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SUMMARY

Identifying driver genes in cancer remains a crucial
bottleneck in therapeutic development and basic un-
derstanding of the disease. We developed Helios, an
algorithm that integrates genomic data from primary
tumors with data from functional RNAi screens to
pinpointdrivergeneswithin large recurrentlyamplified
regions of DNA. Applying Helios to breast cancer data
identified a set of candidate drivers highly enriched
with knowndrivers (p < 10�14). Nine of ten top-scoring
Helios genes are known drivers of breast cancer, and
in vitro validation of 12 candidates predicted byHelios
found ten conferred enhanced anchorage-indepen-
dent growth, demonstrating Helios’s exquisite sensi-
tivity and specificity. We extensively characterized
RSF-1, a driver identified by Helios whose amplifi-
cation correlates with poor prognosis, and found
increased tumorigenesis and metastasis in mouse
models. We have demonstrated a powerful approach
for identifying driver genes and how it can yield impor-
tant insights into cancer.

INTRODUCTION

Cancer genome data collected by projects such as the The Can-

cer Genome Atlas (TCGA) or the International Cancer Genome

Consortium (ICGC) is defining the landscape of genetic alter-

ations that underlie cancer. Tumor cells may harbor thousands

of genetic lesions including point mutations, somatic copy-num-

ber alterations, and translocations that localize to hundreds or

even thousands of genes. However, most affected genes are

so-called passengers and their alteration does not confer any

type of advantage to tumors (Vogelstein et al., 2013). A pivotal

challenge in cancer genomics is to identify the small subset of

altered genes (so-called drivers) that directly contribute to tumor

fitness and progression.

Exome sequencing studies helped identify driver genes (Curtis

et al., 2012; Stephens et al., 2012), however, themajority of point
mutations display low population frequencies, with only a hand-

ful altered in >5% of patients (Stephens et al., 2012). In breast

cancer, only six genes have point mutations in >5% of samples,

and of these, only PIK3CA (36% frequency) is currently targeted

therapeutically (Cancer Genome Atlas Network, 2012). Instead,

the most recurrent genetic lesions in breast cancer are somatic

copy-number alterations (SCNAs), often driven by inactivation

of DNA repair genes such as BRCA1/2. Indeed, HER2, one

of the most therapeutically targeted drivers in breast cancer, is

primarily dysregulated by copy-number amplification.

The ability to discern drivers from copy-number alteration

promises to dramatically expand the set of therapeutic targets

in this disease. However, this potential is crucially hindered by

the difficulty of driver discovery (Yuan et al., 2012). The crux of

the difficulty is that in all but a few instances, these lesions

contain dozens of genes and no previously characterized drivers

(Albertson et al., 2003). A recent study analyzing multiple tumor

types reported that over 70% of 140 recurrently altered regions

did not contain a known oncogene or tumor suppressor (Zack

et al., 2013). As a result, most recent driver discovery efforts

have focused on point mutations, which directly indicate the

target genes by virtue of their precise location (Kandoth et al.,

2013; Lohr et al., 2012; Wong et al., 2011), and less progress

has been made with respect to SCNAs. However, the increased

frequency of recurring SCNAs relative to point mutations (87

SCNA regions versus six mutated genes with >5% population

frequency) (Figure 1A) highlights the need for methods to

pinpoint drivers within these regions.

Genome-wide pooled-RNAi screening is an alternative

approach to driver gene discovery. In these studies, a short

hairpin RNA (shRNA) library is transduced into cancer cell lines

and the growth effect of each individual gene knockdown is

assessed for each cell line (Cheung et al., 2011; Marcotte

et al., 2012; Silva et al., 2008). While such studies can provide

gene-level resolution, they are currently limited by the high de-

gree of noise, the potential for off-target effects of shRNAs and

by the artificiality of the in vitro screening system (Kaelin, 2012).

Moreover, cell-lines are not fully representative of primary tu-

mor biology as these lack tissue structure and microenviron-

ment, which are key to cellular behavior (Bissell and Hines,

2011).
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Given the largely orthogonal strengths and weaknesses

of descriptive analysis of primary cancer genomes and in vitro

genome-wide functional screening, we hypothesized that inte-

grating the two data types into a single approach would result

in increased resolution and accuracy for driver gene discovery.

Therefore, we developed Helios (Figure 1B), an algorithm

that incorporates primary tumor SCNA, point mutations, gene

expression, and RNAi screens into a single candidate driver

score. Helios runs in two steps, first identifying regions of focal

SCNAs and then identifying driver genes within each region by

integrating functional screens and other data using a Bayesian

transfer-learning framework.

Helios displayed a remarkable capacity to pinpoint bona fide

cancer drivers when the algorithm was used to analyze the

SCNA landscape of breast cancer. In a systematic evaluation

of Helios’s performance, we selected 12 driver candidates

identified by Helios, based on their frequency of occurrence,

for experimental investigation. We found ten of 12 candidate

genes induced increased anchorage-independent growth

when overexpressed in vitro. Thus, Helios demonstrated an

unprecedented sensitivity and specificity in identifying genes

that promote oncogenic capabilities. Helios doubled the number

of SCNA drivers identified in breast cancer and substantially

increased our understanding of the breast cancer SCNA

landscape.

RESULTS

ISAR Expands the List of Significantly Amplified Regions
in Breast Cancer
The first step for identifying SCNA-drivers is identification of

significantly altered regions. There are multiple algorithms that

successfully perform this task (Mermel et al., 2011; Walter

et al., 2011), GISTIC2 being the most widely used among these.

We noted a number of oncogenes (e.g., BCL2) that were not de-

tected as falling within a significantly altered region byGISTIC2 in

the TCGA breast cancer data (Cancer Genome Atlas Network,

2012). By visual inspection of chromosome 18, we noted that

while BCL2 does not appear significantly amplified based on

its absolute copy-level, its copy number is nevertheless signifi-

cantly higher than the adjacent chromosomal regions (Figure S1

available online). Most SCNA detection algorithms, including

GISTIC2, compute a null distribution across the entire genome

to estimate the significance of alterations. However, the alter-

ation rate can strongly differ across different genomic regions,

due to features such as DNA secondary structure and DNA

hypomethylation (De and Michor, 2011).

