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Abstract

Methods for learning Bayesian networks can discover degmrydstructure between observed
variables. Although these methods are useful in many ajmics, they run into computational
and statistical problems in domains that involve a large memof variables. In this papérwe
consider a solution that is applicable when many variabées tsimilar behavior. We introduce
a new class of modelsnodule networksthat explicitly partition the variables into modules, so
that the variables in each module share the same parents irettvork and the same conditional
probability distribution. We define the semantics of moduééworks, and describe an algorithm
that learns the modules’ composition and their dependetnggtare from data. Evaluation on real
data in the domains of gene expression and the stock madwsghat module networks generalize
better than Bayesian networks, and that the learned moeteork structure reveals regularities
that are obscured in learned Bayesian networks.

1. A preliminary version of this paper appeared in the Proceedings dflitheteenth Conference on Uncertainty in
Artificial Intelligence, 2003 (UAI '03).
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1. Introduction

Over the last decade, there has been much research on the problemuofdeBayesian networks
from data (Heckerman, 1998), and successfully applying it both toityezstimation, and to dis-
covering dependency structures among variables. Many real-wontdhids, however, are very
complex, involving thousands of relevant variables. Examples includelingdbe dependencies
among expression levels (a rough indicator of activity) of all the genescilldFriedmaret al,,
2000a; Lander, 1999) or among changes in stock prices. Unfortyn@teomplex domains, the
amount of data is rarely enough to robustly learn a model of the underlisirghdtion. In the gene
expression domain, a typical data set describes thousands of varialties most a few hundred
instances. In such situations, statistical noise is likely to lead to spuriousdispaes, resulting in
models that significantly overfit the data.

Moreover, if our goal is structure discovery, such domains pose addithallenges. First,
due to the small number of instances, we are unlikely to have much confidtertice learned
structure (Pe’eet al,, 2001). Second, a Bayesian network structure over thousandsialbhes is
typically highly unstructured, and therefore very hard to interpret.

In this paper, we propose an approach to address these issues. rMiiy staserving that, in
many large domains, the variables can be partitioned into sets so that, to pgitstienation, the
variables within each set have a similar set of dependencies and tleeggfobit a similar behavior.
For example, many genes in a cell are organizedimbolulesin which sets of genes required for
the same biological function or response are co-regulated by the sante impuder to coordinate
their joint activity. As another example, when reasoning about thousdMBSDAQ stocks, entire
sectors of stocks often respond together to sector-influencing f¢etgrsoil stocks tend to respond
similarly to a war in Iraq).

We define a new representation called@dule networkwhich explicitly partitions the variables
into modules Each module represents a set of variables that have the same statistaabhe.e.,
they share the same set of parents and local probabilistic model. By iagftiics constraint on the
learned network, we significantly reduce the complexity of our model spageell as the number
of parameters. These reductions lead to more robust estimation and be#&mlgation on unseen
data. Moreover, even if a modular structure exists in the domain, it candmeiea by a general
Bayesian network learning algorithm which does not have an explicieseptation for modules.
By making the modular structure explicit, the module network representatioidpsinsight about
the domain that are often be obscured by the intricate details of a largei@ayeswork structure.

A module network can be viewed simply as a Bayesian network in which vasiabtee same
module share parents and parameters. Indeed, probabilistic models withdl glemameters are
common in a variety of applications, and are also used in other generakegpation languages,
such asdynamic Bayesian networkBean and Kanazawa, 198%bject-oriented Bayesian Net-
works (Koller and Pfeffer, 1997), androbabilistic relational modelgKoller and Pfeffer, 1998;
Friedmanet al, 1999a). (See Section 8 for further discussion of the relationship batw®dule
networks and these formalisms.) In most cases, the shared structure igthiothe designer of
the model, using prior knowledge about the domain. A key contribution of #pepis the design
of a learning algorithm that directly searches for and finds sets of Vesiatith similar behavior,
which are then defined to be a module.

We describe the basic semantics of the module network framework, peeBayesian scoring
function for module networks, and provide an algorithm that learns botadsignment of variables
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Figure 1: (a) A simple Bayesian network over stock price variables; tho giice of Intel (NTL)
is annotated with a visualization of its CPD, described as a different multinonsial d
tribution for each value of its influencing stock price MicrosdtSFT). (b) A simple
module network; the boxes illustrate modules, where stock price varialdes €f°Ds
and parameters. Note that in a module network, variables in the same modelthbav
same CPDs but may have different descendants.

to modules and the probabilistic model for each module. We evaluate therparfoe of our al-

gorithm on two real data sets, in the domains of gene expression and tkersidet. Our results
show that our learned module network generalizes to unseen test datdettetthan a Bayesian
network. They also illustrate the ability of the learned module network to réwglallevel structure

that provides important insights.

2. The Module Network Framework

We start with an example that introduces the main idea of module networks amgrindde a
formal definition. For concreteness, consider a simple toy example of mgd#ianges in stock
prices. The Bayesian network of Figure 1(a) describes dependdmetieeen different stocks. In
this network, each random variable corresponds to the change in prcgingle stock. For illus-
tration purposes, we assume that these random variables take onesofdhres: ‘down’, ‘'same’
or ‘up’, denoting the change during a particular trading day. In oumgte, the stock price of
Intel (INTL) depends on that of Microsof{SFT). Theconditional probability distribution (CPD)
shown in the figure indicates that the behavior of Intel's stock is similar to fhdicosoft. That
is, if Microsoft’s stock goes up, there is a high probability that Intel’s steitkalso go up and vice
versa. Overall, the Bayesian network specifies a CPD for each stmekgs a stochastic function
of its parents. Thus, in our example, the network specifies a separateitrcior each stock.

The stock domain, however, has higher order structural featurearghabt explicitly modeled
by the Bayesian network. For instance, we can see that the stock prideraisoft (MSFT) in-
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fluences the stock price of all of the major chip manufacturers — IIEIL), Applied Materials
(AMAT), and Motorola MOT). In turn, the stock price of computer manufacturers DBIELL)

and Hewlett PackardHPQ), are influenced by the stock prices of their chip suppliers — Intel and
Applied Materials. An examination of the CPDs might also reveal that, to a figbaimation, the
stock price of all chip making companies depends on that of Microsoftramiich the same way.
Similarly, the stock price of computer manufacturers that buy their chips fmbeh and Applied
Materials depends on these chip manufacturers’ stock and in much the ssme w

To model this type of situation, we might divide stock price variables into growhich we
call modules and require that variables in the same module have the same probabilistic model,
that is, all variables in the module have the same set of parents and the sBm@®@Rexample
contains three modules: one containing only Microsoft, a second contaihipgmanufacturers
Intel, Applied Materials, and Motorola, and a third containing computer matwriers Dell and HP
(see Figure 1(b)). In this model, we need only specify three CPDsoor@aéh module, since all the
variables in each module share the same CPD. By comparison, six difteP&g are required for
a Bayesian network representation. This notion of a module is the key idiealying the module
network formalism.

