
Journal of Machine Learning Research 6 (2005) 557–588 Submitted 3/04; Revised 1/05; Published 4/05

Learning Module Networks

Eran Segal ERAN@CS.STANFORD.EDU

Computer Science Department
Stanford University
Stanford, CA 94305-9010, USA

Dana Pe’er DPEER@GENETICS.MED.HARVARD .EDU

Genetics Department
Harvard Medical School
Boston, MA 02115, USA

Aviv Regev AREGEV@CGR.HARVARD .EDU

Bauer Center for Genomic Research
Harvard University
Cambridge, MA 02138, USA

Daphne Koller KOLLER@CS.STANFORD.EDU

Computer Science Department
Stanford University
Stanford, CA 94305-9010, USA

Nir Friedman NIR@CS.HUJI.AC.IL
Computer Science & Engineering
Hebrew University
Jerusalem, 91904, Israel

Editor: Tommi Jaakkola

Abstract
Methods for learning Bayesian networks can discover dependency structure between observed

variables. Although these methods are useful in many applications, they run into computational
and statistical problems in domains that involve a large number of variables. In this paper,1 we
consider a solution that is applicable when many variables have similar behavior. We introduce
a new class of models,module networks, that explicitly partition the variables into modules, so
that the variables in each module share the same parents in the network and the same conditional
probability distribution. We define the semantics of modulenetworks, and describe an algorithm
that learns the modules’ composition and their dependency structure from data. Evaluation on real
data in the domains of gene expression and the stock market shows that module networks generalize
better than Bayesian networks, and that the learned module network structure reveals regularities
that are obscured in learned Bayesian networks.

1. A preliminary version of this paper appeared in the Proceedings of theNineteenth Conference on Uncertainty in
Artificial Intelligence, 2003 (UAI ’03).

c©2005 Eran Segal, Dana Pe’er, Aviv Regev, Daphne Koller and Nir Friedman.

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

1. Introduction

Over the last decade, there has been much research on the problem of learning Bayesian networks
from data (Heckerman, 1998), and successfully applying it both to density estimation, and to dis-
covering dependency structures among variables. Many real-world domains, however, are very
complex, involving thousands of relevant variables. Examples include modeling the dependencies
among expression levels (a rough indicator of activity) of all the genes in acell (Friedmanet al.,
2000a; Lander, 1999) or among changes in stock prices. Unfortunately, in complex domains, the
amount of data is rarely enough to robustly learn a model of the underlying distribution. In the gene
expression domain, a typical data set describes thousands of variables, but at most a few hundred
instances. In such situations, statistical noise is likely to lead to spurious dependencies, resulting in
models that significantly overfit the data.

Moreover, if our goal is structure discovery, such domains pose additional challenges. First,
due to the small number of instances, we are unlikely to have much confidencein the learned
structure (Pe’eret al., 2001). Second, a Bayesian network structure over thousands of variables is
typically highly unstructured, and therefore very hard to interpret.

In this paper, we propose an approach to address these issues. We start by observing that, in
many large domains, the variables can be partitioned into sets so that, to a first approximation, the
variables within each set have a similar set of dependencies and therefore exhibit a similar behavior.
For example, many genes in a cell are organized intomodules, in which sets of genes required for
the same biological function or response are co-regulated by the same inputs in order to coordinate
their joint activity. As another example, when reasoning about thousandsof NASDAQ stocks, entire
sectors of stocks often respond together to sector-influencing factors(e.g., oil stocks tend to respond
similarly to a war in Iraq).

We define a new representation called amodule network, which explicitly partitions the variables
into modules. Each module represents a set of variables that have the same statistical behavior, i.e.,
they share the same set of parents and local probabilistic model. By enforcing this constraint on the
learned network, we significantly reduce the complexity of our model spaceas well as the number
of parameters. These reductions lead to more robust estimation and better generalization on unseen
data. Moreover, even if a modular structure exists in the domain, it can be obscured by a general
Bayesian network learning algorithm which does not have an explicit representation for modules.
By making the modular structure explicit, the module network representation provides insight about
the domain that are often be obscured by the intricate details of a large Bayesian network structure.

A module network can be viewed simply as a Bayesian network in which variables in the same
module share parents and parameters. Indeed, probabilistic models with shared parameters are
common in a variety of applications, and are also used in other general representation languages,
such asdynamic Bayesian networks(Dean and Kanazawa, 1989),object-oriented Bayesian Net-
works (Koller and Pfeffer, 1997), andprobabilistic relational models(Koller and Pfeffer, 1998;
Friedmanet al., 1999a). (See Section 8 for further discussion of the relationship between module
networks and these formalisms.) In most cases, the shared structure is imposed by the designer of
the model, using prior knowledge about the domain. A key contribution of this paper is the design
of a learning algorithm that directly searches for and finds sets of variables with similar behavior,
which are then defined to be a module.

We describe the basic semantics of the module network framework, presenta Bayesian scoring
function for module networks, and provide an algorithm that learns both theassignment of variables

558

LEARNING MODULE NETWORKS

INTL

MSFT

MOT

AMAT

DELL HPQ

CPD 4

P(INTL)

MSFT

CPD 6CPD 6

CPD 3

CPD 5

CPD 1

CPD 2

INTL

MSFT

MOT

DELL
Module 3

Module 2

Module 1

CPD 3

CPD 2

CPD 1

AMAT

HPQ

(a) Bayesian network (b) Module network

Figure 1: (a) A simple Bayesian network over stock price variables; the stock price of Intel (INTL)
is annotated with a visualization of its CPD, described as a different multinomial dis-
tribution for each value of its influencing stock price Microsoft (MSFT). (b) A simple
module network; the boxes illustrate modules, where stock price variables share CPDs
and parameters. Note that in a module network, variables in the same module have the
same CPDs but may have different descendants.

to modules and the probabilistic model for each module. We evaluate the performance of our al-
gorithm on two real data sets, in the domains of gene expression and the stock market. Our results
show that our learned module network generalizes to unseen test data muchbetter than a Bayesian
network. They also illustrate the ability of the learned module network to revealhigh-level structure
that provides important insights.

2. The Module Network Framework

We start with an example that introduces the main idea of module networks and then provide a
formal definition. For concreteness, consider a simple toy example of modeling changes in stock
prices. The Bayesian network of Figure 1(a) describes dependencies between different stocks. In
this network, each random variable corresponds to the change in price of a single stock. For illus-
tration purposes, we assume that these random variables take one of three values: ‘down’, ‘same’
or ‘up’, denoting the change during a particular trading day. In our example, the stock price of
Intel (INTL) depends on that of Microsoft (MSFT). Theconditional probability distribution (CPD)
shown in the figure indicates that the behavior of Intel’s stock is similar to that of Microsoft. That
is, if Microsoft’s stock goes up, there is a high probability that Intel’s stockwill also go up and vice
versa. Overall, the Bayesian network specifies a CPD for each stock price as a stochastic function
of its parents. Thus, in our example, the network specifies a separate behavior for each stock.

The stock domain, however, has higher order structural features thatare not explicitly modeled
by the Bayesian network. For instance, we can see that the stock price ofMicrosoft (MSFT) in-

559

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

fluences the stock price of all of the major chip manufacturers — Intel (INTL), Applied Materials
(AMAT), and Motorola (MOT). In turn, the stock price of computer manufacturers Dell (DELL)
and Hewlett Packard (HPQ), are influenced by the stock prices of their chip suppliers — Intel and
Applied Materials. An examination of the CPDs might also reveal that, to a first approximation, the
stock price of all chip making companies depends on that of Microsoft andin much the same way.
Similarly, the stock price of computer manufacturers that buy their chips fromIntel and Applied
Materials depends on these chip manufacturers’ stock and in much the same way.

To model this type of situation, we might divide stock price variables into groups, which we
call modules, and require that variables in the same module have the same probabilistic model;
that is, all variables in the module have the same set of parents and the same CPD. Our example
contains three modules: one containing only Microsoft, a second containingchip manufacturers
Intel, Applied Materials, and Motorola, and a third containing computer manufacturers Dell and HP
(see Figure 1(b)). In this model, we need only specify three CPDs, one for each module, since all the
variables in each module share the same CPD. By comparison, six differentCPDs are required for
a Bayesian network representation. This notion of a module is the key idea underlying the module
network formalism.

We now provide a formal definition of a module network. Throughout this paper, we assume
that we are given a domain of random variablesX = {X1, . . . ,Xn}. We useVal(Xi) to denote the
domain of values of the variableXi .

As described above, a module represents a set of variables that sharethe same set of parents
and the same CPD. As a notation, we represent each module by aformal variablethat we use as
a placeholder for the variables in the module. Amodule setC is a set of such formal variables
M1, . . . ,MK . As all the variables in a module share the same CPD, they must have the same domain
of values. We represent byVal(M j) the set of possible values of the formal variable of thej ’th
module.

A module network relative toC consists of two components. The first defines a template prob-
abilistic model for each module inC ; all of the variables assigned to the module will share this
probabilistic model.

Definition 1 A module network templateT = (S ,θ) for C defines, for each moduleM j ∈ C :

• a set of parentsPaM j ⊂ X ;

• a conditional probability distribution templateP(M j | PaM j) which specifies a distribution
over Val(M j) for each assignment in Val(PaM j).

We useS to denote the dependency structure encoded by{PaM j : M j ∈ C} and θ to denote the
parameters required for the CPD templates{P(M j | PaM j) : M j ∈ C}.

In our example, we have three modulesM1, M2, andM3, with PaM1 = /0, PaM2 = {MSFT}, and
PaM3 = {AMAT, INTL}.

The second component is a module assignment function that assigns each variableXi ∈ X to
one of theK modules,M1, . . . ,MK . Clearly, we can only assign a variable to a module that has the
same domain.

Definition 2 A module assignment functionfor C is a functionA : X → {1, . . . ,K} such that
A(Xi) = j only if Val(Xi) = Val(M j).