Therefore, we developed Identification of Significantly Altered

Regions (ISAR), an algorithm that accounts for local differences

in SCNA rate due to these and other forces. By computing the
Figure 1. Helios Integrates Data from Primary Tumor and Functional S

(A) Frequency of alteration in the TCGA breast cancer data of (top) genes with recu

Significant genes and regions were downloaded from the DBroad Genome

(v. 4.2012021700.0.0) and MutSig (v. 4.2011112800.0.0).

(B) A schematic of our pipeline for the identification of candidate driver genes. The

within those regions, it extracts features from genetic, genomic and functional d

See also Figure S1 and Table S1.
significance locally, the algorithm is capable of identifying

both global alteration events, as well as subtle events, such as

a focal amplification within largely deleted regions, that would

be missed if the background distribution for the whole genome

were employed (see Experimental Procedures). We applied

ISAR to 785 breast cancer samples (Cancer Genome Atlas

Network, 2012) and identified 83 significantly amplified regions

(see Table S1), compared to the 30 regions originally reported

by the TCGA consortium. ISAR captures all significant regions

captured by GISTIC2 and many additional regions. Among

the new regions, we find many bona fide or likely oncogenes,

including MYB, BCL2, CDK4, ESR1, FGFR2, FGFR3, and

FGFR4. Identified regions contained an average of 14 genes re-

sulting in a total of 1,226 significantly amplified genes across all

83 regions.

Helios: An Integrative Approach to Pinpoint Drivers
Helios seeks to exploit additional properties—e.g., recurrent

domain-specific point mutations or depletion in a lethality shRNA

screen—to implicate likely driver genes targeted by the SCNA.

Helios considers the entire significantly altered region, but prior-

itizes the genes within this region by incorporating cues from

additional genetic and genomic data to estimate the probability

that each gene is a driver (Figure 2A). It is a statistically rigorous

framework for combining multiple signals that might lack power

individually into a single score for the likelihood that each

gene’s amplification specifically increases tumor fitness. Here,

we integrate features derived from exome-sequencing, shRNA

screening, and gene-expression, but due to the flexibility of

our framework, these could readily be removed, modified, or

extended for subsequent studies.

Helios uses a set of features to classify genes as either drivers

or passengers, based on inferencewithin a hierarchical Bayesian

mixture model (see Experimental Procedures; Figure S2).

Standard classification approaches rely on an initial list of exam-

ples—drivers and passengers—to train the model. Unfortu-

nately, the list of known oncogenic drivers is relatively small

and strongly biased toward kinases and extreme phenotypes

that facilitate discovery. Instead, Helios begins with the assump-

tion that a driver gene is more likely to be near the most

frequently amplified segment (defined as peak) of the ISAR re-

gion. This is used to initialize the algorithm by providing an esti-

mated list of drivers to start from. Helios then iterates between

two stages until convergence by (1) learning the parameters to

distinguish passengers and drivers on the basis of their SCNA

profile and on the additional genomic data, and (2) recomputing

the probability that each gene is a driver using the parameters

determined in step 1.

Helios uses a transfer learning approach (Widmer and Rätsch,

2011) whereby drivers with clearer signal (e.g., at the peak of
creens

rrent point mutations and (bottom) regions of recurrent copy-number alteration.

Data analysis Center, selecting the TCGA pipeline algorithms GISTIC2

method first uses ISAR to identify regions of focal SCNAs. To pinpoint drivers

ata, which are integrated into a single probabilistic score by Helios.
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Figure 2. Helios Features

(A) Diagram of the classic and Helios approach. While the classic approach relies solely on copy number, both to identify significantly altered regions and to

further narrow down those region to a minimal region of maximal alteration, Helios identifies regions in the same fashion, but then integrates features extracted

from different data sources to compute the probability of each gene being a target of the region.

(legend continued on next page)
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their region) are used to extract informative features to improve

performance in cases with less obvious signal. Helios automati-

cally learns the weights of features directly from the data by

leveraging information among features. In each iteration, Helios

learns a better classification of drivers and passengers, which

in turn is used to learn better parameters, until convergence

(see Extended Experimental Procedures). Helios utilizes a

mixture of two copy-number distributions—one for drivers and

one for passengers, thus avoiding the problematic selection of

a hard threshold for defining aberrant regions (Figure 2B). Addi-

tionally, Helios permits final models wheremore than one gene in

a region is identified as a likely driver, or where no probable driver

genes are identified.

Finally, Helios can readily incorporate additional features,

including complex features generated by combinations of multi-

ple data sources. It automatically learns the contribution and

importance of each feature directly from the data, making it

easily extendable and adaptable to other cancer types. For

example, here, we integrate data from functional screens based

on the concept of oncogene addiction (Weinstein and Joe, 2008)

by deriving a composite statistic reflecting the extent to which

shRNA-depletion in a genome-wide screen correlated with

overexpression of the gene at baseline. A similar idea has

recently been used to discover the oncogene HNF1B (Shao

et al., 2013). Our oncogene addiction score allows for both linear

and nonlinear relations between gene expression and lethality

(See Figures 2B–2D; Experimental Procedures). This ability

to combine multiple weaker pieces of evidence from hetero-

geneous data types into a single score enables Helios to effec-

tively pinpoint the driver gene from within the recurrently altered

region.

Helios Identifies Candidate Drivers of Breast Cancer
We used Helios to integrate TCGA data from 785 primary breast

cancer tumors, including DNA copy number, gene expression,

and sequence mutations (Cancer Genome Atlas Network,

2012), with data from 27 breast cancer cell lines including gene

expression, copy number, and shRNA depletion in a genome-

wide shRNA screen (Barretina et al., 2012; Marcotte et al., 2012).

Using stringent criteria, we defined 64 candidate drivers by se-

lecting only the top gene in each region and applying a threshold

of Helios score >0.5 (see Table S2). Some significant SCNA

regions did not contain a high scoring protein-coding gene;

these amplifications potentially target noncoding RNA or other

genomic features. For example, all protein-coding genes were

low scoring in an amplified region containing the known oncomir

mir21 (O’Day and Lal, 2010). While �20% of the regions con-
(B) Diagram of the copy-number model of the Helios Algorithm. The classic appr

(GSDist, x axis) to define the peak region (y axis). Helios (bottom) instead calculate

passenger genes (yellow or brown curves respectively).