We now provide a formal definition of a module network. Throughout thjgepawe assume
that we are given a domain of random variab¥es- {Xi,...,X,}. We useVal(X;) to denote the
domain of values of the variab}g.

As described above, a module represents a set of variables thatlsba@me set of parents
and the same CPD. As a notation, we represent each modulddognal variablethat we use as
a placeholder for the variables in the module.n®dule setC is a set of such formal variables
M1,...,Mk. As all the variables in a module share the same CPD, they must have the saaia do
of values. We represent byal(M ;) the set of possible values of the formal variable of fhi
module.

A module network relative t@ consists of two components. The first defines a template prob-
abilistic model for each module ig; all of the variables assigned to the module will share this
probabilistic model.

Definition 1 A module network templatg = (5,8) for C defines, for each moduM ; € C:

e asetof parent®ay; C X;

e a conditional probability distribution templaté(M ; | Pay,) which specifies a distribution
over Va[Mj) for each assignment in @ay, ).

We uses to denote the dependency structure encodedRay, : M; € C} and 6 to denote the
parameters required for the CPD templatg3(Mj | Pav;) : Mj € C}. 1

In our example, we have three moduldsg, Mz, andMs, with Pay, = 0, Pay, = {MSFT}, and
Paw, = {AMAT,INTL}.

The second component is a module assignment function that assignsagititex; € X to
one of theK modulesM1,...,Mk. Clearly, we can only assign a variable to a module that has the
same domain.

Definition 2 A module assignment functiofor C is a function4 : X — {1,...,K} such that
A(X) = jonlyif Val(X) = Val(Mj). I
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In our example, we have thaa(MSFT) = 1, 4(MOT) = 2, 4(INTL) = 2, and so on.

A module network defines a probabilistic model by using the formal randeablasM ; and
their associated CPDs as templates that encode the behavior of all ofidldesassigned to that
module. Specifically, we define the semantics of a module network by “unrolliayesian net-
work where all of the variables assigned to moddigshare the parents and conditional probability
template assigned td j in 7. For this unrolling process to produce a well-defined distribution, the
resulting network must be acyclic. Acyclicity can be guaranteed by the fitpgimple condition
on the module network:

Definition 3 LetM be atriple(C,T,4), whereC is a module set] is a module network template
for C, and 4 is a module assignment function for M defines a directedhodule graphg,, as
follows:

¢ the nodes inG,, correspond to the modules ify

e G, contains an edg® ; — My if and only if there is a variable X X so that4(X) = jand
X € Pay,.

We say thatM is amodule networkf the module graphg,, is acyclic.l

For example, for the module network of Figure 1(b), the module graph kastthctureM; —
Mo — Ma.
We can now define the semantics of a module network:

Definition 4 A module networkM = (C, T, 4) defines aground Bayesian network,, over X as
follows: For each variable Xe X, where4(X;) = |, we define the parents of k B,, to bePay,

and its conditional probability distribution to be(®l; | Pay, ), as specified irZ. The distribution
associated with#/ is the one represented by the Bayesian netvi@yk I

Returning to our example, the Bayesian network of Figure 1(a) is the drBagesian network of
the module network of Figure 1(b).

Using the acyclicity of the module graph, we can now show that the semantiesmhmdule
network is well-defined.

Proposition 5 The graphgG,, is acyclic if and only if the dependency graph®y; is acyclic.

Proof: The proof follows from the direct correspondence between edgeg imtidule graph and
edges in the ground Bayesian network. Consider some XdgeX; in B,,. By definition of the
module graph, we must have an edde;x) — M 5(x,) in the module graph. Thus, any cyclic
path inB,, corresponds directly to a cyclic path in the module graph, proving onetidineaf the
theorem. The proof in the other direction is slightly more subtle. Assume that éxests a cyclic
pathp = (M1 — M2...M| — M3) in the module graph. By definition of the module graph, if
M; — Mi;1 there is a variable; with A4(X;) = M; that is a parent oK1, foreachi=1,...,| — 1.

By construction, it follows that there is an a¥¢ — X1 in B,,. Similarly, there is a variable
X with 4(X) = M, that is a parent oM. And so, we conclude thaByoqnet CONtains a cycle
X1 — Xo — ... X — X, proving the other direction of the theordim

Corollary 6 For any module networldf, B,, defines a coherent probability distribution ovEr

561



SEGAL, PE'ER, REGEV, KOLLER AND FRIEDMAN

As we can see, a module network provides a succinct representatioa gfdbnd Bayesian
network. In a realistic version of our stock example, we might have dSetrerasand stocks. A
Bayesian network in this domain needs to represent thousands of CPDshe®ther hand, a
module network can often represent a good approximation of the domamp aisnmodel with only
few dozen CPDs.

3. Data Likelihood and Bayesian Scoring

We now turn to the task of learning module networks from data. Recall thatalmoetwork is
specified by a set of modulgy an assignment functiofl of nodes to modules, the parent structure
S specified in7, and the parametefor the local probability distribution®(Mj | Pay,). We
assume in this paper that the set of modules given, and omit reference to it from now on.
We note that, in the models we consider in this paper, we do not associatatrepvith specific
modules and thus only the number of modules is of relevance to us. Houvestrer settings (e.g.,
in cases with different types of random variables) we may wish to distinchesiieen different
module types. Such distinctions can be made within the module network fram#éwough more
elaborate prior probability functions that take the module type into account.

One can consider several learning tasks for module networks, depemiwhich of the re-
maining aspects of the module network specification are known. In this,peg@éscus on the most
general task of learning the network structure and the assignment funatiavell as a Bayesian
posterior over the network parameters. The other tasks are spe@altbas can be derived as a
by-product of our algorithm.

Thus, we are given a training sBt= {x[1], .. .,x[M]}, consisting oM instances drawn indepen-
dently from an unknown distributioR(.X'). Our primary goal is to learn a module network structure
and assignment function for this distribution. We talscare-based approadb this learning task.
In this section, we define a scoring function that measures how well eachdate model fits the
observed data. We adopt the Bayesian paradigm and derive a Bagesiang function similar to
the Bayesian score for Bayesian networks (Cooper and Herska@88; Heckermaret al., 1995).

In the next section, we consider the algorithmic problem of finding a highregmodel.

3.1 Likelihood Function

We begin by examining theata likelihoodfunction
LM :D)=P(D|M)= |'| P(x[m] | Z,A4).

This function plays a key role both in the parameter estimation task and in the defioitibe
structure score.

As the semantics of a module network is defined via the ground Bayesianrketvechave that,
in the case of complete data, the likelihood decomposes into a prodociebfikelihood functions
one for each variable. In our setting, however, we have the additioopépty that the variables in a
module share the same local probabilistic model. Hence, we can aggregatdéotbe likelihoods,
obtaining a decomposition according to modules.