560

LEARNING MODULE NETWORKS

In our example, we have thatA(MSFT) = 1, A(MOT) = 2, A(INTL) = 2, and so on.
A module network defines a probabilistic model by using the formal random variablesM j and

their associated CPDs as templates that encode the behavior of all of the variables assigned to that
module. Specifically, we define the semantics of a module network by “unrolling” a Bayesian net-
work where all of the variables assigned to moduleM j share the parents and conditional probability
template assigned toM j in T . For this unrolling process to produce a well-defined distribution, the
resulting network must be acyclic. Acyclicity can be guaranteed by the following simple condition
on the module network:

Definition 3 LetM be a triple(C ,T ,A), whereC is a module set,T is a module network template
for C , andA is a module assignment function forC . M defines a directedmodule graphGM as
follows:

• the nodes inGM correspond to the modules inC ;

• GM contains an edgeM j → M k if and only if there is a variable X∈ X so thatA(X) = j and
X ∈ PaMk.

We say thatM is amodule networkif the module graphGM is acyclic.

For example, for the module network of Figure 1(b), the module graph has the structureM1 →
M2 → M3.

We can now define the semantics of a module network:

Definition 4 A module networkM = (C ,T ,A) defines aground Bayesian networkBM overX as
follows: For each variable Xi ∈ X , whereA(Xi) = j, we define the parents of Xi in BM to bePaM j ,
and its conditional probability distribution to be P(M j | PaM j), as specified inT . The distribution
associated withM is the one represented by the Bayesian networkBM .

Returning to our example, the Bayesian network of Figure 1(a) is the ground Bayesian network of
the module network of Figure 1(b).

Using the acyclicity of the module graph, we can now show that the semantics for a module
network is well-defined.

Proposition 5 The graphGM is acyclic if and only if the dependency graph ofBM is acyclic.

Proof: The proof follows from the direct correspondence between edges in the module graph and
edges in the ground Bayesian network. Consider some edgeXi → Xj in BM . By definition of the
module graph, we must have an edgeMA(Xi) → MA(Xj) in the module graph. Thus, any cyclic
path inBM corresponds directly to a cyclic path in the module graph, proving one direction of the
theorem. The proof in the other direction is slightly more subtle. Assume that there exists a cyclic
path p = (M1 → M2 . . .M l → M1) in the module graph. By definition of the module graph, if
M i → M i+1 there is a variableXi with A(Xi) = M i that is a parent ofXi+1, for eachi = 1, . . . , l −1.
By construction, it follows that there is an arcXi → Xi+1 in BM . Similarly, there is a variable
Xl with A(Xl) = M l that is a parent ofM1. And so, we conclude thatBModNet contains a cycle
X1 → X2 → . . .Xl → X1, proving the other direction of the theorem

Corollary 6 For any module networkM , BM defines a coherent probability distribution overX .

561

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

As we can see, a module network provides a succinct representation of the ground Bayesian
network. In a realistic version of our stock example, we might have several thousand stocks. A
Bayesian network in this domain needs to represent thousands of CPDs. On the other hand, a
module network can often represent a good approximation of the domain using a model with only
few dozen CPDs.

3. Data Likelihood and Bayesian Scoring

We now turn to the task of learning module networks from data. Recall that a module network is
specified by a set of modulesC , an assignment functionA of nodes to modules, the parent structure
S specified inT , and the parametersθ for the local probability distributionsP(M j | PaM j). We
assume in this paper that the set of modulesC is given, and omit reference to it from now on.
We note that, in the models we consider in this paper, we do not associate properties with specific
modules and thus only the number of modules is of relevance to us. However,in other settings (e.g.,
in cases with different types of random variables) we may wish to distinguishbetween different
module types. Such distinctions can be made within the module network frameworkthrough more
elaborate prior probability functions that take the module type into account.

One can consider several learning tasks for module networks, depending on which of the re-
maining aspects of the module network specification are known. In this paper, we focus on the most
general task of learning the network structure and the assignment function, as well as a Bayesian
posterior over the network parameters. The other tasks are special cases that can be derived as a
by-product of our algorithm.

Thus, we are given a training setD = {x[1], . . . ,x[M]}, consisting ofM instances drawn indepen-
dently from an unknown distributionP(X). Our primary goal is to learn a module network structure
and assignment function for this distribution. We take ascore-based approachto this learning task.
In this section, we define a scoring function that measures how well each candidate model fits the
observed data. We adopt the Bayesian paradigm and derive a Bayesian scoring function similar to
the Bayesian score for Bayesian networks (Cooper and Herskovits, 1992; Heckermanet al., 1995).
In the next section, we consider the algorithmic problem of finding a high scoring model.

3.1 Likelihood Function

We begin by examining thedata likelihoodfunction

L(M : D) = P(D | M) =
M

∏
m=1

P(x[m] | T ,A).

This function plays a key role both in the parameter estimation task and in the definition of the
structure score.

As the semantics of a module network is defined via the ground Bayesian network, we have that,
in the case of complete data, the likelihood decomposes into a product oflocal likelihood functions,
one for each variable. In our setting, however, we have the additional property that the variables in a
module share the same local probabilistic model. Hence, we can aggregate these local likelihoods,
obtaining a decomposition according to modules.

More precisely, letX j = {X ∈ X | A(X) = j}, and letθM j |PaM j
be the parameters associated

with the CPD templateP(M j | PaM j). We can decompose the likelihood function as a product of

562

LEARNING MODULE NETWORKS

Instance 3

Module 3

Module 2

Module 1

AMAT

θθθθ��

θθθθ�������

θθθθ�������
	

���

DELL HPQ

INTL
MOT

MSFT

Instance 1
Instance 2

+MSFT)(AMAT,S

+MSFT)(MOT,S
�

MSFT)(INTL,S

=MSFT),(MS �

(MSFT)S)(MS

�

=

+INTL)AMAT,(DELL,S

+INTL)AMAT,(HPQ,S

=INTL)AMAT,,(MS �

Figure 2: Shown is a plate model for three instances of the module network example of Figure 1(b).
The CPD template of each module is connected to all variables assigned to that module
(e.g. θM2|MSFT is connected toAMAT, MOT, and INTL). The sufficient statistics of
each CPD template are the sum of the sufficient statistics of each variable assigned to the
module and the module parents.

module likelihoods, each of which can be calculated independently and depends only on the values
of X j andPaM j , and on the parametersθM j |PaM j

:

L(M : D)

=
K

∏
j=1

[

M

∏
m=1

∏
Xi∈X j

P(xi [m] | paM j
[m],θM j |PaM j

)

]

=
K

∏
j=1

L j(PaM j ,X
j ,θM j |PaM j

: D). (1)

If we are learning conditional probability distributions from the exponentialfamily (e.g., discrete
distribution, Gaussian distributions, and many others), then the local likelihood functions can be
reformulated in terms ofsufficient statisticsof the data. The sufficient statistics summarize the
relevant aspects of the data. Their use here is similar to that in Bayesian networks (Heckerman,
1998), with one key difference. In a module network, all of the variablesin the same module
share the same parameters. Thus, we pool all of the data from the variables in X j , and calculate
our statistics based on this pooled data. More precisely, letSj(M j ,PaM j) be a sufficient statistic
function for the CPDP(M j | PaM j). Then the value of the statistic on the data setD is

Ŝj =
M

∑
m=1

∑
Xi∈X j

Sj(xi [m],paM j
[m]). (2)

563

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

For example, in the case of networks that use only multinomial table CPDs, we have one suffi-
cient statistic function for each joint assignmentx∈Val(M j),u∈Val(PaM j), which isη{Xi [m] = x,paM j

[m] = u}
— the indicator function that takes the value 1 if the event(Xi [m] = x,PaM j [m] = u) holds, and 0
otherwise. The statistic on the data is

Ŝj [x,u] =
M

∑
m=1

∑
Xi∈X j

η{Xi [m] = x,PaM j [m] = u}.

Given these sufficient statistics, the formula for the module likelihood function is:

L j(PaM j ,X
j ,θM j |PaM j

: D) = ∏
x,u∈Val(M j ,PaM j)

θŜj [x,u]

x|u .

This term is precisely the one we would use in the likelihood of Bayesian networks with multinomial
table CPDs. The only difference is that the vector of sufficient statistics for a local likelihood term
is pooled over all the variables in the corresponding module.

For example, consider the likelihood function for the module network of Figure 1(b). In this
network we have three modules. The first consists of a single variable and has no parents, and so
the vector of statisticŝS[M1] is the same as the statistics of the single variableŜ[MSFT]. The second
module contains three variables; thus, the sufficient statistics for the module CPD is the sum of the
statistics we would collect in the ground Bayesian network of Figure 1(a):

Ŝ[M2,MSFT] = Ŝ[AMAT,MSFT]+ Ŝ[MOT,MSFT]+ Ŝ[INTL,MSFT].

Finally,
Ŝ[M3,AMAT, INTL] = Ŝ[DELL,AMAT, INTL]+ Ŝ[HPQ,AMAT, INTL].

An illustration of the decomposition of the likelihood and the associated sufficient statistics using
the plate model is shown in Figure 2.

As usual, the decomposition of the likelihood function allows us to perform maximum likeli-
hood or MAP parameter estimation efficiently, optimizing the parameters for eachmodule sepa-
rately. The details are standard (Heckerman, 1998), and are thus omitted.

3.2 Priors and the Bayesian Score

As we discussed, our approach for learning module networks is based on the use of a Bayesian
score. Specifically, we define a model score for a pair(S ,A) as the posterior probability of the
pair, integrating out the possible choices for the parametersθ. We define an assignment priorP(A),
a structure priorP(S | A) and a parameter priorP(θ | S ,A). These describe our preferences over
different networksbeforeseeing the data. By Bayes’ rule, we then have

P(S ,A | D) ∝ P(A)P(S | A)P(D | S ,A),

where the last term is themarginal likelihood

P(D | S ,A) =
Z

P(D | S ,A ,θ)P(θ | S)dθ.