(C) Our oncogene addiction score uses monotonic regression to measure the as

differentiate the proto-oncogenic state (I) of the driver, which is expressed at w

expression and high dependency on the gene for survival.

(D) Monotonic regression of the shRNA dropout (y axis) based on the gene dosag

(left) and its neighboring gene in the genome (right). (E) Monotonic regression of th

gene for oncogene addiction in the 14q13 region (left) and its neighboring gene

See also Figure S2.
tained more than one high scoring gene, we limited our initial

analysis to the highest scoring gene in each region.

To evaluate the sensitivity of our approach, we combined

several publically available resources to create a comprehen-

sive set of breast cancer oncogenes (Beroukhim et al., 2010;

Uniprot Consortium, 2013; Pletscher-Frankild et al., 2014) (Fig-

ure S3; Extended Experimental Procedures). Among the ten

top-scoring Helios genes, nine were included in this set

(FOXA1, PIK3CA, CCND1, CDK4, MYB, ERBB2, IGF1R, BCL2,

and ESR1), while only five of these appear in regions that are sig-

nificant based on GISTIC2. Moreover, the entire list of 64 Helios

candidates was significantly enriched for our compiled set of

breast cancer drivers (16/64, p value < 4 3 10�15), a large

improvement over the set of all genes in amplified regions iden-

tified by GISTIC2 (17/452, p value > 10�3) (Cancer Genome Atlas

Network, 2012) (Figure 3A). The performance of the method was

also compared against two other algorithms, GAIA (Morganella

et al., 2011) and DiNAMIC (Walter et al., 2011), outperforming

both of them (18/768, p value > 10�3 and 185/10,651, p value

> 10�3, respectively). This demonstrates the significant improve-

ment of our integrative approach over the state of the art.

Helios’s integration across multiple data sources is key to its

ability to be both specific and sensitive. Sequence mutations

are gene-specific, but only few drivers harbor such mutations

recurrently. SCNAs typically cover a large number of genes,

making it hard to identify the target of the amplification based

on copy number alone. For instance, CDK4 shares exactly the

same copy-number profile with its five closest neighbors, but

the lethality displayed by CDK4 in the shRNA screen raises its

Helios score (Figure 3B). More strikingly, BCL2 is only the sixth

gene in its region in terms of copy-number alteration frequency,

but its dramatic oncogene addiction score raises its Helios score

well above all others in the region (Figure 3C). In many cases

(e.g., EGFR or ADAM15) (Figures 3D and 3E), it is not any single

feature, but a combination of features that identifies the top-

scoring gene in the region. Figure 3F shows how Helios out-

performs the simple use of the data sources independently to

identify drivers. Even if all of the candidates obtained by each

data source are joined together naively, Helios provides signifi-

cantly better sensitivity (15 versus 9 detected driver genes) and

specificity (hypergeometric enrichment p value of driver genes

8.16 3 10�14 versus 4.72 3 10�11).

Candidate Selection for Systematic In Vitro Validation of
Helios-Predicted Genes
Helios is designed to rank genes within an amplified region

based on their likely driver capacity. Contrary to most prior
oach (top) calculates a hard threshold on the delta to the most altered marker

s the probability (y axis) of displaying a GSDist value (x axis) for both driver and

sociation between gene dosage (x axis) and shRNA dropout (y axis), aiming to

ild-type levels, and the oncogenic state (II), which is characterized by high

e (x axis) for the top-scoring gene for oncogene addiction in the 17q12 region

e shRNA dropout (y axis) based on the gene dosage (x axis) for the top-scoring

in the genome (right).
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Figure 3. Helios Analysis of Breast Cancer

(A) A comparison of enrichment for a literature-compiled set of breast cancer drivers between our Helios genes, defined as the top gene in each region with a

score >0.5 and three state of the art methods.

(B)–(E) display the result of the Helios analysis for the 12p14, 18q21, 1q21, and 7p12 regions, respectively. Genes in the ISAR regions are displayed in the x axis

and the Helios score is represented by bars colored proportionally to the contribution of each feature (a logistic regression approximation is employed to

approximate the contribution of each feature). The G score is displayed as a black line.

(F) A comparison between Helios and the results from the analysis of the data sources individually, testing for enrichment based on our literature compiled set of

breast cancer drivers. See Figures S3A–S3D for information about convergence and stability of the results.
work that prioritized mostly kinases for experimental validation,

for an unbiased evaluation of Helios, we chose a systematic

score driven approach to validation. To perform an unbiased

and comprehensive assessment, over a wide range of Helios

scores, we used the independent ISAR score >5.5 to select re-

gions and used Helios to pinpoint the most likely driver within

each region. Thus, we sought to assess how often could Helios
1466 Cell 159, 1461–1475, December 4, 2014 ª2014 Elsevier Inc.
pinpoint the correct driver for each of the 17 most frequently and

significantly amplified regions.

In seven of the 17 regions, the top Helios gene was a bona-fide

breast cancer oncogene (ERBB2, CCND1, ZNF217, MYC, miR-

21, FGFR2, and IGF1R) and these oncogenes scored well above

thenext best scoringgene. For example,MYC’sHelios scorewas

100 times greater than the second best gene in the region



Figure 4. Helios Validations

Results of the systematic in vitro validation of Helios candidates including the selected genes and five genes selected as negative controls (highlighted in gray).

One or more rows is shown for each of the top 17 highest scoring ISAR peaks regardless of whether or not any gene from the region was tested experimentally.