More precisely, leX] = {X € x | 4(X) = j}, and IeteM”pan be the parameters associated

with the CPD templat®(M; | Pav;). We can decompose the likelihood function as a product of
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S(M,, MSFT) = (MJ ) = S(MSFT))
S(AMAT, MSFT) + \,
§(M07; MSFT) + Moduleg> ml
S(INTL, MSFT) usly
/ \

Module 2

'\ = —i AN

e

3

S(M;, AMAT, INTL) = Module 3
S(DELL, AMAT, INTL) + Instance 1
p [ Instance 2
5(HPQ, AMAT, INTL) + [Instance 3

Figure 2: Shown is a plate model for three instances of the module netwamde of Figure 1(b).
The CPD template of each module is connected to all variables assigned to thdemo
(e.9. 6y, MsFTis connected tAAMAT, MOT, andINTL). The sufficient statistics of
each CPD template are the sum of the sufficient statistics of each variaigleeas® the
module and the module parents.

module likelihoodseach of which can be calculated independently and depends only oalties v
of X) andPay;, and on the paramete@ﬁ”p%:

L(M : D)
K M
N I_L [H |_| P(xi[m] | paM,-[m],GMj\Pan)
J=1 | m=1xeXi
K )
= I_LLj(Pan,XJ,GM”pan Q)) (1)
J:

If we are learning conditional probability distributions from the exponefdialily (e.g., discrete
distribution, Gaussian distributions, and many others), then the local likelifwtctions can be
reformulated in terms o$ufficient statisticof the data. The sufficient statistics summarize the
relevant aspects of the data. Their use here is similar to that in Bayesiaarketiileckerman,
1998), with one key difference. In a module network, all of the variablethe same module
share the same parameters. Thus, we pool all of the data from the vauiabé, and calculate
our statistics based on this pooled data. More precisely;(@;,Pay;) be a sufficient statistic
function for the CPCP(M; | Pay, ). Then the value of the statistic on the dataBes

R M
S = n;)%(j S; (xi [m], pay [m)). (2)
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For example, in the case of networks that use only multinomial table CPDs,weeha suffi-
cient statistic function for each joint assignmestVal(M j),u € Val(Pay, ), whichisn{X;[m| = x, pay, [m| = u}
— the indicator function that takes the value 1 if the eveim| = x,Payv,[m| = u) holds, and 0
otherwise. The statistic on the data is

M
Silx,u] = zlz‘n{xi[m]:x,Pan[m]zu}.
m=1XeX]

Given these sufficient statistics, the formula for the module likelihood function is

Lj(Pan7XJ7eMj|P6Mj Q)): eX|lL[IXU]'
x,ueVal(Mj ,Pan)

This term is precisely the one we would use in the likelihood of Bayesian niewath multinomial
table CPDs. The only difference is that the vector of sufficient statistica focal likelihood term
is pooled over all the variables in the corresponding module.

For example, consider the likelihood function for the module network of Eidyb). In this
network we have three modules. The first consists of a single variableasnachparents, and so
the vector of statistic§[M1] is the same as the statistics of the single vari&SFT]. The second
module contains three variables; thus, the sufficient statistics for the mo&lésthe sum of the
statistics we would collect in the ground Bayesian network of Figure 1(a):

§M 2, MSFT = §AMAT,MSFT + SMOT, MSFT + §INTL, MSFT,.

Finally,
é[M 3, AMAT,INTL] = é[DELL, AMAT,INTL] + é{H PQ,AMAT,INTL].

An illustration of the decomposition of the likelihood and the associated suffistatistics using
the plate model is shown in Figure 2.

As usual, the decomposition of the likelihood function allows us to perform maxitikeli-
hood or MAP parameter estimation efficiently, optimizing the parameters for eadule sepa-
rately. The details are standard (Heckerman, 1998), and are thus omitted.

3.2 Priors and the Bayesian Score

As we discussed, our approach for learning module networks is bas#tealise of a Bayesian
score. Specifically, we define a model score for a f&it4) as the posterior probability of the
pair, integrating out the possible choices for the paraméterge define an assignment prie¢4),

a structure prioP(S | 4) and a parameter prid?(8 | S,4). These describe our preferences over
different networkseforeseeing the data. By Bayes' rule, we then have

P(S, A D) OPA)P(S | AP(D]S,A),
where the last term is thmarginal likelihood
P(D|S,4) :/P(@\S,ﬂ,e)P(emde,
We define the Bayesian score as the lo®@Q$, 4 | D), ignoring the normalization constant

scordS,4 : D) =logP(A4)+logP(S | 4)+1logP(D | S,4). (3)
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As with Bayesian networks, when the priors satisfy certain conditions, #ye$an score de-
composes. This decomposition allows to efficiently evaluate a large numbé#ewfadives. The
same general ideas carry over to module networks, but we also havduderassumptions that
take the assignment function into account. Following is a list of conditions opribeerequired for
the decomposability of the Bayesian score in the case of module networks:

Definition 7 Let P(6,.5,4) be a prior over assignments, structures, and parameters.
e P(6,5,4) is globally modularif
PO1]5,4)=P(6]S5),
and
P($,4) Op(S5)K(A)C(A4,S),

wherep(5) andk(A4) are non-negative measures over structures and assignments{ahdC
is a constraint indicator function that is equal to 1 if the combination of striecturd assign-
ment is a legal one (i.e., the module graph induced by the assignfhantl structureS is
acyclic), and 0 otherwise.

e P(0].5) satisfiepparameter independenife
K

P(B|S)= P(6y. 18).
(815) =[] PCupa, 19

o P(8].9) satisfiegparameter modularitif
PO, pay, | 1) = P(Bujpay, | 52)-

for all structures$; and.$, such thaiPa,f,}j - Pa,f,fj.

e p(S) satisfiesstructure modularityf

p(S) =[] Pi(S)),

J

whereS; denotes the choice of parents for modMg andp; is a non-negative measure over
these choices.

e K(A4) satisfiesassignment modularity

K(A) = [xi(A),

i

where 4; denote is the choice of variables assigned to modijeandK; is a non-negative
measure over these choicedl

565



SEGAL, PE'ER, REGEV, KOLLER AND FRIEDMAN

Global modularity implies that the prior can be thought of as a combination & tm@ponents
— a parameter prior that depends on the network structure, a strudamepd an assignment prior.
Clearly the last two components cannot be independent, as the the asdigmddhe structure
together must define a legal network. However, global modularity implieshkae two priors are
“as independent as possible”. The legality requirement, which is endndé indicator function
C(4,5) ensures that only legal assignment/structure pairs have a non-zéabpity. Other than
this constraint, the preferences over structures and over assignmesfeaified separately.

Parameter independence and parameter modularity are the natural asatdgiandard as-
sumptions in Bayesian network learning (Heckerragal,, 1995). Parameter independence implies
thatP(0 | 5) is a product of terms that parallels the decomposition of the likelihood in Equ@tjpn
with one prior term per local likelihood terin;. Parameter modularity states that the prior for the
parameters of a moduM; depends only on the choice of parents Kby and not on other aspects
of the structure.