We define the Bayesian score as the log ofP(S ,A | D), ignoring the normalization constant

score(S ,A : D) = logP(A)+ logP(S | A)+ logP(D | S ,A). (3)

564

LEARNING MODULE NETWORKS

As with Bayesian networks, when the priors satisfy certain conditions, the Bayesian score de-
composes. This decomposition allows to efficiently evaluate a large number of alternatives. The
same general ideas carry over to module networks, but we also have to include assumptions that
take the assignment function into account. Following is a list of conditions on theprior required for
the decomposability of the Bayesian score in the case of module networks:

Definition 7 Let P(θ,S ,A) be a prior over assignments, structures, and parameters.

• P(θ,S ,A) is globally modularif

P(θ | S ,A) = P(θ | S),

and

P(S ,A) ∝ ρ(S)κ(A)C(A ,S),

whereρ(S) andκ(A) are non-negative measures over structures and assignments, and C(A ,S)
is a constraint indicator function that is equal to 1 if the combination of structure and assign-
ment is a legal one (i.e., the module graph induced by the assignmentA and structureS is
acyclic), and 0 otherwise.

• P(θ | S) satisfiesparameter independenceif

P(θ | S) =
K

∏
j=1

P(θM j |PaM j
| S).

• P(θ | S) satisfiesparameter modularityif

P(θM j |PaM j
| S1) = P(θM j |PaM j

| S2).

for all structuresS1 andS2 such thatPaS1
M j

= PaS2
M j

.

• ρ(S) satisfiesstructure modularityif

ρ(S) = ∏
j

ρ j(S j),

whereS j denotes the choice of parents for moduleM j andρ j is a non-negative measure over
these choices.

• κ(A) satisfiesassignment modularityif

κ(A) = ∏
j

κ j(A j),

whereA j denote is the choice of variables assigned to moduleM j andκ j is a non-negative
measure over these choices.

565

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

Global modularity implies that the prior can be thought of as a combination of three components
— a parameter prior that depends on the network structure, a structure prior, and an assignment prior.
Clearly the last two components cannot be independent, as the the assignment and the structure
together must define a legal network. However, global modularity implies thatthese two priors are
“as independent as possible”. The legality requirement, which is encodedby the indicator function
C(A ,S) ensures that only legal assignment/structure pairs have a non-zero probability. Other than
this constraint, the preferences over structures and over assignments are specified separately.

Parameter independence and parameter modularity are the natural analogues of standard as-
sumptions in Bayesian network learning (Heckermanet al., 1995). Parameter independence implies
thatP(θ | S) is a product of terms that parallels the decomposition of the likelihood in Equation(1),
with one prior term per local likelihood termL j . Parameter modularity states that the prior for the
parameters of a moduleM j depends only on the choice of parents forM j and not on other aspects
of the structure.

Finally, structure modularity and assignment modularity imply that the structure anassignments
priors are products of local terms that encode preferences over parents and variable assignments
separately for each module.

As for the standard conditions on Bayesian network priors, the conditionswe define are not
universally justified, and one can easily construct examples where we would want to relax them.
However, they simplify many of the computations significantly, and are therefore useful even if
they are only a rough approximation. Moreover, the assumptions, although restrictive, still allow
broad flexibility in our choice of priors. For example, we can encode preference (or restrictions)
on the assignments of particular variables to specific modules. In addition, wecan also encode
preference for particular module sizes.

For priors satisfying the assumptions of Definition 7, we can prove the decomposability property
of the Bayesian score for module networks:

Theorem 8 Let P(θ,S ,A) be a prior satisfying the assumptions of Definition 7. Then, the Bayesian
score decomposes into localmodule scores:

score(S ,A : D) =
K

∑
j=1

scoreM j (PaM j ,A(X j) : D),

where

scoreM j (U,X : D) = log
Z

L j(U,X,θM j |U : D)P(θM j | U)dθM j |U

+ logρ j(U)+ logκ j(X). (4)

Proof Recall that we defined the Bayesian score of a module network as:

score(S ,A : D) = logP(D | S ,A)+ logP(S ,A).

Using global modularity, structure modularityandassignment modularityassumptions of Defini-
tion 7, logP(S ,A) decomposes by modules, resulting in the second and third terms Equation (4)
that capture the preferences for the parents of moduleM j and the variables assigned to it. Note that
we can ignore the normalization constant of the priorP(S ,A). For the first term of Equation (4), we

566

LEARNING MODULE NETWORKS

can write:

logP(D | S ,A) = log
Z

P(D | S ,A ,θ)P(θ | S ,A)dθ

= log
K

∏
i=1

Z

L j(U,X,θM j |U : D)P(θM j | U)dθM j |U

=
K

∑
i=1

log
Z

L j(U,X,θM j |U : D)P(θM j | U)dθM j |U,

where in the second step we used the likelihood decomposition of Equation (1)and the global mod-
ularity, parameter independence, and parameter modularity assumptions of Definition 7.

As we shall see below, the decomposition of the Bayesian score plays a crucial rule in our ability
to devise an efficient learning algorithm that searches the space of modulenetworks for one with
high score. The only question is how to evaluate the integral overθM j in scoreM j (U,X : D). This
depends on the parametric forms of the CPD and the form of the priorP(θM j | S). Usually we choose
priors that areconjugateto the parameter distributions. Such a choice leads to closed form analytic
formula of the value of the integral as a function of the sufficient statistics ofL j(PaM j ,X

j ,θM j |PaM j
:

D). For example, using Dirichlet priors with multinomial table CPDs leads to the following formula
for the integral overθM j :

log
Z

L j(U,X,θM j |U : D)P(θM j | U)dθM j |U =

∑
u∈U

log
Γ(∑v∈Val(M j) α j [v,u])

Γ(∑v∈Val(M j) Ŝj [v,u]+α j [v,u])
∏

v∈Val(M j)

Γ(Ŝj [v,u]+α j [v,u])

Γ(α j [v,u])
,

whereŜj [v,u] is the sufficient statistics function as defined in Equation (2), andα j [v,u] is the
hyperparameter of the Dirichlet distribution given the assignmentu to the parentsU of M j . We note
that in the above formula we have also made use of thelocal parameter independenceassumption
on the form of the prior (Heckerman, 1998), which states that the prior distribution for the different
values of the parents are independent:

P(θM j |PaM j
| S) = ∏

u∈Val(PaM j)

P(θM j |u | S).

4. Learning Algorithm

Given a scoring function over networks, we now consider how to find a high scoring module net-
work. This problem is a challenging one, as it involves searching over twocombinatorial spaces
simultaneously — the space of structures and the space of module assignments. We therefore sim-
plify our task by using an iterative approach that repeats two steps: In one step, we optimize a
dependency structure relative to our current assignment function, and in the other, we optimize an
assignment function relative to our current dependency structure.

567

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

4.1 Structure Search Step

The first type of step in our iterative algorithm learns the structureS , assuming thatA is fixed. This
step involves a search over the space of dependency structures, attempting to maximize the score
defined in Equation (3). This problem is analogous to the problem of structure learning in Bayesian
networks. We use a standard heuristic search over the combinatorial space of dependency structures
(Heckermanet al., 1995). We define a search space, where each state in the space is a legal parent
structure, and a set of operators that take us from one state to another.We traverse this space looking
for high scoring structures using a search algorithm such as greedy hillclimbing.

In many cases, an obvious choice of local search operators involves steps of adding or removing
a variableXi from a parent setPaM j . (Note that edge reversal is not a well-defined operator for
module networks, as an edge from a variable to a module represents a one-to-many relation between
the variable and all of the variables in the module.) When an operator causesa parentXi to be added
to the parent set of moduleM j , we need to verify that the resulting module graph remains acyclic,
relative to the current assignmentA . Note that this step is quite efficient, as acyclicity is tested on
the module graph, which contains onlyK nodes, rather than on the dependency graph of the ground
Bayesian network, which containsn nodes (usuallyn� K).

Also note that, as in Bayesian networks, the decomposition of the score provides considerable
computational savings. When updating the dependency structure for a module M j , the module score
for another moduleM k does not change, nor do the changes in score induced by various operators
applied to the dependency structure ofM k. Hence, after applying an operator toPaM j , we need only
update the change in score for those operators that involveM j . Moreover, only the delta score of
operators that add or remove a parent from moduleM j need to be recomputed after a change to the
dependency structure of moduleM j , resulting in additional savings. This is analogous to the case
of Bayesian network learning, where after applying a step that changesthe parents of a variableX,
we only recompute the delta score of operators that affect the parents ofX.

Overall, if the maximum number of parents per module isd, the cost of evaluating each oper-
ator applied to the module is, as usual, at mostO(Md), for accumulating the necessary sufficient
statistics. The total number of structure update operators isO(Kn), so the cost of computing the
delta-scores for all structure search operators requiresO(KnMd). This computation is done at the
beginning of each structure learning phase. During the structure learningphase, each step to the
parent set of moduleM j requires that we re-evaluate at mostn operators (one for each existing or
potential parent ofM j), at a total cost ofO(nMd).

4.2 Module Assignment Search Step

The second type of step in our iteration learns an assignment functionA from data. This type of
step occurs in two places in our algorithm: once at the very beginning of the algorithm, in order to
initialize the modules, and once at each iteration, given a module network structureS learned in the
previous structure learning step.

4.2.1 MODULE ASSIGNMENT ASCLUSTERING

In this step, our task is as follows: Given a fixed structureS we want to findA = argmaxA ′scoreM (S ,A ′ :
D). Interestingly, we can view this task as a clustering problem. A module consistsof a set of vari-
ables that have the same probabilistic model. Thus, for a given instance, twodifferent variables in
the same module define the same probabilistic model, and therefore should havesimilar behavior.