The ‘‘Ratio Next’’ column indicates the ratio between the Helios score of the candidate gene and the score of the next best scoring gene in the region. The

‘‘Validation p value’’ column displays the statistical significance of the change in colony size between the six empty vector controls and the six repeats of the

cDNA overexpressing the candidate driver gene. Error bars represent 23 SD of the replicates of the assay. The validation p value was computed using a right-

tailed unpaired two-sample t test. The ‘‘Supported Driver’’ column indicates if the gene has been positively validated by the in vitro assay or is a known driver

based on previous literature. The rightmost panel shows the box plots of the colony numbers for each gene in the validation experiment, where gray indicates the

control and green the cDNA overexpressing the candidate driver gene. The colony assay was not performed for several genes that we failed to clone (MYO18A,

SKI), or were bona fide drivers at the top of their peak (ERBB2, ZNF217, FGFR2, IGF1R). Additionally, no gene scored above 0.3 in the 17q23 region, suggesting

that the target was another regulatory element, in this case the bona fide onco-microRNA MIR21. The three green boxes highlight amplified regions in which we

confirmed more than one driver. The colony data that supports this figure is available in Figures S4B (candidate drivers) and S4C (negative controls).

See also Table S2.
(Figure 4, ‘‘Ratio-next’’ column). Therewas no knownbreast can-

cer oncogene present among ten additional regions, and there-

fore we decided to perform in vitro validation for the top-scoring

Helios genes in each of these regions. Because an amplified re-

gion can harbor more than one oncogene, we selected multiple

genes if more than one scored significantly (4/10 regions). We

failed to clone overexpression vectors for three genes, resulting

in a final selection of 12 predicted oncogenes for validation.

The selected genes encompassed a wide range of functional

roles including chromatin remodeling, transcription factors, cell

surface, cell adhesion proteins, and metabolic enzymes.

One of the hallmarks of transformation that is commonly used

to investigate putative epithelial oncogenes is the ability to pro-

mote attachment-independent growth of a nontransformed cell

line (Hanahan and Weinberg, 2011). This capacity likely reflects
the cumulative impact ofmultiple signals suchas increased resis-

tance to stress, increased cellular growth rates and changes in

metabolism (Davison et al., 2013). As a result, many driver alter-

ations in cancermay potentially impact attachment-independent

growth through multiple mechanisms. Therefore, we based our

candidate validation strategy on assaying this phenotype.

Experimental In Vitro Validation Confirms Helios-
Predicted Genes
For each of the 12 candidate genes, we evaluated the ability of a

clone of MCF-10A cells (human mammary epithelium) with

intrinsic low attachment-independent growth ability, (see Exper-

imental Procedures) to form colonies in semisolid media when

the putative oncogene was experimentally upregulated. These

cells were transduced with viral vectors overexpressing the
Cell 159, 1461–1475, December 4, 2014 ª2014 Elsevier Inc. 1467



putative driver and evaluated for growth in soft agar. CCND1 and

MYC were used as positive controls, and for negative controls,

we selected five genes from significantly amplified ISAR regions

(ISAR>5.5) that did not have a highHelios score (score <0.3). The

agar assays for each gene was tested with a minimum of six rep-

licates and statistical significance was evaluated by unpaired

two-sample t test between the six test and six control plates.

Ten of 12 tested genes (C6ORF23, BEND3, YEATS4, RSF-1,

PRKCZ, GNB1, ZNF652, NIT1, PVRL4, and TRPS1) were able

to significantly increase MCF10A anchorage-independent activ-

ity with a p value of 0.005 or below (Figures 4 andS4). None of the

negative controls demonstrated an increase in colony formation.

This provides in vitro evidence that Helios is highly specific in

identifying genes that provide a selective advantage for breast

cancer cells. Note that a negative result for BRF2 (demonstrated

to be an oncogene in lung cancer) (Lockwood et al., 2010) does

not conclusively rule it out as a driver gene, because attachment-

independent growth is not the only hallmark of cancer and the

assays were performed in a single genetic background.

Overall, Helios demonstrated unprecedented accuracy in

identifying genes that promote oncogenic capabilities. Helios

correctly scored 13/14 drivers at the top of their respected region

(93%). Moreover, 10/12 empirically tested genes validated

(83%), thus we identified ten genes that promote tumorigenic

capabilities in breast cancer (including PVRL4 that was recently

published [Pavlova et al., 2013]). Additionally, because the genes

were selected based on the region’s significance, rather than

their Helios score, a wide range of Helios scores were tested

(between 0.36 and 0.79), increasing our confidence in the candi-

dates identified in other regions. Based on this performance, we

expanded our list of likely drivers based on Helios predictions

with more permissive criteria (Table S3).

Importantly, Helios identified multiple high scoring (likelihood

>0.5) genes for over 20% of the regions. Indeed, we validated

three regions with multiple genes and each gene independently

induced colony formation in vitro (Figure 4, green boxes), indi-

cating that an amplicon often targets more than one gene.

In summary, while previously only 7/17 of the most frequently

altered regions in breast cancer harbored a known oncogene,

following our validation 14/17 regions can be assigned a driver

with substantial confidence.

RSF-1 Promotes Colony Growth In Vitro
Among the ten validated candidates, RSF-1 is an especially

compelling putative driver because it is recurrently amplified in

several cancers (Chen et al., 2011; Fang et al., 2011; Li et al.,

2012; Liu et al., 2012; Shih et al., 2005). Additionally, an amplicon

containing RSF-1 was recently associated with a breast cancer

subtype bearing one of the worst clinical prognoses (Curtis

et al., 2012). Although high expression levels of RSF-1 has been

associated with poor prognosis in several malignancies (Hu

et al., 2012; Li et al., 2012; Liu et al., 2012; Sheu et al., 2013), its

involvement in breast cancer pathogenesis has not yet been

explicitly demonstrated. Therefore, we chose to follow-up our

analysis of RSF-1 with further in vitro and in vivo experiments.

We selected four additional mammary epithelial cell lines

nonamplified for RSF-1. The human MCF-10A-Triple Modified

(a MCF-10A variant sensitized to transformation called here
1468 Cell 159, 1461–1475, December 4, 2014 ª2014 Elsevier Inc.
MCF-10A-TM) (Pires et al., 2013), MDA-MB-415, MDA-MB-

361, and the mouse Comma-ID (C-ID) (Campbell et al., 1988).