Finally, structure modularity and assignment modularity imply that the structuaesagnments
priors are products of local terms that encode preferences oventpaand variable assignments
separately for each module.

As for the standard conditions on Bayesian network priors, the conditiendefine are not
universally justified, and one can easily construct examples where wklw@nt to relax them.
However, they simplify many of the computations significantly, and are therefseful even if
they are only a rough approximation. Moreover, the assumptions, altheggfctive, still allow
broad flexibility in our choice of priors. For example, we can encodeepeee (or restrictions)
on the assignments of particular variables to specific modules. In additiocawalso encode
preference for particular module sizes.

For priors satisfying the assumptions of Definition 7, we can prove thenjeasability property
of the Bayesian score for module networks:

Theorem 8 Let P(0,.5,4) be a prior satisfying the assumptions of Definition 7. Then, the Bayesian
score decomposes into locabdule scores

K .
scordS, 4 : D)= Zscoremj(Pan,ﬂ(XJ) : D),
=1

where
scorgy (U, X : D) = Iog/Lj(U,X,GM”u : D)P(Bm; [ U)dBw;ju
+logp;(U) +logk;(X). 4)
Proof Recall that we defined the Bayesian score of a module network as:
scordS, 4 : D)=IlogP(D|S5,4)+logP(s,4).

Using global modularity structure modularityand assignment modularitgssumptions of Defini-

tion 7, logP(S,4) decomposes by modules, resulting in the second and third terms Equation (4)
that capture the preferences for the parents of madyland the variables assigned to it. Note that
we can ignore the normalization constant of the pFie$, 4). For the first term of Equation (4), we
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can write:
logP(D | S5,42) = |og/P(@\5,ﬂ,e)P(e|5,ﬂ)de
K
_ |og_|‘|/l_,-(u,x,eMjU L D)P(Bw, | U)dy
1=

K
_ leog/Lj(U,X,eM”U L D)P(B, | U)dOy, u,
i=

where in the second step we used the likelihood decomposition of Equatiandife global mod-
ularity, parameter independence, and parameter modularity assumptioagrofién 7. |

As we shall see below, the decomposition of the Bayesian score playsial cale in our ability
to devise an efficient learning algorithm that searches the space of muoetwerks for one with
high score. The only question is how to evaluate the integral @yein scorey, (U, X : D). This
depends on the parametric forms of the CPD and the form of theRgr, | ). Usually we choose
priors that areonjugateto the parameter distributions. Such a choice leads to closed form analytic
formula of the value of the integral as a function of the sufficient statistitg(@fa , X1, 0y iIPaw -
D). For example, using Dirichlet priors with multinomial table CPDs leads to the follpfarmula
for the integral oveBy:

Iog/Lj(U,X,GM”U - D)P(Bu, | U)dOy 1y =
log M (Tvevaim;) @[V ul) (S [v,u] +ajv, u))
U;J r(ZveVaI(Mj) Sj [V7 u] + aj [V, UD veval(M ) r(aj [Vv u]) ’

Whereéj [v,u] is the sufficient statistics function as defined in Equation (2), @jd u] is the
hyperparameter of the Dirichlet distribution given the assignméathe parents) of M j. We note
that in the above formula we have also made use ofab& parameter independenessumption
on the form of the prior (Heckerman, 1998), which states that the prititditon for the different
values of the parents are independent:

POwpay, |S) =[] POmulI)
ueVaI(Pan)

4. Learning Algorithm

Given a scoring function over networks, we now consider how to finijla $coring module net-
work. This problem is a challenging one, as it involves searching overccbmibinatorial spaces
simultaneously — the space of structures and the space of module assigriwetierefore sim-
plify our task by using an iterative approach that repeats two steps: drst@p, we optimize a
dependency structure relative to our current assignment functidringhe other, we optimize an
assignment function relative to our current dependency structure.
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4.1 Structure Search Step

The first type of step in our iterative algorithm learns the struciy@ssuming thaf is fixed. This
step involves a search over the space of dependency structures,tatetopnaximize the score
defined in Equation (3). This problem is analogous to the problem of steuigarning in Bayesian
networks. We use a standard heuristic search over the combinatodeal&p#ependency structures
(Heckermaret al, 1995). We define a search space, where each state in the spaceaispaiegt
structure, and a set of operators that take us from one state to alwégaverse this space looking
for high scoring structures using a search algorithm such as greedyirhiting.

In many cases, an obvious choice of local search operators invodpesaf adding or removing
a variableX; from a parent sePay ;. (Note that edge reversal is not a well-defined operator for
module networks, as an edge from a variable to a module represents@maay relation between
the variable and all of the variables in the module.) When an operator capsesni; to be added
to the parent set of moduM j, we need to verify that the resulting module graph remains acyclic,
relative to the current assignmefit Note that this step is quite efficient, as acyclicity is tested on
the module graph, which contains odynodes, rather than on the dependency graph of the ground
Bayesian network, which containsnodes (usually > K).

Also note that, as in Bayesian networks, the decomposition of the score gsaodsiderable
computational savings. When updating the dependency structure for dahbduhe module score
for another modulé/l does not change, nor do the changes in score induced by variougarper
applied to the dependency structurevbf. Hence, after applying an operatorRay ;, we need only
update the change in score for those operators that inklveMoreover, only the delta score of
operators that add or remove a parent from modijeneed to be recomputed after a change to the
dependency structure of modulg;j, resulting in additional savings. This is analogous to the case
of Bayesian network learning, where after applying a step that chahggmrents of a variablé,
we only recompute the delta score of operators that affect the parexts of

Overall, if the maximum number of parents per moduld,ishe cost of evaluating each oper-
ator applied to the module is, as usual, at mo@¥d), for accumulating the necessary sufficient
statistics. The total number of structure update operatoB¥ks1), so the cost of computing the
delta-scores for all structure search operators req@(&nMd). This computation is done at the
beginning of each structure learning phase. During the structure legshase, each step to the
parent set of modul®l  requires that we re-evaluate at mostperators (one for each existing or
potential parent oM j), at a total cost oO(nMd).

4.2 Module Assignment Search Step

The second type of step in our iteration learns an assignment fungtioom data. This type of
step occurs in two places in our algorithm: once at the very beginning ofdbathm, in order to
initialize the modules, and once at each iteration, given a module networks&ydearned in the
previous structure learning step.