568

LEARNING MODULE NETWORKS

Input:
D // Data set
A0 // Initial assignment function
S // Given dependency structure

Output:
A // improved assignment function

Sequential-Update
A = A0

Loop
For i = 1 ton

For j = 1 toK
A ′ = A except thatA ′(Xi) = j
If 〈GM ,A ′〉 is cyclic,continue
If score(S ,A ′ : D) > score(S ,A : D)

A = A ′

Until no reassignments to any ofX1, . . .Xn

Return A

Figure 3: Outline of sequential algorithm for finding the module assignment function

We can therefore view the module assignment task as the task of clustering variables into sets, so
that variables in the same set have a similar behavior across all instances.

For example, in our stock market example, we would cluster stocks based onthe similarity of
their behavior over different trading days. Note that in a typical application of a clustering algorithm
(e.g., k-means or the AutoClass algorithm of Cheesemanet al. (1988)) to our data set, we would
cluster data instances (trading days) based on the similarity of the variables characterizing them.
Here, we view instances as features of variables, and try to cluster variables. (See Figure 5.)

However, there are several key differences between this task and thetypical formulation of
clustering. First, in general, the probabilistic model associated with each cluster has structure, as
defined by the CPD template associated with the cluster (module). Moreover, our setting places
certain constraints on the clustering, so that the resulting assignment function will induce a legal
(acyclic) module network.

4.2.2 MODULE ASSIGNMENT INITIALIZATION

In the initialization phase, we exploit the clustering perspective directly, using a form of hierarchical
agglomerative clustering that is tailored to our application. Our clustering algorithm uses an objec-
tive function that evaluates a partition of variables into modules by measuring the extent to which
the module model is a good fit to the features (instances) of the module variables. This algorithm
can also be thought of as performingmodel merging(as in (Elidan and Friedman, 2001; Cheeseman
et al., 1988)) in a simple probabilistic model.

In the initialization phase, we do not yet have a learned structure for the different modules. Thus,
from a clustering perspective, we consider a simple naive Bayes model for each cluster, where the
distributions over the different features within each cluster are independent and have a separate
parameterization. We begin by forming a cluster for each variable, and thenmerge two clusters
whose probabilistic models over the features (instances) are similar.

569

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

¿From a module network perspective, the naive Bayes model can be obtained by introducing a
dummy variableU that encodes training instance identity —u[m] = m for all m. Throughout our
clustering process, each module will havePaM i = {U}, providing exactly the effect that, for each
variableXi , the different valuesxi [m] have separate probabilistic models. We then begin by creating
n modules, withA(Xi) = i. In this module network, each instance and each variable has its own
local probabilistic model.

We then consider all possible legal module mergers (those corresponding tomodules with the
same domain), where we change the assignment function to replace two modules j1 and j2 by a
new modulej1,2. This step corresponds to creating a cluster containing the variablesXj1 andXj2.
Note that, following the merger, the two variablesXj1 andXj2 now must share parameters, but each
instance still has a different probabilistic model (enforced by the dependence on the instance IDU).
We evaluate each such merger by computing the score of the resulting module network. Thus, the
procedure will merge two modules that are similar to each other across the different instances. We
continue to do these merge steps until we construct a module network with the desired number of
modules, as specified in the original choice ofC .

4.2.3 MODULE REASSIGNMENT

In the module reassignment step, the task is more complex. We now have a given structureS , and
wish to findA = argmaxA ′scoreM (S ,A ′ : D). We thus wish to take each variableXi , and select the
assignmentA(Xi) that provides the highest score.

At first glance, we might think that we can decompose the score across variables, allowing
us to determine independently the optimal assignmentA(Xi) for each variableXi . Unfortunately,
this is not the case. Most obviously, the assignments to different variablesmust be constrained
so that the module graph remains acyclic. For example, ifX1 ∈ PaM i andX2 ∈ PaM j , we cannot
simultaneously assignA(X1) = j andA(X2) = i. More subtly, the Bayesian score for each module
depends non-additively on the sufficient statistics of all the variables assigned to the module. (The
log-likelihood function is additive in the sufficient statistics of the different variables, but the log
marginal likelihood is not.) Thus, we can only compute the delta score for movinga variable from
one module to another given afixedassignment of the other variables to these two modules.

We therefore use a sequential update algorithm that reassigns the variables to modules one by
one. The idea is simple. We start with an initial assignment functionA0, and in a “round-robin”
fashion iterate over all of the variables one at a time, and consider changing their module assignment.
When considering a reassignment for a variableXi , we keep the assignments of all other variables
fixed and find the optimal legal (acyclic) assignment forXi relative to the fixed assignment. We
continue reassigning variables until no single reassignment can improve thescore. An outline of
this algorithm appears in Figure 3

The key to the correctness of this algorithm is its sequential nature: Each time avariable as-
signment changes, the assignment function as well as the associated sufficient statistics are updated
before evaluating another variable. Thus, each change made to the assignment function leads to a
legal assignment which improves the score. Our algorithm terminates when it can no longer im-
prove the score. Hence, it converges to a local maximum, in the sense that no single assignment
change can improve the score.

The computation of the score is the most expensive step in the sequential algorithm. Once again,
the decomposition of the score plays a key role in reducing the complexity of thiscomputation:

570

LEARNING MODULE NETWORKS

Input:
D // Data set
K // Number of modules

Output:
M // A module network

Learn-Module-Network
A0 = clusterX into K modules
S0 = empty structure
Loop t = 1,2, . . . until convergence

St = Greedy-Structure-Search(At−1,St−1)
At = Sequential-Update(At−1,St);

Return M = (At ,St)

Figure 4: Outline of themodule networklearning algorithm. Greedy-Structure-Search successively
applies operators that change the structure as long as each such operator results in a legal
structure and improves the module network score

When reassigning a variableXi from one moduleMold to anotherMnew, only the local scores of
these modules change. The module score of all other modules remains unchanged. The rescoring of
these two modules can be accomplished efficiently by subtractingXi ’s statistics from the sufficient
statistics ofMold and adding them to those ofMnew. Thus, assuming that we have precomputed
the sufficient statistics associated with every pair of variableXi and moduleM j , the cost of recom-
puting the delta-score for an operator isO(s), wheres is the size of the table of sufficient statistics
for a module. The only operators whose delta-scores change are thoseinvolving reassignment of
variables to/from these two modules. Assuming that each module has approximately O(n/K) vari-
ables, and we have at mostK possible destinations for reassigning each variable, the total number
of such operators is generally linear inn. Thus, the cost of each reassignment step is approximately
O(ns). In addition, at the beginning of the module reassignment step, we must initializeall of the
sufficient statistics at a cost ofO(Mnd), and compute all of the delta-scores at a cost ofO(nK).

4.3 Algorithm Summary

To summarize, our algorithm starts with an initial assignment of variables to modules. In general,
this initial assignment can come from anywhere, and may even be a random guess. We choose to
construct it using the clustering-based idea described in the previous section. The algorithm then
iteratively applies the two steps described above: learning the module dependency structures, and re-
assigning variables to modules. These two steps are repeated until convergence, where convergence
is defined by a score improvement of less than some fixed threshold∆ between two consecutive
learned models. An outline of the module network learning algorithm is shown in Figure 4.

Each of these two steps — structure update and assignment update — is guaranteed to either
improve the score or leave it unchanged. The following result thereforefollows immediately:

Theorem 4.1: The iterative module network learning algorithm converges to a local maximum of
score(S ,A : D).

571

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

1.61.3-10.21.5-1.4

-3.5-2.94-0.2-3.24.1

1.21.3-0.80.11.1-1.1
-4-3.13.9-0.2-2.93.2

1.61.3-10.21.5-1.4

-3.5-2.94-0.2-3.24.1

1.21.3-0.80.11.1-1.1
-4-3.13.9-0.2-2.93.2x[1]

DE
LL

MS
FT

AM
AT

MO
T

HP
Q

IN
TL

x[2]
x[3]
x[4] 1.61.3-10.21.5-1.4

1.21.3-0.80.11.1-1.1

-3.5-2.94-0.2-3.24.1
-4-3.13.9-0.2-2.93.2

1.61.3-10.21.5-1.4

1.21.3-0.80.11.1-1.1

-3.5-2.94-0.2-3.24.1
-4-3.13.9-0.2-2.93.2x[1]

DE
LL

MS
FT

AM
AT

MO
T

HP
Q

IN
TL

x[3]
x[2]
x[4]

1

2 -1-1.41.61.31.50.2

44.1-3.5-2.9-3.2-0.2

-0.8-1.11.21.31.10.1
3.93.2-4-3.1-2.9-0.2

-1-1.41.61.31.50.2

44.1-3.5-2.9-3.2-0.2

-0.8-1.11.21.31.10.1
3.93.2-4-3.1-2.9-0.2x[1]

MS
FT

MO
T

HP
Q

DE
LL

AM
AT

IN
TL

x[2]
x[3]
x[4]

1 2 3
(a) Data (b) Standard clustering (c) Initialization

Figure 5: Relationship between the module network procedure and clustering. Finding an assign-
ment function can be viewed as a clustering of the variables whereas clustering typically
clusters instances. Shown is sample data for the example domain of Figure 1, where
the rows correspond to instances and the columns correspond to variables. (a) Data. (b)
Standard clustering of the data in (a). Note thatx[2] andx[3] were swapped to form the
clusters. (c) Initialization of the assignment function for the module network procedure
for the data in (a). Note that variables were swapped in their location to reflect the initial
assignment into three modules.

We note that both the structure search step and the module reassignment stepare done using
simple greedy hill-climbing operations. As in other settings, this approach is liableto get stuck in
local maxima. We attempt to somewhat compensate for this limitation by initializing the search at
a reasonable starting point, but local maxima are clearly still an issue. An additional strategy that
would help circumvent some maxima is the introduction of some randomness into the search (e.g.,
by random restarts or simulated annealing), as is often done when searching complex spaces with
multi-modal target functions.