We also selected one cell line (MDA-MB-453, human) with ampli-

fied and overexpressed RSF-1 (Figure S5A). Overexpression of

RSF-1 in all nonamplified cell lines increased the ability to form

colonies in semisolid media (Figure 5A). To assay RSF-1 onco-

gene addiction, we selected two doxycycline (Dox) inducible

shRNA-miRs that efficiently silenced RSF-1 and assayed colony

formation of the RSF-1 amplified MDA-MB-453 line. As ex-

pected, silencing of RSF-1 significantly reduced the number of

colonies formed (Figure 5B). To demonstrate that the loss of

tumorigenic potential is not an off-target effect, we restored

RSF1 expression in these cells by overexpressing the RSF1

cDNA (Figure S5C). Restoring RSF1 levels rescued the ability

of MDA-MB-453 to form colonies in agar despite the expression

of RSF1 shRNAs.

RSF-1 Promotes Growth in Xenograft Models
Next, we conducted experiments to assay RSF-1 in vivo. MCF-

10A-TM and C-ID were orthotopically transplanted into the fat

pad of severe combined immunodeficiency (SCID) mice with

and without prior transduction of an RSF-1 overexpression vec-

tor. We then tracked the development of tumors and compared

growth between controls and those overexpressing RSF-1.

MCF-10A cells are not tumorigenic, and overexpression

of RSF-1 did not transform them. While some transplanted

MCF-10A-TM cells remained in the fat pad, these did not

produce tumor. However, MCF-10A-TM overexpressing RSF-1

was able to establish small primary tumor outgrowths (Figures

5C and S5B). C-ID overexpressing RSF-1 cells generated

palpable masses as early as 2 weeks after transplantation—

significantly earlier than control mice, which lacked detectable

tumor burden after 1 month. (p = 0.0001) (Figures 5D and S5B).

Finally, we also transplanted RSF-1 amplified MDA-MB-453

cells and an MDA-MB-453 variant bearing a doxycycline induc-

ible RSF-1-ShRNA into the fat pad of SCIDmice. As expected, in

the absence of Dox, all MDA-MB-453 variants generated tumors

that grew at a comparable rate. However, supplementing the

mice with Dox reduced the tumorigenic growth specifically in

the tumors carrying the RSF-1 shRNA (Figure 5E). This data pro-

vides evidence that RSF-1 can contribute to tumor progression

in vivo and that inhibition of RSF-1 expression can cause tumor

regression.

RSF-1 Promotes Invasion in Xenograft Models
To further characterize the role of RSF-1 in breast cancer, we

analyzed the TCGA gene expression data and identified gene-

expression signatures associated with RSF-1 expression levels

(Akavia et al., 2010; Danussi et al., 2013) (Extended Experimental

Procedures). Genes associated with RSF-1 in this procedure are

putative downstream targets of RSF-1 activity. We performed

gene set enrichment in these signatures using the MSigDB

database (Subramanian et al., 2005) and found enrichment for

gene sets involved in invasion, metastasis, and de-differentiation

(Figures 6A and S6A).

Therefore, we hypothesized that RSF-1 overexpression may

promote metastatic potential in vivo. To test this, we performed

intravenous tail injection of MCF-10A-TM cells expressing a
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Figure 5. High Expression Levels of RSF-1 Promote Tumorigenesis

(A) Overexpression of RSF-1 in multiple cell lines enhances its ability to form colonies in agar.

(B) downregulation of RSF-1 using Dox-inducible shRNAs in a cell line with amplification of the locus (MDA-MB-453) reduced its ability to form colonies in agar.

(C and D) Overexpression of RSF-1 in (C) MCF-10A-TM and (D) CID cells enhanced their tumorigenic potential in vivo. (C) Overexpression of RSF1 in MCF-10A-

TM cells resulted in the formation of small tumor masses demonstrated in hematoxylin and eosin (H&E) images at right compared to control at left. Number of

tumors formed for each model is available in Figure S5B. (D) Overexpression of RSF1 in CID cells increased tumor volume (left) and weight (right) following

orthotopic transplantation in SCID mice.

(E) Silencing of RSF-1 in MDA-MB-453 attenuated its tumorigenic potential when orthotopically transplanted in SCID mice. Error bars represent SD of n = 3 for

in vitro and n = 6–8 for in vivo studies. Animal studies comply with IACUC regulations.
luciferase reporter into SCID mice. When cells are injected intra-

venously in the tail of recipient mice, the cells travel through the

circulatory system and are deposited in the lungs, where the

majority of the cells die due to the absence of a supportivemicro-

environment (Yang et al., 2012). Both control and RSF-1 overex-

pressing cells were rapidly cleared and no signal was detected

1 week after the injection. Importantly, after 7 weeks, all the

mice injected with cells overexpressing RSF-1 showed luciferase

signal in the lungs indicating the formation of lung metastases

while luciferase signal was never recovered in mice injected

with control cells (Figure 6B). This demonstrates that RSF-1 over-
expression promotes increased invasive capacity in the lungs

and therefore a prometastatic state in breast cancer cells.

In summary,wehaveshown that overexpressionofRSF-1con-

fers increased anchorage-independent growth in vitro and pro-

motes the formation of lung metastases in mouse models. Addi-

tionally, we have identified a transcriptional signature associated

with RSF-1 amplification in primary tumors that was enriched

for genes related to metastasis and invasion. The identification

of RSF-1 as an oncogene that increases metastasic potential

provides an explanation for the steepmortality of a recently iden-

tified molecular subgroup of breast cancer (Curtis et al., 2012).
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Figure 6. RSF-1 Alteration Promotes Metastasis

(A) The analysis of the expression changes related to RSF-1 overexpression in basal primary tumors revealed a signature enriched for invasiveness, migration and

dedifferentiation (table at right). The heat map at left shows genes in the signature as rows and samples as columns and the color indicates the relative expression

(green-low and red-high) and demonstrates the tight correlation of the signature genes across patients. Similar results were observed for luminal primary tumors

(Figure S6A). See Figures S6B and S6C for analysis of downregulated genes.