4.2.1 MODULE ASSIGNMENT ASCLUSTERING

In this step, our task is as follows: Given a fixed structtivee want to find4 = argmax, scorey (S, 4’ :
D). Interestingly, we can view this task as a clustering problem. A module con$sstset of vari-
ables that have the same probabilistic model. Thus, for a given instancdifterent variables in
the same module define the same probabilistic model, and therefore shoulsimase behavior.
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Input:

D // Data set

Ay /I Initial assignment function

S /I Given dependency structure
Output:

A Il improved assignment function
Sequential-Update

A=A
Loop
Fori=1ton
For j=1toK

' = 4 except that?' (%) = j
If {(Gar,A') is cyclic, continue
If scords, 4’ : D) > scords, 4 : D)
a4=24
Until no reassignments to any Xf, ... X,
Return 4

Figure 3: Outline of sequential algorithm for finding the module assignmeictifan

We can therefore view the module assignment task as the task of clustenimigles into sets, so
that variables in the same set have a similar behavior across all instances.

For example, in our stock market example, we would cluster stocks basth@ similarity of
their behavior over different trading days. Note that in a typical applinatf@ clustering algorithm
(e.g., k-means or the AutoClass algorithm of Cheeseetal. (1988)) to our data set, we would
cluster data instances (trading days) based on the similarity of the varidl@escterizing them.
Here, we view instances as features of variables, and try to clusteblemigSee Figure 5.)

However, there are several key differences between this task artgpiical formulation of
clustering. First, in general, the probabilistic model associated with eacterches structure, as
defined by the CPD template associated with the cluster (module). Moreavesgtiing places
certain constraints on the clustering, so that the resulting assignment fumdlionduce a legal
(acyclic) module network.

4.2.2 MODULE ASSIGNMENTINITIALIZATION

In the initialization phase, we exploit the clustering perspective directlygusform of hierarchical
agglomerative clustering that is tailored to our application. Our clusteringitiigopuses an objec-
tive function that evaluates a partition of variables into modules by measuengxtent to which
the module model is a good fit to the features (instances) of the module varidliles algorithm
can also be thought of as performimgpdel mergindgas in (Elidan and Friedman, 2001; Cheeseman
et al, 1988)) in a simple probabilistic model.

In the initialization phase, we do not yet have a learned structure for fleeadif modules. Thus,
from a clustering perspective, we consider a simple naive Bayes mmdeh¢h cluster, where the
distributions over the different features within each cluster are indegpgrahd have a separate
parameterization. We begin by forming a cluster for each variable, andntleege two clusters
whose probabilistic models over the features (instances) are similar.
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¢ From a module network perspective, the naive Bayes model can leeubity introducing a
dummy variableéJ that encodes training instance identity ufm] = m for all m. Throughout our
clustering process, each module will ha®ay, = {U }, providing exactly the effect that, for each
variableX;, the different valueg;[m| have separate probabilistic models. We then begin by creating
n modules, with4(X;) =i. In this module network, each instance and each variable has its own
local probabilistic model.

We then consider all possible legal module mergers (those correspondimgpides with the

same domain), where we change the assignment function to replace two mpdate j, by a
new modulej; . This step corresponds to creating a cluster containing the varihlesdX,.
Note that, following the merger, the two variabkg andX;, now must share parameters, but each
instance still has a different probabilistic model (enforced by the degreedon the instance D).
We evaluate each such merger by computing the score of the resulting metiutaln Thus, the
procedure will merge two modules that are similar to each other across taeedifinstances. We
continue to do these merge steps until we construct a module network withdineddeumber of
modules, as specified in the original choicebf

4.2.3 MODULE REASSIGNMENT

In the module reassignment step, the task is more complex. We now havenasgivetures$, and
wish to find4 = argmaxg scorey (S, 4" : D). We thus wish to take each variab{g and select the
assignmen#(X;) that provides the highest score.

At first glance, we might think that we can decompose the score acrosbles, allowing
us to determine independently the optimal assignrigp) for each variableX;. Unfortunately,
this is not the case. Most obviously, the assignments to different variahlss be constrained
so that the module graph remains acyclic. For exampl¥; if Pav, andX; € Pay,;, we cannot
simultaneously assigd (X1) = j andA4(X;) = i. More subtly, the Bayesian score for each module
depends non-additively on the sufficient statistics of all the variablégreskto the module. (The
log-likelihood function is additive in the sufficient statistics of the differeatiables, but the log
marginal likelihood is not.) Thus, we can only compute the delta score for meviragiable from
one module to another giverfizedassignment of the other variables to these two modules.

We therefore use a sequential update algorithm that reassigns thdasat@modules one by
one. The idea is simple. We start with an initial assignment funci®nand in a “round-robin”
fashion iterate over all of the variables one at a time, and consider clgghginmodule assignment.
When considering a reassignment for a variafyleve keep the assignments of all other variables
fixed and find the optimal legal (acyclic) assignment Xpirelative to the fixed assignment. We
continue reassigning variables until no single reassignment can improgedhe An outline of
this algorithm appears in Figure 3

The key to the correctness of this algorithm is its sequential nature: Each wagaale as-
signment changes, the assignment function as well as the associateidsigtiatistics are updated
before evaluating another variable. Thus, each change made to thenasstgunction leads to a
legal assignment which improves the score. Our algorithm terminates when iiaclonger im-
prove the score. Hence, it converges to a local maximum, in the senseothaighte assignment
change can improve the score.

The computation of the score is the most expensive step in the sequentidhatlg@®nce again,
the decomposition of the score plays a key role in reducing the complexity ofdhigputation:
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Input:
D // Data set
K // Number of modules
Output:
M /I A module network
Learn-Module-Network
Ay = clusterX into K modules
So = empty structure
Loopt=1,2,... until convergence
St = Greedy-Structure-Searci( 1,5 -1)
2, = Sequential-Updatet_1,.5);
Return M = (4, %)

Figure 4: Outline of thenodule networkearning algorithm. Greedy-Structure-Search successively
applies operators that change the structure as long as each sudioopEsats in a legal
structure and improves the module network score

When reassigning a variab} from one moduléM 54 to anotheM new only the local scores of
these modules change. The module score of all other modules remainsgedh@he rescoring of
these two modules can be accomplished efficiently by subtraktiegtatistics from the sufficient
statistics ofM 54 and adding them to those Mnew Thus, assuming that we have precomputed
the sufficient statistics associated with every pair of variabkend moduleM j, the cost of recom-
puting the delta-score for an operatordés), wheres is the size of the table of sufficient statistics
for a module. The only operators whose delta-scores change areitkiobéng reassignment of
variables to/from these two modules. Assuming that each module has appeyi®@/K) vari-
ables, and we have at mdstpossible destinations for reassigning each variable, the total number
of such operators is generally lineamnThus, the cost of each reassignment step is approximately
O(ns). In addition, at the beginning of the module reassignment step, we must initidlliakethe
sufficient statistics at a cost @f(Mnd), and compute all of the delta-scores at a cosD@fK).

4.3 Algorithm Summary

To summarize, our algorithm starts with an initial assignment of variables to modulgeneral,
this initial assignment can come from anywhere, and may even be a rangzss. gVe choose to
construct it using the clustering-based idea described in the previotisrseThe algorithm then
iteratively applies the two steps described above: learning the moduleddéapmsrstructures, and re-
assigning variables to modules. These two steps are repeated untilgemserwhere convergence
is defined by a score improvement of less than some fixed threghb&tween two consecutive
learned models. An outline of the module network learning algorithm is showigurd-4.