5. Learning with Regression Trees

We now briefly review the family of conditional distributions we use in the experiments below.
Many of the domains suited for module network models contain continuous valued variables, such
as gene expression or price changes in the stock market. For these domains, we often use a condi-
tional probability model represented as aregression tree(Breimanet al., 1984). For our purposes,
a regression treeT for P(X | U) is defined via a rooted binary tree, where eachnodein the tree is
either aleaf or aninterior node. Each interior node is labeled with a testU < u on some variable
U ∈ U andu∈ IR. Such an interior node has two outgoingarcsto its children, corresponding to the
outcomes of the test (true or false). The tree structureT captures thelocal dependency structure of
the conditional distribution. The parameters ofT are the distributions associated with each leaf. In
our implementation, each leaf` is associated with a univariate Gaussian distribution over values of
X, parameterized by a meanµ` and varianceσ2

` . An example of a regression tree CPD is shown in
Figure 6. We note that, in some domains, Gaussian distributions may not be the appropriate choice
of models to assign at the leaves of the regression tree. In such cases, we can apply transforma-

572

LEARNING MODULE NETWORKS

AMAT<5%

INTL<4%

00000

false

truefalse

true

INTL

MSFT

MOT

DELL
Module 3

Module 2

Module 1

AMAT

HPQ

P(M3 | AMAT, INTL)

N(1.4,0.8) N(0.1,1.6) N(-2,0.7)

Figure 6: Example of a regression tree with univariate Gaussian distributions at the leaves for rep-
resenting the CPDP(M3 | AMAT, INTL), associated withM3. The tree has internal nodes
labeled with a test on the variable (e.g.AMAT< 5%). Each univariate Gaussian distri-
bution at a leaf is parameterized by a mean and a variance. The tree structure captures
the local dependency structure of the conditional distributions. In the example shown,
whenAMAT≥ 5%, then the distribution over values of variables assigned toM3 will be
Gaussian with mean 1.4 and standard deviation 0.8 regardless of the value ofINTL.

tions to the data to make it more appropriate for modeling by Gaussian distributions, or use other
continuous or discrete distributions at the leaves.

To learn module networks with regression-tree CPDs, we must extend our previous discus-
sion by adding another component toS that represents the treesT1, . . . ,TK associated with the dif-
ferent modules. Once we specify these components, the above discussion applies with several
small differences. These issues are similar to those encountered when introducing decision trees to
Bayesian networks (Chickeringet al., 1997; Friedman and Goldszmidt, 1998), so we discuss them
only briefly.

Given a regression treeTj for P(M j | PaM j), the corresponding sufficient statistics are the statis-
tics of the distributions at the leaves of the tree. For each leaf` in the tree, and for each data instance
x[m], we let` j [m] denote the leaf reached in the tree given the assignment toPaM j in x[m]. The mod-
ule likelihood decomposes as a product of terms, one for each leaf`. Each term is the likelihood for
the Gaussian distributionN

(

µ`;σ2
`

)

, with the usual sufficient statistics for a Gaussian distribution.

Given a regression treeTj for P(M j | PaM j), the corresponding sufficient statistics are the statis-
tics of the distributions at the leaves of the tree. For each leaf` in the tree, and for each data instance
x[m], we let` j [m] denote the leaf reached in the tree given the assignment toPaM j in x[m]. The mod-
ule likelihood decomposes as a product of terms, one for each leaf`. Each term is the likelihood for

573

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

the Gaussian distributionN
(

µ`;σ2
`

)

, with the sufficient statistics for a Gaussian distribution.

Ŝ0
j,` = ∑

m
∑

Xi∈X j

η{` j [m] = `},

Ŝ1
j,` = ∑

m
∑

Xi∈X j

η{` j [m] = `}xi , (5)

Ŝ2
j,` = ∑

m
∑

Xi∈X j

η{` j [m] = `}x2
i .

The local module score further decomposes into independent components, one for each leaf
`. Here, we use a Normal-Gamma prior (DeGroot, 1970) for the distribution ateach leaf: Letting
τ` = 1/σ2

` stand for the precision at leaf`, we define:P(µ`,τ`) = P(µ` | τ`)P(τ`), whereP(τ`) ∼
Γ(α0,β0) andP(µ` | τ`) ∼ N

(

µ0;(λ0τ`)
−1
)

, where we assume that all leaves are associated with
the same prior. LettinĝSi

j,` be defined as in Equation (5), we have that the component of the log
marginal likelihood associated with a leaf` of module j is given by:

−
1
2

Ŝ0
j,` log(2π)+

1
2

log

(

λ0

λ0 + Ŝ0
j,`

)

+ log

(

Γ(α0 +
1
2

Ŝ0
j,`)

)

− log(Γ(α0))+α0 log(β0)−

(

α0 +
1
2

Ŝ0
j,`

)

log(β) ,

where

β = β0 +
1
2

(

Ŝ2
j,`−

(Ŝ1
j,`)

2

Ŝ0
j,`

)

+

Ŝ0
j,`λ0

(

Ŝ1
j,`

Ŝ0
j,`
−µ0

)2

2(λ0 + Ŝ0
j,`)

.

When performing structure search for module networks with regression-tree CPDs, in addition
to choosing the parents of each module, we must also choose the associatedtree structure. We use
the search strategy proposed by Chickeringet al. (1997), where the search operators are leaf splits.
Such asplit operator replaces a leaf in a treeTj with an internal node with some test on a variable
U . The two branches below the newly created internal node point to two new leaves, each with its
associated Gaussian. This operator must check for acyclicity, as it implicitly addsU as a parent of
M j .

When performing the search, we consider splitting each possible leaf on each possible parentU
and each valueu. As always in regression-tree learning, we do not have to consider allreal values
u as possible split points; it suffices to consider values that arise in the data set. Moreover, under
an appropriate choice of prior (i.e., an independent prior for each leaf), regression-tree learning
provides another level of score decomposition: The score of a particular tree is a sum of scores
for the leaves in the tree. Thus, a split operation on one leaf in the tree doesnot affect the score
component of another leaf, so that operators applied to other leaves do not need to re-evaluated.

6. Experimental Results

We evaluated our module network learning procedure on synthetic data andon two real data sets —
gene expression data, and stock market data. In all cases, our data consisted solely of continuous
values. As all of the variables have the same domain, the definition of the moduleset reduces simply

574

LEARNING MODULE NETWORKS

-800

-750

-700

-650

-600

-550

-500

-450

0 20 40 60 80 100 120 140 160 180 200

Number of Modules

T
es

t
D

at
a

L
o

g
 L

ik
el

ih
o

o
d

 (
p

er
 in

st
an

ce
)

25 50
100 200
500

-600

-575

-550

-525

-500

-475

-450

0 20 40 60 80 100

Number of modules

T
ra

in
n

in
g

 D
at

a
S

co
re

 (
p

er
 in

st
an

ce
)

25 50
100 200
500

(a) (b)

Figure 7: Performance of learning from synthetic data as a function of thenumber of modules and
training set size. Thex-axis corresponds to the number of modules, each curve corre-
sponds to a different number of training instances, and each point shows the mean and
standard deviations from the 10 sampled data sets. (a) Log-likelihood per instance as-
signed to held-out data. (b) Average score per instance on the training data.

to a specification of the total number of modules. We used regression trees as the local probability
model for all modules, and uniform priors forρ(S) andκ(A). For structure search, we used beam
search, using a lookahead of three splits to evaluate each operator. When learning Bayesian net-
works, as a comparison, we used precisely the same structure learning algorithm, simply treating
each variable as its own module.

6.1 Synthetic Data

As a basic test of our procedure in a controlled setting, we used synthetic data generated by a known
module network. This gives a known ground truth to which we can compare the learned models.
To make the data realistic, we generated synthetic data from a model that was learned from the
gene expression data set described below. The generating model had 10 modules and a total of
35 variables that were a parent of some module. From the learned module network, we selected
500 variables, including the 35 parents. We tested our algorithm’s ability to reconstruct the network
using different numbers of modules; this procedure was run for trainingsets of various sizes ranging
from 25 instances to 500 instances, each repeated 10 times for differenttraining sets.

We first evaluated the generalization to unseen test data, measuring the likelihood ascribed by
the learned model to 4500 unseen instances. The results, summarized in Figure 7(a), show that, for
all training set sizes, except the smallest one with 25 instances, the model with10 modules performs
the best. As expected, models learned with larger training sets do better; but,when run using the
correct number of 10 modules, the gain of increasing the number of data instances beyond 100
samples is small and beyond 200 samples is negligible.

575

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180 200

Number of Modules

F
ra

ct
io

n
 o

f
V

ar
ia

b
le

s
in

 1
0

L
ar

g
es

t
M

o
d

u
le

s

25

50

100

200

500
0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140 160 180 200

Number of Modules

R
ec

o
ve

re
d

 S
tr

u
ct

u
re

 (%
 C

o
rr

ec
t)

25 50
100 200
500

(a) (b)

Figure 8: (a) Fraction of variables assigned to the 10 largest modules. (b) Average percentage of
correct parent-child relationships recovered (fraction of parent-child relationships in the
true model recovered in the learned model) when learning from synthetic data for models
with various number of modules and different training set sizes. Thex-axis corresponds
to the number of modules, each curve corresponds to a different numberof training in-
stances, and each point shows the mean and standard deviations from the10 sampled data
sets.

To test whether we can use the score of the model to select the number of modules, we also
plotted the score of the learned model on the training data (Figure 7(b)). Ascan be seen, when the
number of instances is small (25 or 50), the model with 10 modules achieves thehighest score and
for a larger number of instances, the score does not improve when increasing the number of modules
beyond 10. Thus, these results suggest that we can select the number of modules by choosing the
model with the smallest number of modules from among the highest scoring models.