(B) Comparison of lungmetastasis formation in SCIDmice subjected to tail vein injection ofMCF-10A-TM cells expressing a luciferase reporter and either an RSF-

1 overexpression vector or a control vector. H&E of sectioned lungs from mice injected with control and RSF-1 overexpressing cells is also shown. The arrows

indicate the presence of metastatic outgrowths in the lungs. Animal studies comply with IACUC regulations.
DISCUSSION

Cancer research has recently been driven by the hope that ther-

apies targeting drivers will be especially effective in tumors

harboring genetic alterations in the target. This approach relies

on the oncogene addiction effect whereby cancer cells become

dependent on the activity of their altered oncogenes, so that in-

hibiting them compromises cellular viability. This ‘‘personalized

medicine’’ is the basis of some of the most effective therapies,

e.g., those targeting ERBB2 amplification in breast cancer (Ash-

worth et al., 2011). The success of these therapies has fueled ef-

forts to catalog the genomic alterations in numerous cancers
1470 Cell 159, 1461–1475, December 4, 2014 ª2014 Elsevier Inc.
with the hopes of discovering new therapeutically actionable

mutations.

However, even as data from cancer genomes accumulates,

the identification of actionable driver genes remains a crucial lim-

itation to therapeutic development. We see at least two signifi-

cant bottlenecks. First, only a small subset of established driver

genes are druggable given the current pharmalogical state of the

art (Collins and Workman, 2006). Second, even when a driver

is druggable, it may occur in a very small fraction of patients,

limiting its clinical utility. At present, there is an untapped

resource of driver genes in SCNAs that have evaded discovery.

Moreover, due to the high frequency of SCNA events, actionable



drivers can impact more patients (Figure 1A). However, to date,

this possibility has been limited by the difficultly of distinguishing

passengers and drivers in the majority of SCNAs.

Here, we have presented a major advance in addressing this

challenge, using a method that integrates data from primary tu-

mors with functional assays on cell lines to prioritize candidate

drivers. The unparalleled sensitivity and specificity of Helios

enabled us to execute the first reported systematic validation

of an algorithm designed to identify driver genes. Helios’s perfor-

mance was confirmed by a success rate of 10/12 candidates in

an anchorage-independent growth assay, successfully charac-

terizing several regions for which there was no previously impli-

cated driver. Importantly, because we selected the genes for

validation based on their amplification significance (ISAR score),

rather than their Helios score, we expect that this success rate

will extend to additional regions that have equally strong Helios

scores. Moreover, many of these genes are amplified in addi-

tional epithelial cancers (e.g., C6orf203, NIT1, ZNF652) suggest-

ing possible drivers in those cancers as well.

Using Helios, we have significantly expanded the landscape of

high-confidence breast cancer drivers by more than 2-fold (Fig-

ures 7 and S7). Previous analyses of breast cancer cohorts (Ste-

phens et al., 2012; Cancer Genome Atlas Network, 2012) had

identified 15 driver genes occurring in at least 5% of breast can-

cer tumors (both SCNA and sequence mutations). Our analysis

has doubled this number to 29, substantially expanding the

list of potential drug targets. Even more importantly, we have

increased the number of drivers identified in each tumor, thus

raising the possibility that at least one might be actionable in

a given patient. A previous study (Figure 7B, gray boxes) (Ste-

phens et al., 2012) could assign each tumor a median of two

established drivers. Adding the Helios validated genes increases

this number to a median of three drivers per tumor (Figure 7B,

green boxes). Adding all predicted drivers with a high Helios

score further expands this number to a median of five drivers

in each tumor (Figure 7B, yellow boxes). Thus Helios has sub-

stantially expanded the set of high-confidence drivers in breast

cancer.

Helios uses a technique called transfer learning, whereby

drivers with clearer signal (e.g., at the peak of their region) help

learn informative features to improve performance in cases

with less obvious signal. Helios learns the list of candidate

drivers without using any prior list of driver genes and therefore

it does not suffer from any bias. The algorithm uses all data in

its learning process, transferring information across different

genes, as well as between SCNAs and other features, until it

converges into a final ranking of candidate driver genes. By

leveraging information in this fashion, Helios is capable of

learning how to weigh and combine features into a probabilistic

score that represents the likelihood of the gene being the target

of the recurrent alteration. This computational framework is inde-

pendent of the features and tumor type and it can be applied to

analyze additional cancers using a similar or even different set of

features.

Genetic, genomic and functional data on cancers will continue

to accumulate from large-scale projects in the coming years

(Cheung et al., 2011; Cancer Genome Atlas Network, 2008).

Such data sets continue to accelerate drug development and
to yield deep insights into oncogenesis. However, they also

create new analytical challenges such as the need to pinpoint

the alterations that promote cancer. Helios can be viewed as

an accurate in silico screen for drivers. As such, it can be applied

to additional cancer types and data types to accelerate the

identification of cancer drivers.

EXPERIMENTAL PROCEDURES

ISAR

ISAR is based on the G score metric, a significance measure of the aberration

for each marker, which was originally defined in GISTIC (Beroukhim et al.,

2007). Specifically, the G score for a marker m is the summation of the copy

number across samples that surpass an aberration threshold q. Given the

copy number for n samples, the G score for a marker m in the case of ampli-

fications is:

GAMPðmÞ=
XN

i = 1

CNðm; iÞ3 I
�
CNðm; iÞ> qAMP

�
; (Equation 1)

where CN(m,i) is the copy number of marker m in sample i and I is the indicator

function.

ISAR uses a local sliding window of constant size that moves along the

chromosome, calculating the null distribution for each window. Once the

distribution has been computed in all windows within a chromosome, each

genomic marker is associated with several overlapping windows. The

algorithm takes a conservative approach by selecting the least significant q

value among the values computed for all overlapping windows containing

the marker (see Extended Experimental Procedures for more detail).

