF2 F GGTGGAAGACTCGCACTATTC 
BRF2 R CGACTAACTTGTTCGTTTTCCCC 
YEATS4 F GAGAATGGCCGAATTTGGGC 
YEATS4 R CCGAGCAACATTACCGTAAACT 
LYZ F GGCCAAATGGGAGAGTGGTTA 
LYZ R CCAGTAGCGGCTATTGATCTGAA 
RSF1 F GGATGCCGATACTATGCGTCT 
RSF1 R GCCAACTCGTTTCGATTTCTGA 
PRKCZ F AGAGCCTCCAGTAGACGACAA 
PRKCZ R CGGGATGAGGAAATGTAAGCAA 
GNB1 F GTGAGCTTGACCAGTTACGG 
GNB1 R TGTGATCTGAGAGAGAGTTGCAT 
ZNF652 F GCTGGTTGAAAACTGTGCTGT 
ZNF652 R GAAGATGGCACTTGACCACGA 
NIT1 F GTGTGCCAGGTAACATCGAC 
NIT1 R AGGGTCCCGTGCAATGAAG 
PVRL4 F AGGACGCAAAACTGCCCTG 
PVRL4 R TGAAGCCCGTATTTGGAGTGC 
TRPS1 F AGCCCCAGTAAGGGAGGAAA 
TRPS1 R GGGTGCAGGCCATATCTTGAG 
DNAJB6 F CATGCCTCACCCGAGGATATT 
DNAJB6 R CCTCCGCTACTTGCTTGAATTT 
SETD8 F ACCGACGGGGAGAACGTATT 
SETD8 R GCATTCCAGAGCATTTGTTCG 
RPS6KB1 F CGGGACGGCTTTTACCCAG 
RPS6KB1 R TTTCTCACAATGTTCCATGCCA 
TMEM49 F TGGCATCGTCAAAGCATTGTG 
TMEM49 R CTGAGGCTATATGTGGACCCA 
RNFT1 F CCTGAAGCAAAGACATCTGGG 
RNFT1 R ACTGTGCAGTTGGCTACGATT 
CCND1 F GCTGCGAAGTGGAAACCATC 
CCND1 R CCTCCTTCTGCACACATTTGAA 
BACTIN F CGCAGACACCTTCTACAATGAGCTGCG 
BACTIN R GAGGCGTACAGGGATAGCACAG 
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