Each of these two steps — structure update and assignment update —antgadrto either
improve the score or leave it unchanged. The following result therédtiosvs immediately:

Theorem 4.1: The iterative module network learning algorithm converges to a local maximum o
scorgs$, 4 : D).
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Figure 5: Relationship between the module network procedure and clgst&iimling an assign-
ment function can be viewed as a clustering of the variables whereagsiciggigically
clusters instances. Shown is sample data for the example domain of Figuteedg w
the rows correspond to instances and the columns correspond to varig@®ata. (b)
Standard clustering of the data in (a). Note tk@t andx[3] were swapped to form the
clusters. (c) Initialization of the assignment function for the module networkgalure
for the data in (a). Note that variables were swapped in their location tetrdikeinitial
assignment into three modules.

We note that both the structure search step and the module reassignmearestieme using
simple greedy hill-climbing operations. As in other settings, this approach is lialgiet stuck in
local maxima. We attempt to somewhat compensate for this limitation by initializing thehsagr
a reasonable starting point, but local maxima are clearly still an issue. Anozaddl strategy that
would help circumvent some maxima is the introduction of some randomness inteattol ge.g.,

by random restarts or simulated annealing), as is often done when isgacomplex spaces with
multi-modal target functions.

5. Learning with Regression Trees

We now briefly review the family of conditional distributions we use in the expents below.
Many of the domains suited for module network models contain continuousdvadu@bles, such
as gene expression or price changes in the stock market. For these sloneoften use a condi-
tional probability model represented asegression treg€Breimanet al., 1984). For our purposes,
a regression tre@ for P(X | U) is defined via a rooted binary tree, where eacklein the tree is
either aleaf or aninterior node Each interior node is labeled with a tést< u on some variable

U € U andu € R. Such an interior node has two outgoiagsto its children, corresponding to the
outcomes of the test (true or false). The tree structucaptures théocal dependency structure of
the conditional distribution. The parametersioére the distributions associated with each leaf. In
our implementation, each leéfis associated with a univariate Gaussian distribution over values of
X, parameterized by a meap and variance:%. An example of a regression tree CPD is shown in
Figure 6. We note that, in some domains, Gaussian distributions may not beptioprgie choice

of models to assign at the leaves of the regression tree. In such caseanvapply transforma-
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Module 1

/ 1

Module 2

@ N(1.4,0.8) N(0.1,1.6) N(-2,0.7)

Module 3

Figure 6: Example of a regression tree with univariate Gaussian distriswicthe leaves for rep-
resenting the CPIP(M3 | AMAT,INTL), associated witM 3. The tree has internal nodes
labeled with a test on the variable (e §MAT < 5%). Each univariate Gaussian distri-
bution at a leaf is parameterized by a mean and a variance. The tree strcapinres
the local dependency structure of the conditional distributions. In thegbeashown,
whenAMAT > 5%, then the distribution over values of variables assignédavill be
Gaussian with mean4 and standard deviation®regardless of the value 6¥ITL.

tions to the data to make it more appropriate for modeling by Gaussian distributionse other
continuous or discrete distributions at the leaves.

To learn module networks with regression-tree CPDs, we must extendreviops discus-
sion by adding another componenttdhat represents the tre@s ..., Tx associated with the dif-
ferent modules. Once we specify these components, the above discaggiies with several
small differences. These issues are similar to those encountered whoeluaitrg decision trees to
Bayesian networks (Chickerirgg al, 1997; Friedman and Goldszmidt, 1998), so we discuss them
only briefly.

Given a regression trélg for P(M j | Pay, ), the corresponding sufficient statistics are the statis-
tics of the distributions at the leaves of the tree. For eaclYlgethe tree, and for each data instance
x[m], we let¢;[m] denote the leaf reached in the tree given the assignméatpin x[m|. The mod-
ule likelihood decomposes as a product of terms, one for each.|Eaich term is the likelihood for
the Gaussian distributiof| (l.lg; 05), with the usual sufficient statistics for a Gaussian distribution.

Given a regression trélg for P(M j | Pay, ), the corresponding sufficient statistics are the statis-
tics of the distributions at the leaves of the tree. For eaclYlgdthe tree, and for each data instance
x[m], we let¢;[m] denote the leaf reached in the tree given the assignméatpin x[m|. The mod-
ule likelihood decomposes as a product of terms, one for each.|&aich term is the likelihood for
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the Gaussian distributio( (ly; 02), with the sufficient statistics for a Gaussian distribution.

= 3 Y nfm=0,

m X;exi

Se = 3 5 n{m=0x, (5)
m X;eX!

S, = 5 3 n{gim=0x
m X, cX |

The local module score further decomposes into independent compoorat$or each leaf
£. Here, we use a Normal-Gamma prior (DeGroot, 1970) for the distributieacti leaf: Letting
1, = 1/0? stand for the precision at ledf we define:P(, /) = P(W | T/)P(T¢), whereP(t,) ~
(0o, Bo) andP(p | T¢) ~ N (Ho; (MoT¢) 1), where we assume that all leaves are associated with
the same prior. Letting, , be defined as in Equation (5), we have that the component of the log
marginal likelihood associated with a leadf modulej is given by:

1. 1 Ao 14

—log (T (a0)) + atolog (Bo) — (Go + %§13(> log(B),

where

. & 2
1o (S Sheho (3‘}% - “°>
B—Bo+§ T §j)[ + :

When performing structure search for module networks with regresstencPDs, in addition
to choosing the parents of each module, we must also choose the asstiet&dicture. We use
the search strategy proposed by Chickeghgl.(1997), where the search operators are leaf splits.
Such asplit operator replaces a leaf in a trégwith an internal node with some test on a variable
U. The two branches below the newly created internal node point to two reedeeach with its
associated Gaussian. This operator must check for acyclicity, as it implididistaas a parent of
M;j.

When performing the search, we consider splitting each possible leathrpeasible pareru
and each value. As always in regression-tree learning, we do not have to consideradiValues
u as possible split points; it suffices to consider values that arise in the etatMereover, under
an appropriate choice of prior (i.e., an independent prior for each, lesfression-tree learning
provides another level of score decomposition: The score of a partitakis a sum of scores
for the leaves in the tree. Thus, a split operation on one leaf in the treendbedfect the score
component of another leaf, so that operators applied to other leaves deed to re-evaluated.