A closer examination of the learned models reveals that, in many cases, they are almost a 10-
module network. As shown in Figure 8(a), models learned using 100, 200,or 500 instances and up
to 50 modules assigned≥ 80% of the variables to 10 modules. Indeed, these models achieved high
performance in Figure 7(a). However, models learned with a larger number of modules had a wider
spread for the assignments of variables to modules and consequently achieved poor performance.

Finally, we evaluated the model’s ability to recover the correct dependencies. The total num-
ber of parent-child relationships in the generating model was 2250. For each model learned, we
report the fraction of correct parent-child relationships it contains. Asshown in Figure 8(b), our
procedure recovers 74% of the true relationships when learning from adata set with 500 instances.
Once again, we see that, as the variables begin fragmenting over a large number of modules, the
learned structure contains many spurious relationships. Thus, our results suggest that, in domains
with a modular structure, statistical noise is likely to prevent overly detailed learned models such
as Bayesian networks from extracting the commonality between different variables with a shared
behavior.

576

LEARNING MODULE NETWORKS

-115.5

-115

-114.5

-114

-113.5

-113

0 5 10 15 20

Algorithm Iterations

S
co

re
 (

av
g

. p
er

 g
en

e)

0

10

20

30

40

50

0 5 10 15 20

Algorithm Iterations

G
en

es
 c

h
an

g
ed

 (
%

 f
ro

m
 to

ta
l)

Changes from initialization
Changes from previous iteration

(a) (b)

Figure 9: (a) Score of the model (normalized by the number of variables/genes) across the iterations
of the algorithm for a module network learned with 50 modules on the gene expression
data. Iterations in which the structure was changed are indicated by dashed vertical lines.
(b) Changes in the assignment of genes to modules for the module network learned in
(a) across the iterations of the algorithm. Shown are both the total changes compared
to the initial assignment (triangles) and the changes compared to the previousiteration
(squares).

6.2 Gene Expression Data

We next evaluated the performance of our method on a real world data setof gene expression
measurements. Amicroarray measures the activity level (mRNA expression level) of thousands
of genes in the cell in a particular condition. We view each experiment as an instance, and the
expression level of each measured gene as a variable (Friedmanet al., 2000a). In many cases, the
coordinated activity of a group of genes is controlled by a small set ofregulators, that are themselves
encoded by genes. Thus, the activity level of a regulator gene can often predict the activity of the
genes in the group. Our goal is to discover these modules of co-regulatedgenes, and their regulators.

We used the expression data of Gaschet al. (et al., 2000), which measured the response of
yeast to different stress conditions. The data consists of 6157 genes and 173 experiments. In this
domain, we have prior knowledge of which genes are likely to play a regulatory role (e.g., based on
properties of their protein sequence). Consequently, we restricted the possible parents to 466 yeast
genes that may play such a role. We then selected 2355 genes that varied significantly in the data
and learned a module network over these genes. We also learned a Bayesian network over this data
set.

577

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

-114.2

-114

-113.8

-113.6

-113.4

-113.2

0 20 40 60 80 100

Runs (initialized from random clusterings)

S
co

re
 (

av
g

. p
er

 g
en

e)

Score of model
initialization

Figure 10: Score of 100 module networks (normalized by the number of variables/genes) each
learned with 50 modules from a random clustering initialization, where the runsare
sorted according to their score. The score of a module network learned using the de-
terministic clustering initialization described in Section 4.2 is indicated by a pointed
arrow.

6.2.1 STATISTICAL EVALUATION

We first examined the behavior of the learning algorithm on the training data when learning a module
network with 50 modules. This network converged after 24 iterations (of which nine were iterations
in which the structure of the network changed). To characterize the trajectory of the algorithm, we
plot in Figure 9 its improvement across the iterations, measured as the score on the training data,
normalized by the number of genes (variables). To obtain a finer-grainedpicture, we explicitly
show structure learning steps, as well as each pass over the variables inthe module reassignment
step. As can be seen in Figure 9(a), the model score improves nicely across these steps, with the
largest gains in score occurring in iterations in which the structure was changed (dotted lines in
Figure 9(a)). Figure 9(b) demonstrates how the algorithm changes the assignments of genes to
modules, with 1221 of the 2355 (51.8%) genes changing their assignment upon convergence, and
the largest assignment changes occurring immediately after structure modification steps.

As for most local search algorithms, initialization is an key component: A bad initialization
can cause the algorithm to get trapped in a poor local maximum. As we discussed in Section 4.2,
we initialize the assignment function using a clustering program. The advantage of a simple de-
terministic initialization procedure is that it is computationally efficient, and results inreproducible
behavior. We evaluated this proposed initialization by comparing the results to module networks
initialized randomly. We generated 100 random assignments of variables to modules, and learned
a module network starting from each initialization. We compared the model scoreof the network
learned using our deterministic initialization, and the 100 networks initialized randomly. A plot of

578

LEARNING MODULE NETWORKS

these sorted scores is shown in Figure 10. Encouragingly, the score for the network initialized using
our procedure was better than 97/100 of the runs initialized from random clusters, and the 3/100
runs that did better are only incrementally better.

We evaluated the generalization ability of different models, in terms of log-likelihood of test
data, using 10-fold cross validation. In Figure 11(a), we show the difference between module net-
works of different size and the baseline Bayesian network, demonstrating that module networks
generalize much better to unseen data for almost all choices of number of modules.

6.2.2 BIOLOGICAL EVALUATION

As we discussed in the introduction, a common goal in learning a network structure is to reveal
structural properties of the underlying distribution. This goal is definitely an important one in the
biological domain, where we want to discover both sets of co-regulated genes, and the regulatory
mechanism governing their behavior. We therefore evaluated the ability of our module network
learning procedure to reveal known biological properties of this domain.

We evaluated a learned module network with 50 modules, where we selected 50modules due
to the biological plausibility of having, on average, 40–50 genes per module. First, we examined
whether genes in the same module have shared functional characteristics.To this end, we used
annotations of the genes’ biological functions from the Saccharomyces Genome Database (Cherryet
al., 1998). We systematically evaluated each module’s gene set by testing for significantly enriched
annotations. Suppose we findl genes with a certain annotation in a module of sizeN. To check for
enrichment, we calculate thehypergeometric p-valueof these numbers — the probability of finding
that many genes of that annotation in a random subset ofN genes. For example, the “protein folding”
module contains 10 genes, 7 of which are annotated as protein folding genes. In the whole data set,
there are only 26 genes with this annotation. Thep-value of this annotation, that is, the probability
of choosing 7 or more genes in this category by choosing 10 random genes, is less than 10−12. As
there are a large number of possible annotations, there is a nontrivial probability that some will be
enriched simply by chance. We therefore corrected thesep-values using the standard Bonferroni
correction for independent multiple hypotheses (Savin, 1980). Our evaluation showed that, of the
50 modules, 42 (resp. 20) modules had at least one significantly enrichedannotation with ap-
value less than 0.005 (resp. less than 10−6). Furthermore, the enriched annotations reflect the key
biological processes expected in our data set. We used these annotationsto label the modules with
meaningful biological names. A comparison of the overall enrichments of themodules learned by
module networks to the enrichments obtained for clusters using AutoClass is shown in Figure 11(b),
indicating that there are many annotations that are much more significantly enriched in module
networks.

We can use these annotations to reason about the dependencies betweendifferent biological
processes at the module level. For example, we find that thecell cyclemodule, regulates thehistone
module. The cell cycle is the process in which the cell replicates its DNA and divides, and it is
indeed known to regulate histones — key proteins in charge of maintaining andcontrolling the DNA
structure. Another module regulated by the cell cycle module is thenitrogen catabolite repression
(NCR)module, a cellular response activated when nitrogen sources are scarce. We find that theNCR
module regulates theamino acid metabolism, purine metabolismandprotein synthesismodules, all
representing nitrogen-requiring processes, and hence likely to be regulated by theNCR module.

579

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

-150

-100

-50

0

50

100

150

0 50 100 150 200 250 300 350 400 450 500

Number of Modules

T
es

t
D

at
a

L
o

g
-L

ik
el

ih
o

o
d

 (
g

ai
n

 p
er

 in
st

an
ce

)

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45

Negative Log p-value (AutoClass)

N
eg

at
iv

e
L

o
g

 p
-v

al
u

e
(M

N
)

(a) Test-data generalization (Expression) (b) Annotation enrichment (Expression)

Figure 11: (a) Comparison of generalization ability of module networks learning with different
numbers of modules on the gene expression data set. Thex-axis denotes the number of
modules. They-axis denotes the difference in log-likelihood on held out data between
the learned module network and the learned Bayesian network, averagedover 10 folds;
the error bars show the standard deviation. (b) Comparison of the enrichment for anno-
tations of functional annotations between the modules learned using the modulenetwork
procedure and the clusters learned by the AutoClass clustering algorithm (Cheeseman
et al., 1988) applied to the variables. Each point corresponds to an annotation, and thex
andy axes are the negative logp-values of its enrichment for the two models.

These examples demonstrate the insights that can be gleaned from a higher order model, and which
would have been obscured in the unrolled Bayesian network over 2355 genes.

6.3 Stock Market Data

In a very different application, we examined a data set of NASDAQ stock prices. We collected
stock prices for 2143 companies, in the period 1/1/2002–2/3/2003, covering 273 trading days (data
was obtained fromhttp://finance.yahoo.com). We took each stock to be a variable, and each
instance to correspond to a trading day, where the value of the variable is the log of the ratio between
that day’s and the previous day’s closing stock price. This choice of data representation focuses
on the relative changes to the stock price, and eliminates the magnitude of the price itself (which
depends on such irrelevant factors as the number of outstanding shares). As potential controllers,
we selected 250 of the 2143 stocks, whose average trading volume was thelargest across the data
set.

As with gene expression data, we used cross validation to evaluate the generalization ability of
different models. As we can see in Figure 12(a), module networks perform significantly better than
Bayesian networks in this domain.