Modeling Copy Number

We aim to model a distribution of SCNA that reflects the differences between

driver and passenger genes, independently of the chromosomal region. How-

ever, in contrast to the subtle differences in SCNA within each altered region,

the distribution of alterations differs dramatically between regions. Indeed, the

median difference in G score between genes in a region is significantly smaller

(172) than the difference for genes across different regions (6,405). Thus,

without appropriate normalization, the G score should not be used to prioritize

drivers across regions. We aim to model whether the gene is among the most

altered genes in its own region (and thereforemore likely to be the driver of that

region) and therefore define ametric that measures the difference in terms of G

score to the highest value in each region. For a single gene g, we define the

GSDist score as:

GSDistðgÞ= max
j˛regionðgÞ

ðGscoreðjÞ �GscoreðgÞÞ: (Equation 2)

The most altered gene(s) in a region will have GSDist = 0, while any other gene

will have a positive value that indicates the ‘‘distance’’ to the most frequently

amplified gene in the region. Note that traditional approaches would use a

threshold on this metric to make a hard decision on whether genes in the

altered region are peak genes (Figure 2B). Instead Helios models this metric

using two exponential distributions (one for drivers and one for passengers):

PðSCNAjltÞ= lte
�ltGSDist : (Equation 3)

Driver genes have a GSDist distribution that exponentially decreases from

zero with small variance, whereas passenger genes are modeled by a uniform

distribution, which is approximated by an exponential distribution with large

variance (see Extended Experimental Procedures for more detail).

Features Used in the Helios Algorithm

We use MutSig (Banerji et al., 2012) to compute the statistical significance of

the recurrence of point mutations.
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Figure 7. The Landscape of Driver Mutations in Breast Cancer

(A and B) For the driver genes described in Stephens et al. (2012) (gray), Helios validated genes (green), and other Helios genes scoring >5.5 (yellow), we compute

(A) the number of tumors altered (copy number or sequence mutation) for each driver gene and (B) the number of driver genes altered (copy number or sequence

mutation) per tumor. For this figure we consider the 485 primary tumors in TCGA for which both copy number and DNA-Seq were available.

See also Figure S7 and Table S3.
Helios uses features extracted from RNA-Seq-based gene expression in

two different ways: (1) to identify genes that are not expressed and therefore

unlikely to be drivers, and (2) we expect the oncogenic activity of an amplified

driver gene to be reflected in the gene’s mRNA dosage (Akavia et al., 2010).
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The oncogene addiction score for a hairpin is defined as the log-likelihood of

the monotonic regression that predicts the lethality based on the gene mRNA.

We use the PAVA algorithm (Brunk, 1955) to estimate the best fit for the regres-

sion (see Extended Experimental Procedures for more detail).



Helios Algorithm

Helios uses a hierarchical Bayesian mixture model to distinguish drivers from

passengers among the genes present in significantly altered regions. The un-

supervised Bayesian algorithm discriminates driver genes (T = 1) by integrating

the copy-number alteration information (SCNA), with cues from different data

sources (X). The hierarchical framework naturally separates these two compo-

nents using the following model:

PðCNAÞ=
X

t˛0;1

PðSCNAjT = tÞPðT = tjXÞ: (Equation 4)

This model separates the modeling of copy number (P(SCNAjT = t)) from other

sources of information (P(T = tjX)), focusing on predicting the observed copy-

number landscape (P(SCNA)). The algorithm iteratively fits a model for each

part: P(SCNAjT = t) and P(T = tjX) and updates the estimations for each

gene (T) taking both parts into account. The algorithm is executed until the

model converges into a stable solution that incorporates all the information

into a single probability score for each gene.

Figure S2A shows the graphical model for Helios, where n genes are classi-

fied by combining the information from different data sources X and SCNA. w

represents the parameters that control the integration of X, while l parameter-

izes the influence of SCNA. In this model, when the values Tn for the genes are

given, the parameters for the different sources (W) and copy number (l) are in-

dependent. This propertymakes it possible to fit themodel efficiently using the

Expectation Maximization (EM) algorithm (see Extended Experimental Proce-

dures for more details).

Data Sets Used for Helios

We used the following public data sets:

Primary tumor data from the TCGA project (Cancer Genome Atlas Network,

2012): copy number Affymetrix 6.0 SNP arrays (n = 785), Illumina HiSeq RNA

sequencing (n = 732), and whole-exome sequencing (n = 507).

Cell line shRNA screens (n = 29) collected by Marcotte et al. (2012).

Cell line data from the Cancer Cell Line Encyclopedia (Barretina et al., 2012)

for the cell lines screened with shRNA: copy number Affymetrix 6.0 SNP arrays

(n = 27) and messenger RNA Affymetrix U133 plus 2.0 arrays (n = 27).

Data Sets Used to Generate Gold Standard Set

To assess performance, a gold standard set of 330 genes was compiled from

the following sources:

The set of known amplified oncogenes from Beroukhim et al. (2010).

The set of genes related to breast cancer according to the University

of Copenhagen DISEASES database (Pletscher-Frankild et al., 2014) with

score >2.5.We filtered out genes categorized as tumor suppressors according

to the Uniprot Consortium (2013).

See Extended Experimental Procedures for more information.

Cell Culture and Reagents

Togenerate cell lines overexpressing a gene, cellswere plated at 60%of conflu-

ence in a 6 well plate and after 24 hr infected with virus expressing the different

plasmids containing the different genes. Media containing virus was replaced in

12 hr for fresh media. Cells were then reinfected for another 12 hr. Cells were

grown in fresh media for 24 hr and selected with the appropriate drug. To

generate MDA-MB 453 cells deficient in RSF1 expression, cells were infected

with virus expressing doxycycline-inducible pTRIPz shRNAs against RSF1.

Then, cells expressing the shRNAs were selected with the puromycin (2 mg/ml).

See Extended Experimental Procedures for cell lines, DNA constructs, and

gene cloning strategy.

Validation of Helios predictions was based on the ability of MCF-10A to form

colonies in semisolid media when the putative oncogene was experimentally

upregulated. Because low passage MCF-10A are very resistant to transfor-

mation, to increase the sensitivity of our assay, we selected a passage with

intrinsic low attachment-independent growth ability (5–15 colonies per 5,000

plated cells) that demonstrated robust higher growth ability when bona-fide

breast oncogenes were overexpressed (Figure S4A).

Colony formation assay in semisolid media was performed in 6 well plates.