6. Experimental Results

We evaluated our module network learning procedure on synthetic datmana real data sets —
gene expression data, and stock market data. In all cases, our daisted solely of continuous
values. As all of the variables have the same domain, the definition of the needutgiuces simply
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Figure 7: Performance of learning from synthetic data as a function afuirder of modules and
training set size. The-axis corresponds to the number of modules, each curve corre-
sponds to a different number of training instances, and each pointsstheamean and
standard deviations from the 10 sampled data sets. (a) Log-likelihood siande as-
signed to held-out data. (b) Average score per instance on the tramtiag d

to a specification of the total number of modules. We used regression sréfas lacal probability
model for all modules, and uniform priors fp(.§) andk(4). For structure search, we used beam
search, using a lookahead of three splits to evaluate each operaton lgdneing Bayesian net-
works, as a comparison, we used precisely the same structure learronighahg simply treating
each variable as its own module.

6.1 Synthetic Data

As a basic test of our procedure in a controlled setting, we used synth&igenerated by a known
module network. This gives a known ground truth to which we can comparke#ined models.
To make the data realistic, we generated synthetic data from a model thatasasddrom the
gene expression data set described below. The generating moded maddules and a total of
35 variables that were a parent of some module. From the learned modwierkiewe selected
500 variables, including the 35 parents. We tested our algorithm’s ability tmséwict the network
using different numbers of modules; this procedure was run for tragetsyof various sizes ranging
from 25 instances to 500 instances, each repeated 10 times for diffieriemg sets.

We first evaluated the generalization to unseen test data, measuring theobkiedibcribed by
the learned model to 4500 unseen instances. The results, summarizedren Kegy show that, for
all training set sizes, except the smallest one with 25 instances, the mod&Dmitbdules performs
the best. As expected, models learned with larger training sets do bettemheaut,run using the
correct number of 10 modules, the gain of increasing the number of daéndes beyond 100
samples is small and beyond 200 samples is negligible.
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Figure 8: (a) Fraction of variables assigned to the 10 largest modulgévébage percentage of
correct parent-child relationships recovered (fraction of pareifd-oblationships in the
true model recovered in the learned model) when learning from synthésiéatanodels
with various number of modules and different training set sizes.x¥dvds corresponds
to the number of modules, each curve corresponds to a different nwhbaining in-
stances, and each point shows the mean and standard deviations friiirstimapled data
sets.

To test whether we can use the score of the model to select the number olfesiode also
plotted the score of the learned model on the training data (Figure 7(bpami\be seen, when the
number of instances is small (25 or 50), the model with 10 modules achievkmgttest score and
for a larger number of instances, the score does not improve wheagmgeghe number of modules
beyond 10. Thus, these results suggest that we can select the ndmiisiuides by choosing the
model with the smallest number of modules from among the highest scoring models

A closer examination of the learned models reveals that, in many cases, ¢haynast a 10-
module network. As shown in Figure 8(a), models learned using 10002300 instances and up
to 50 modules assigned 80% of the variables to 10 modules. Indeed, these models achieved high
performance in Figure 7(a). However, models learned with a larger nushbgodules had a wider
spread for the assignments of variables to modules and consequentheaghd®r performance.

Finally, we evaluated the model’s ability to recover the correct dependenthe total num-
ber of parent-child relationships in the generating model was 2250. Ebrreadel learned, we
report the fraction of correct parent-child relationships it contains.si®vn in Figure 8(b), our
procedure recovers 74% of the true relationships when learning fideteaset with 500 instances.
Once again, we see that, as the variables begin fragmenting over a lanjpemof modules, the
learned structure contains many spurious relationships. Thus, olisresggest that, in domains
with a modular structure, statistical noise is likely to prevent overly detailedidéglamodels such
as Bayesian networks from extracting the commonality between differeiaibles with a shared
behavior.
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Figure 9: (a) Score of the model (normalized by the number of variable=gyanross the iterations
of the algorithm for a module network learned with 50 modules on the genessipn
data. Iterations in which the structure was changed are indicated bydastiieal lines.
(b) Changes in the assignment of genes to modules for the module networkdaa
(a) across the iterations of the algorithm. Shown are both the total chaogesared
to the initial assignment (triangles) and the changes compared to the préei@i®n
(squares).

6.2 Gene Expression Data

We next evaluated the performance of our method on a real world datf gene expression
measurements. Anicroarray measures the activity level (MRNA expression level) of thousands
of genes in the cell in a particular condition. We view each experiment asstamge, and the
expression level of each measured gene as a variable (Frieglnahn2000a). In many cases, the
coordinated activity of a group of genes is controlled by a small segoilators that are themselves
encoded by genes. Thus, the activity level of a regulator gene canmielict the activity of the
genes in the group. Our goal is to discover these modules of co-reggkated, and their regulators.

We used the expression data of Gasthal. (et al., 2000), which measured the response of
yeast to different stress conditions. The data consists of 6157 gedek/8 experiments. In this
domain, we have prior knowledge of which genes are likely to play a reguledte (e.g., based on
properties of their protein sequence). Consequently, we restrictecdsébfe parents to 466 yeast
genes that may play such a role. We then selected 2355 genes that igmiédastly in the data
and learned a module network over these genes. We also learned @&aBayetsork over this data
set.
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Figure 10: Score of 100 module networks (normalized by the number dbles/genes) each
learned with 50 modules from a random clustering initialization, where the atms
sorted according to their score. The score of a module network leasiegl the de-
terministic clustering initialization described in Section 4.2 is indicated by a pointed
arrow.

6.2.1 SATISTICAL EVALUATION

We first examined the behavior of the learning algorithm on the training daga iglrning a module
network with 50 modules. This network converged after 24 iterations (affwthine were iterations
in which the structure of the network changed). To characterize thetwajeaf the algorithm, we
plot in Figure 9 its improvement across the iterations, measured as the sctire waining data,
normalized by the number of genes (variables). To obtain a finer-grgiictate, we explicitly
show structure learning steps, as well as each pass over the variathesnmodule reassignment
step. As can be seen in Figure 9(a), the model score improves nicebsdbese steps, with the
largest gains in score occurring in iterations in which the structure wasgekla(dotted lines in
Figure 9(a)). Figure 9(b) demonstrates how the algorithm changes signiaents of genes to
modules, with 1221 of the 2355 (51.8%) genes changing their assignmamicopvergence, and
the largest assignment changes occurring immediately after structure ratiolifisteps.

As for most local search algorithms, initialization is an key component: A bad inatadiz
can cause the algorithm to get trapped in a poor local maximum. As we diddnsSection 4.2,
we initialize the assignment function using a clustering program. The adeaofag simple de-
terministic initialization procedure is that it is computationally efficient, and resulisgroducible
behavior. We evaluated this proposed initialization by comparing the resultsdalenoetworks
initialized randomly. We generated 100 random assignments of variables tdenpdnd learned
a module network starting from each initialization. We compared the model ettine network
learned using our deterministic initialization, and the 100 networks initializecbralyd A plot of
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these sorted scores is shown in Figure 10. Encouragingly, the sedhe foetwork initialized using
our procedure was better than/aD0 of the runs initialized from random clusters, and th&(®
runs that did better are only incrementally better.