580

LEARNING MODULE NETWORKS

400

450

500

550

600

0 50 100 150 200 250 300

Number of Modules

T
es

t
D

at
a

L
o

g
-L

ik
el

ih
o

o
d

 (
g

ai
n

 p
er

 in
st

an
ce

)

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Negative Log p-value (AutoClass)

N
eg

at
iv

e
L

o
g

 p
-v

al
u

e
(M

N
)

(a) Test-data generalization (Stock) (b) Annotation enrichment (Stock)

Figure 12: (a) Comparison of generalization ability of module networks learning with different
numbers of modules on the stock data set. Thex-axis denotes the number of modules.
They-axis denotes the difference in log-likelihood on held out data between the learned
module network and the learned Bayesian network, averaged over 10 folds; the error
bars show the standard deviation. (b) Comparison of the enrichment for annotations
of sectors between the modules learned using the module network procedure and the
clusters learned by the AutoClass clustering algorithm (Cheesemanet al., 1988) applied
to the variables. Each point corresponds to an annotation, and thex andy axes are the
negative logp-values of its enrichment for the two models.

To test the quality of our modules, we measured the enrichment of the modules inthe network
with 50 modules for annotations representing various sectors to which eachstock belongs (based on
sector classifications fromhttp://finance.yahoo.com). We found significant enrichment for 21
such annotations, covering a wide variety of sectors. We also compared these results to the clusters
of stocks obtained from applying the popular probabilistic clustering algorithm AutoClass (Cheese-
manet al., 1988) to the data. Here, as we described above, each instance corresponds to a stock and
is described by 273 random variables, each representing a trading day. In 20 of the 21 cases, the
enrichment was far more significant in the modules learned using module networks compared to the
one learned by AutoClass, as can be seen in Figure 12(b).

Finally, we also looked at the structure of the module network, and found several cases where
the structure fit our (limited) understanding of the stock domain. Several modules corresponded
primarily to high tech stocks. One of these, consisting mostly of software, semi-conductor, com-
munication, and broadcasting services, had as its two main predictors Molex,a large manufacturer
of electronic, electrical and fiber optic interconnection products and systems, and Atmel, special-
izing in design, manufacturing and marketing of advanced semiconductors.Molex was also the
parent for another module, consisting primarily of software, semi-conductor, and medical equip-

581

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

ment companies; this module had as additional parents Maxim, which develop integrated circuits,
and Affymetrix, which designs and develops gene microarray chips. In this, as in many other cases,
the parents of a module are from similar sectors as the stocks in the module.

7. Related Work

Module networks are related to several other approaches, including plates Buntine (1994), hierar-
chical Bayesian models DeGroot (1970),object-oriented Bayesian networks(OOBNs) (Koller and
Pfeffer, 1997) and to the framework ofprobabilistic relational models(PRMs) (Koller and Pfeffer,
1998; Friedmanet al., 1999a).

Both plates and hierarchical Bayesian approaches allow us to represent models where objects
in the same class share parameters. Plate models also allow objects to share the same parent set. In
many ways, they allow a more expressive dependency structure than modulenetworks, as they allow
a richly structured hierarchical set of variables, determined by the nested plate structure. However,
variables in one plate can only depend on variables in an enclosing plate. Thus, plate models are not
sufficiently expressive to encode the inter-module dependencies in a module-network. Hierarchical
Bayesian models are more expressive than module networks in that they allowparameters of dif-
ferent variables to be statistically related but not necessarily equal. However, hierarchical Bayesian
approaches are not a language that includes structure as well as parameters, so that an additional
representation layer would have to be added to provide a framework similar tomodule networks.
One can easily extend module networks with ideas from the hierarchical Bayesian framework, al-
lowing the parameters of different variables in the same module to be correlated but not necessarily
equal. Most importantly, neither plates nor the hierarchical Bayesian framework have provided a
method that allows us to learn automatically which subsets of variables share parameters.

OOBNs and PRMs extend Bayesian Networks to a setting involving multiple relatedobjects,
and allow the attributes of objects of the same class to share parameters and dependency structure.
One can view the module network framework as a restriction of these frameworks, where we have
one object for every variableXi , with a single attribute corresponding to the value ofXi . Each module
can be viewed as a class, so that the variables in a single module share the same probabilistic model.
As the module assignments are not known in advance, module networks correspond most closely
to the variant of these frameworks where there istype uncertainty— uncertainty about the class
assignment of objects. However, despite this high-level similarity, the module network framework
differs in certain key points from both OOBNs and PRMs, with significant impact on the learning
task.

In OOBNs, objects in the same class must have the same internal structure andparameteriza-
tion, but can depend on different sets of variables (as specified in the mapping of variables in an
object’s interface to its actual inputs). By contrast, in a module network, all of the variables in a
module (class) must have the same specific parents. This assumption greatly reduces the size and
complexity of the hypothesis space, leading to a more robust learning algorithm. On the other hand,
this assumption requires that we be careful in making certain steps in the structure search, as they
have more global effects than on just one or two variables. Due to these differences, we cannot
simply apply an OOBN structure-learning algorithm, such as the one proposed by Langseth and
Nielsen (2003), to such complex, high-dimensional domains.

In PRMs, the probabilistic dependency structure of the objects in a class is determined by the
relational structure of the domain (e.g., theCostattribute of a particular car object might depend on

582

LEARNING MODULE NETWORKS

the Incomeattribute of the object representing this particular car’s owner). In the case of module
networks, there is no known relational structure to which probabilistic dependencies can be attached.
Without such a relational structure, PRMs only allow dependency models specified at the class level.
Thus, we can assert that the objects in one class depend on some aggregate quantity of the objects
in another. We cannot, however, state a dependence on a particular object in the other class (without
some relationship specified in the model). Getooret al. (2000) attempt to address this issue using
a class hierarchy. Their approach is very different from ours, requiring some fairly complex search
steps, and is not easily applied to the types of domains considered in this paper.

To better relate the PRM approach to module networks, recall the relationshipbetween module
networks and clustering, as described in Section 4.2. As we discussed, we can view the module
network learning procedure as grouping variables into clusters that share the same probabilistic
dependency model. As shown in Figure 5, we are taking the data points in the (variablesx instances)
matrix, and grouping rows. As we discussed, in other settings, we often group columns (instances).
In fact, in many cases, the notion of “variables” and “instances” is somewhat arbitrary. PRMs allow
us to define a probabilistic model where the value of a data point depends both on properties of
the rows and properties of the column. In particular, we can define a hidden attribute for either
rows, columns, or both; the values of this hidden attribute would correspond to a clustering of rows,
or columns, or a two-sided clustering of both rows and columns simultaneously(see Segalet al.
(2001)).

From this perspective, the module network framework can be viewed as being closely related
to a PRM where the module assignment is a hidden attribute of a row. For example, in the gene
expression domain, the expression value of genegi in microarraya j depends on attributes both ofgi

and ofa j . The genegi only has one attribute, representing its module assignment. The arraya j has
attributes representing the expression levels of the different regulatorsin the array. The expression
level of genegi in experimenta j then depends on all of these attributes, i.e., on the gene’s module
assignment and on the values of the regulators. A key difference between the PRM-based approach
and our module network framework is that, in the PRM, the regulators cannotthemselves participate
in the probabilistic model without leading to cycles. This restriction forces us toselect a relatively
small set of candidate regulators in advance. Moreover, as no probabilistic dependency model is
learned for regulators, this approach cannot discover compound regulatory pathways, which are
often of great interest.

Overall, the module network framework places strong restrictions on the richness of the set of
objects and on the dependency structures that can be represented. However, these restrictions allow
us to formulate a reasonably effective algorithm for learning which variables share parameters.
Although it is possible to define such algorithms for the rich representation frameworks such as
plates, OOBNs, or PRMs, it remains to be seen whether such algorithms can perform effectively,
given that the much larger search space can introduce both computationalproblems and problems
related to overfitting.

8. Discussion and Conclusions

We have introduced the framework ofmodule networks, an extension of Bayesian networks that
includes an explicit representation ofmodules— subsets of variables that share a statistical model.
We have presented a Bayesian learning framework for module networks, which learns both the
partitioning of variables into modules and the dependency structure of eachmodule. We showed

583

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

experimental results on two complex real-world data sets, each including measurements of thou-
sands of variables, in the domains of gene expression and stock market. Our results show that our
learned module networks have much higher generalization performance than a Bayesian network
learned from the same data.

There are several reasons why a learned module network is a better model than a learned
Bayesian network. Most obviously, parameter sharing between variables in the same module al-
lows each parameter to be estimated based on a much larger sample. Moreover, this allows us
to learn dependencies that are considered too weak based on statistics ofsingle variables. These
are well-known advantages of parameter sharing; the interesting aspectof our method is that we
determine automatically which variables share parameters.

More interestingly, the assumption of shared structure significantly restrictsthe space of possible
dependency structures, allowing us to learn more robust models than thoselearned in a classical
Bayesian network setting. While the variables in the same module might behave according to the
same model in underlying distribution, this will often not be the case in the empirical distribution
based on a finite number of samples. A Bayesian network learning algorithm will treat each variable
separately, optimizing the parent set and CPD for each variable in an independent manner. In the
high-dimensional domains in which we are interested, there are bound to be spurious correlations
that arise from sampling noise, inducing the algorithm to choose parent setsthat do not reflect real
dependencies, and will not generalize to unseen data. Conversely, in amodule network setting,
a spurious correlation would have to arise between a possible parent anda large number of other
variables before the algorithm would find it worthwhile to introduce the dependency.

The module network framework, as presented here, has several important limitations, both from
a modeling perspective and from the perspective of the learning algorithm.

¿From a modeling perspective, it is important to recognize that a module network is not a uni-
versally appropriate model for all domains. In particular, many domains do not have a natural
organization of variables into higher level modules with common characteristics. In such domains,
a module network would force variables into sharing dependency structures and CPDs and may
result in poor representations of the underlying domain properties.