First, a layer of 2 ml of 0.6% agar (Fisher 9002-18-0) in regular MCF-10Amedia
was placed at the bottom of each well and allowed gelification. Then, a layer of

2 ml of 0.3% agar containing 5,000 cells was seeded on top of the bottom agar

layer and allow gelification. Finally, 1 ml of regular MCF-10Amedia was placed

covering the agar. The colonies were allowed to form for 1 month. After this

period, 2 ml of MTT solution (Sigma M5655) at 0.5 mg/ml was used to stain

the colonies. A minimum of six replicas per gene were plated. To ensure

comparability, transformation assays for each gene are compared to empty-

vector controls performed together on the same day. The number of colonies

was independently evaluated by two researchers. All the different MCF-10A

clones carrying controls and genes of interest were maintained growing expo-

nentially for 48 hr (plates were at 50–70 confluence) before being plated in agar

to homogenize assay conditions.

Tumorigenicity in Mice

Animal maintenance and experiments were performed in accordance with the

animal care guidelines and protocols approved by Columbia University animal

care unit. For Comma-1D cell line, 21-day-old female NODSCID immunocom-

promised mice NOD.CB17-Prkdcs SCID mice (Harlan) mice were injected

with 5 3 105 cells, resuspended in PBS into a fat mammary gland. For MDA-

453 cell line, 8-week-old female NOD SCID immunocompromised mice

NOD.CB17-Prkdcs SCID mice (Harlan) mice where injected with 53 106 cells,

resuspended in 1:2 Matrigel (BD Biosciences) plus normal growth media into a

fat pad mammary gland. Doxycycline was added to drinking water at a final

concentration of 2.0 mg/ml. Tumor growth was monitored twice a week with

calipers at the site of injection. Animals were sacrificed as soon as tumor

size reached 1.5 cm in diameter.

In the experimental metastasis assays, 8-week-old female NOD SCID

immunocompromised NOD.CB17-Prkdcs SCID mice (Harlan) where injected

with 5 3 106 cells, resuspended in PBS, via the tail vein. To measure the

luciferase intensity of injected cells, 2.25 mgml�1 luciferin was injected intrave-

nously through the tail and luciferase activity was assessed 5 min after

luciferin injection using a IVIS Spectrum Pre-Clinical In Vivo Imaging System

(IVISSPE; Perkin-Elmer) machine. The presence of established metastases

was confirmed by euthanizing the mice.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and five tables and can be found online at http://dx.doi.org/10.1016/j.

cell.2014.10.048.
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Supplemental Information

Figure S1. 18q21 Copy-Number Region, Related to Figure 1

(A andB) Heatmap of the copy-number profile of the TCGABreast cancer cohort for the 18q arm (A) and a zoom-in of the 18q21 region (B). ISAR score and regions

are displayed at the bottom.
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Figure S2. Helios Modeling Approach, Related to Figure 2

(A) Graphical model for the Helios Algorithm. N input genes are classified as either driver gene (Tn = 1) or passenger gene (Tn = 0) by combining the information

from SCNA and different data sources X. The model needs to fit both the parameters that control the integration of X (w) and the parameters that influence the

SCNA (l).

(B) Bayesian Network for data integration in the Helios Algorithm. Helios uses a Bayesian network with sigmoid nodes to integrate different data sources. The

current version of Helios contains two input nodes (shRNA-addiction and shRNA-subtype) that integrate genome-wide vulnerability assays and that are merged

into a single node (shRNA-node), an input node for sequence mutations (DNASeq) and an input node for gene expression (RNASeq). The output of this network

gives the expected classification of a gene as target (T = 1) or passenger (T = 0) when CNA information is not taken into account.
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Figure S3. Helios Analysis of Breast Cancer, Related to Figure 3

(A) Likelihood of the Helios model for each iteration of the algorithm.

(B) Parameters for the GSDist distributions (l0 and l1) for each iteration of the Helios algorithm.

(C) ISAR peak stability versus S-score. The percentage of runs in which a peak was called across subsample runs is plotted against the S-score.

(D) Histogram of Pearson correlation of Helios scores across subsample runs of the algorithm. The average correlation between Helios scores across executions

(0.96) is highlighted with a discontinuous line.

(E) Contribution of each feature to the Helios score. GSEA enrichment of gold standard genes both in the final run and in runs where each individual data source

was excluded.
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Figure S4. Helios Validation Assay, Related to Figure 4

(A–C) Most representative repeat for each of the genes assayed for anchorage-independent growth: (A) controls, (B) putative drivers selected by HELIOS, and (C)

randomly selected genes with high ISAR score but low HELIOS score.

(D) QRT-PCR data showing efficient overexpression in MCF-10A for each of the genes studied. The data are represented as the difference in Delta-Ct (gene of

interest-b/actin) between overexpressing and parental cells and then normalized to cells transduced with the control vector.
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Figure S5. Overexpression of RSF1 Promotes Tumorigenesis, Related to Figure 5

(A) The composition demonstrates that copy number drives the expression of RSF1 in cell lines. The left panels shows the correlation between CNV and mRNA

levels and the right panels between CNV and protein levels.

(B) The table shows the number of animal orthotopically transplanted with three different cell lines (MCF-10A,MCF-10ATM and C-ID) and its ability to form tumors

when they were engineered to overexpress RSF1.

(C) Experimentally rescued RSF-1 expression in MDA-MB-453 cells expressing shRNAs against RSF-1 restored their colony formation ability.

Cell 159, 1461–1475, December 4, 2014 ª2014 Elsevier Inc. S5



Figure S6. RSF1 Expression Signatures, Related to Figure 6

(A) The analysis of the overexpression changes related to RSF1 overexpression in luminal primary tumors revealed a signature enriched for invasiveness,

migration, EMT and stem cell.

(B and C) The analysis of the underexpression related to RSF1 overexpression in luminal (B) and basal (C) primary tumors reveals signatures enriched for

metabolic changes, dedifferentiation and metastasis.
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Figure S7. The Landscape of Driver Mutations in Breast Cancer, Related to Figure 7

For the driver genes described in (Stephens et al., 2012) (gray), Helios validated genes (green) and other Helios selected genes (yellow) the figure displays the

alterations in the 485 primary tumors in TCGA for which both copy number andDNA-Seqwere available. Each row represents a genewhile each column represent

a tumor. Both point mutations and copy-number changes are considered for this plot.
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