Even in domains where the modularity assumption is warranted, the module network models
we presented here may not be ideal. In particular, the module network modelswe presented here
allow each variable to be assigned to only one module. For instance, in the gene expression domain,
this means that each gene is allowed to participate in only a single module. This assumption is
not realistic biologically, as biological processes often involve partially overlapping sets of genes,
so that many genes participate in more than one process. The framework presented in this paper,
by restricting each gene to only one module, cannot represent such overlapping processes with
different regulatory mechanisms. Recently (Segalet al., 2003a; Battleet al., 2004), we presented
one possible extension to the module network framework presented in this paper, which allows
genes to be assigned to several modules. The expression of a gene in a particular array is then
modeled as a sum of its expression in each of the modules in which it participates, and each module
can potentially have a different set of regulators. Clearly, this approach for “allocating” a variable
and its observed signal among different modules is only one possible model, and one which is not
appropriate to all settings. Other domains will likely require the development ofother approaches.

Turning to the learning algorithm, one important limitation is our assumption that the number of
modules is determined in advance. For instance, in the biological domain, the number of regulatory
modules of an organism in an expression data set is obviously not known and thus determining

584

LEARNING MODULE NETWORKS

the number of modules should be part of the regulatory module discovery task. In Section 6.1 we
showed that, at least in synthetic data, where the number of modules is known, we can use the
score of the model to select the correct number of modules by choosing themodel with the smallest
number of modules from among the highest scoring models. This observationis encouraging, as it
suggests that we can extend our approach to select the number of modulesautomatically by adding
search steps that modify the number of modules and use the model score to compare models that
differ in their number of modules. However, much remains to be done on the problem of proposing
new modules and initializing them.

Another important limitation of the learning algorithm is the use of heuristic searchto select
a single module network model. As other models may have comparable (or even better) scores to
that of the final model selected, a critical issue is to provide confidence estimates for the structural
relationships reported by the model. This problem is common to many learning algorithms, includ-
ing standard methods for Bayesian network learning, but is particularly acute when we are trying to
use the learned structure for knowledge discovery, as we do in the biology domain. In this paper,
we addressed this issue only indirectly, through statistical generalization tests on held out data and
through the evaluation of our results relative to the to existing annotations (e.g., of stock categories
in the stock market domain).

As a more direct approach, in some cases we can make use of well known methods for confi-
dence estimation such asbootstrap(Efron and Tibshirani, 1993), which repeatedly learns models
from resamples of the original input data and then estimates the confidence of different features of
the model based on the number of times they appear in all models learned. Suchan approach was
adopted for estimating the confidence in features of a Bayesian network byFriedmanet al. (1999b)
and consequently applied by Friedmanet al. (2000b) for learning fragments of regulatory networks
from expression data. An alternative approach is to use Markov Chain Monte Carlo methods to sam-
ple models from the posterior given the data. It is fairly straightforward to use the Bayesian score
we devised here within a Metropolis-Hastings sampling procedure Doucetet al. (2001) to perform
model averaging Hoetinget al. (1999). The challenge is to design sampling strategies that lead to
rapid mixing of the Markov Chain sampler. In the context of Bayesian networks, recent results (e.g.,
(Friedman and Koller, 2003)) use the decomposable structure of the posterior for efficient sampling.
In the context of module networks, we also need to construct efficient sampling strategies over as-
signment functions. Recall that the space of possible assignment functions is huge, and soa priori
it is not clear that a simple sampling procedure (e.g., mirroring our search strategy and moving one
variable at each step) will mix in reasonable time. Clearly, adapting such confidence estimation
approaches for our models can greatly enhance the reliability of our results but require additional
development and validation.

In this paper, we focused on the statistical properties of our method. In a companion biologi-
cal paper (Segalet al., 2003b), we use the module network learned from the gene expression data
described above to predict gene regulation relationships. There, we performed a comprehensive
evaluation of the validity of the biological structures reconstructed by our method. By analyzing
biological databases and previous experimental results in the literature, weconfirmed that many
of the regulatory relations that our method automatically inferred are indeed correct. Furthermore,
our model provided focused predictions for genes of previously uncharacterized function. We per-
formed wet lab biological experiments that confirmed the three novel predictions we tested. Thus,
we have demonstrated that the module network model is robust enough to learn a good approxima-
tion of the dependency structure between 2355 genes using only 173 instances. These results show

585

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

that, by learning a structured probabilistic representation, we identify regulation networks from gene
expression data and successfully address one of the central problemsin analysis of gene expression
data.

Acknowledgments

E. Segal, D. Koller, and N. Friedman were supported in part by NSF grant ACI-0082554 under the
ITR Program. E. Segal was also supported by a Stanford Graduate Fellowship (SGF). A. Regev was
supported by the Colton Foundation. D. Pe’er was supported by an Eshkol Fellowship. N. Friedman
was also supported by an Alon Fellowship, by the Harry & Abe Sherman Senior Lectureship in
Computer Science, and by the Israeli Ministry of Science.

References

A. Battle, E. Segal, and D. Koller. Probabilistic discovery of overlapping cellular processes and their
regulation using gene expression data. InProceedings Eighth Annual International Conference
on Research in Computational Molecular Biology (RECOMB), 2004.

L. Breiman, J. Friedman, R. Olshen, and C. Stone.Classification and Regression Trees. Wadsworth
& Brooks, Monterey, CA, 1984.

W. Buntine. Operations for learning with graphical models.Journal of Artificial Intelligence Re-
search, 2:159–225, 1994.

P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman. Autoclass: a Bayesian
classification system. InProceedings Fifth International Conference on Machine Learning (ML),
pages 54–64, 1988.

J. M. Cherry, C. Ball, K. Dolinski, S. Dwight, M. Harris, J. C. Matese, G.Sherlock, G. Binkley,
H. Jin, S. Weng, and D. Botstein. Saccharomyces genome database.Nucleic Acid Research,
26:73–79, 1998. http://genome-www.stanford.edu/Saccharomyces/.

D. M. Chickering, D. Heckerman, and C. Meek. A Bayesian approach tolearning Bayesian net-
works with local structure. InProceedings Thirteenth Conference on Uncertainty in Artificial
Intelligence (UAI), pages 80–89, 1997.

G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks
from data.Machine Learning, 9:309–347, 1992.

T. Dean and K. Kanazawa. A model for reasoning about persistence and causation.Computational
Intelligence, 5:142–150, 1989.

M. H. DeGroot.Optimal Statistical Decisions. McGraw-Hill, New York, 1970.

A. Doucet, N. de Freitas, and N. Gordon (eds).Sequential Monte Carlo Methods in Practice.
Springer-Verlag, 2001.

B. Efron and R. J. Tibshirani.An Introduction to the Bootstrap. Chapman & Hall, London, 1993.

586

LEARNING MODULE NETWORKS

G. Elidan and N. Friedman. Learning the dimensionality of hidden variables. In Proceedings
Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI), pages 144–151, 2001.

A. P. Gasch et al. Genomic expression program in the response of yeast cells to environmental
changes.Mol. Bio. Cell, 11:4241–4257, 2000.

N. Friedman and M. Goldszmidt. Learning Bayesian networks with local structure. In M. I. Jordan,
editor,Learning in Graphical Models, pages 421–460. Kluwer, Dordrecht, Netherlands, 1998.

N. Friedman and D. Koller. Being Bayesian about Bayesian network structure: A Bayesian approach
to structure discovery in Bayesian networks.Machine Learning, 50:95–126, 2003.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In
Proceedings Sixteenth International Conference on Artificial Intelligence(IJCAI), pages 1300–
1309, 1999.

N. Friedman, M. Goldszmidt, and A. Wyner. Data analysis with Bayesian networks: A bootstrap
approach. InProc. UAI, pages 206–215, 1999.

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze expression
data.Journal of Computational Biology, 7:601–620, 2000.

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze expression
data.Computational Biology, 7:601–620, 2000.

L. Getoor, D. Koller, and N. Friedman. From instances to classes in probabilistic relational models.
In Proceedings of the ICML Workshop on Attribute-Value and Relational Learning, 2000.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data.Machine Learning, 20:197–243, 1995.

D. Heckerman. A tutorial on learning with Bayesian networks. In M. I. Jordan, editor,Learning in
Graphical Models. Kluwer, Dordrecht, Netherlands, 1998.

J. A. Hoeting, D. Madigan, A. Raftery, and C. T. Volinsky. Bayesian model averaging: A tutorial.
Statistical Science, 14(4), 1999.

D. Koller and A. Pfeffer. Object-oriented Bayesian networks. InProceedings Thirteenth Conference
on Uncertainty in Artificial Intelligence (UAI), pages 302–313, 1997.

D. Koller and A. Pfeffer. Probabilistic frame-based systems. InProceedings National Conference
on Artificial Intelligence (AAAI), pages 580–587, 1998.

E. Lander. Array of hope.Nature Genetics, 21:3–4, 1999.

H. Langseth and T. D. Nielsen. Fusion of domain knowledge with data for structural learning in
object oriented domains.Machine Learning Research, 4:339–368, 2003.

D. Pe’er, A. Regev, G. Elidan, and N. Friedman. Inferring subnetworks from perturbed expression
profiles.Bioinformatics, 17(Suppl 1):S215–24, 2001.

587

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

N. E. Savin. The Bonferroni and the Scheffe multiple comparison procedures.Review of Economic
Studies, 47(1):255–73, 1980.

E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller. Rich probabilistic models for gene
expression.Bioinformatics, 17(Suppl 1):S243–52, 2001.

E. Segal, A. Battle, and D. Koller. Decomposing gene expression into cellular processes. InPro-
ceedings Eighth Pacific Symposium on Biocomputing (PSB), 2003.

E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman. Module net-
works: Discovering regulatory modules and their condition specific regulators from gene expres-
sion data.Nature Genetics, 34(2):166–176, 2003.

588