We evaluated the generalization ability of different models, in terms of log-lizethof test
data, using 10-fold cross validation. In Figure 11(a), we show therdiife between module net-
works of different size and the baseline Bayesian network, demonstrigitt module networks
generalize much better to unseen data for almost all choices of number aferod

6.2.2 BOLOGICAL EVALUATION

As we discussed in the introduction, a common goal in learning a networkugteus to reveal

structural properties of the underlying distribution. This goal is definitalyngportant one in the

biological domain, where we want to discover both sets of co-regulateglsgand the regulatory
mechanism governing their behavior. We therefore evaluated the abiliturainodule network

learning procedure to reveal known biological properties of this domain.

We evaluated a learned module network with 50 modules, where we selectedde@es due
to the biological plausibility of having, on average, 40-50 genes per modHiist, we examined
whether genes in the same module have shared functional characterigitisis end, we used
annotations of the genes’ biological functions from the Saccharomyeesr@e Database (Chemt
al., 1998). We systematically evaluated each module’s gene set by testingrfificantly enriched
annotations. Suppose we fihdenes with a certain annotation in a module of $izéfo check for
enrichment, we calculate thgpergeometric p-valuef these numbers — the probability of finding
that many genes of that annotation in a random sub$¢peies. For example, the “protein folding”
module contains 10 genes, 7 of which are annotated as protein folding.dertbe whole data set,
there are only 26 genes with this annotation. Phealue of this annotation, that is, the probability
of choosing 7 or more genes in this category by choosing 10 randons geness than 102, As
there are a large number of possible annotations, there is a nontrivialpligbthat some will be
enriched simply by chance. We therefore corrected tlpegalues using the standard Bonferroni
correction for independent multiple hypotheses (Savin, 1980). Oumati@n showed that, of the
50 modules, 42 (resp. 20) modules had at least one significantly enroirerlation with ap-
value less than.005 (resp. less than 18). Furthermore, the enriched annotations reflect the key
biological processes expected in our data set. We used these anndtatairs the modules with
meaningful biological names. A comparison of the overall enrichments ahtdules learned by
module networks to the enrichments obtained for clusters using AutoClassia ghFigure 11(b),
indicating that there are many annotations that are much more significantlyeshric module
networks.

We can use these annotations to reason about the dependencies luffeeent biological
processes at the module level. For example, we find thatgheyclemodule, regulates thastone
module. The cell cycle is the process in which the cell replicates its DNA andedi, and it is
indeed known to regulate histones — key proteins in charge of maintainingpailling the DNA
structure. Another module regulated by the cell cycle module isitn@gen catabolite repression
(NCR)module, a cellular response activated when nitrogen sources are.sd&rind that th&ICR
module regulates th@mino acid metabolisppurine metabolisnandprotein synthesisodules, all
representing nitrogen-requiring processes, and hence likely to béated by theNCR module.
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Figure 11: (a) Comparison of generalization ability of module networks ilegrwith different
numbers of modules on the gene expression data setx-&kis denotes the number of
modules. The-axis denotes the difference in log-likelihood on held out data between
the learned module network and the learned Bayesian network, averagetO folds;
the error bars show the standard deviation. (b) Comparison of the eraittor anno-
tations of functional annotations between the modules learned using the metiutek
procedure and the clusters learned by the AutoClass clustering algoftheg¢eman
et al,, 1988) applied to the variables. Each point corresponds to an annotatebthex
andy axes are the negative Iggvalues of its enrichment for the two models.

These examples demonstrate the insights that can be gleaned from a hitgirenodel, and which
would have been obscured in the unrolled Bayesian network over 23%&5g

6.3 Stock Market Data

In a very different application, we examined a data set of NASDAQ stoiep. We collected
stock prices for 2143 companies, in the period 1/1/2002-2/3/2003,ing\&73 trading days (data
was obtained fronht t p: // fi nance. yahoo. com). We took each stock to be a variable, and each
instance to correspond to a trading day, where the value of the variabéddgtbf the ratio between
that day’s and the previous day’s closing stock price. This choice taf gresentation focuses
on the relative changes to the stock price, and eliminates the magnitude ofadtself (which
depends on such irrelevant factors as the number of outstandingshasepotential controllers,
we selected 250 of the 2143 stocks, whose average trading volume wasgeénst across the data
set.

As with gene expression data, we used cross validation to evaluate thalgtien ability of
different models. As we can see in Figure 12(a), module networksrpegignificantly better than
Bayesian networks in this domain.
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Figure 12: (a) Comparison of generalization ability of module networks ilegrwith different
numbers of modules on the stock data set. ¥agis denotes the number of modules.
They-axis denotes the difference in log-likelihood on held out data betweenaheele
module network and the learned Bayesian network, averaged ovetdH) foe error
bars show the standard deviation. (b) Comparison of the enrichment riotedions
of sectors between the modules learned using the module network precattlithe
clusters learned by the AutoClass clustering algorithm (Cheesetan1988) applied
to the variables. Each point corresponds to an annotation, andahey axes are the
negative logp-values of its enrichment for the two models.

To test the quality of our modules, we measured the enrichment of the moduitesrietwork
with 50 modules for annotations representing various sectors to whictseathbelongs (based on
sector classifications froft t p: // fi nance. yahoo. com). We found significant enrichment for 21
such annotations, covering a wide variety of sectors. We also compasairissults to the clusters
of stocks obtained from applying the popular probabilistic clustering algorihtoClass (Cheese-
manet al., 1988) to the data. Here, as we described above, each instancgponas to a stock and
is described by 273 random variables, each representing a tradingnd29 of the 21 cases, the
enrichment was far more significant in the modules learned using modulerketeampared to the
one learned by AutoClass, as can be seen in Figure 12(b).

Finally, we also looked at the structure of the module network, and fowetaecases where
the structure fit our (limited) understanding of the stock domain. Severalle®dorresponded
primarily to high tech stocks. One of these, consisting mostly of software, s@miidctor, com-
munication, and broadcasting services, had as its two main predictors Mdbagje manufacturer
of electronic, electrical and fiber optic interconnection products antsgs and Atmel, special-
izing in design, manufacturing and marketing of advanced semicondudWokex was also the
parent for another module, consisting primarily of software, semi-cdoduagnd medical equip-
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ment companies; this module had as additional parents Maxim, which develgpabet circuits,
and Affymetrix, which designs and develops gene microarray chipsidnas in many other cases,
the parents of a module are from similar sectors as the stocks in the module.

7. Related Work

Module networks are related to several other approaches, includites @antine (1994), hierar-
chical Bayesian models DeGroot (1976bject-oriented Bayesian networ(GOBNS) (Koller and

Pfeffer, 1997) and to the framework pfobabilistic relational model$PRMs) (Koller and Pfeffer,
1998; Friedmaret al,, 1999a).

Both plates and hierarchical Bayesian approaches allow us to repmedgls where objects
in the same class share parameters. Plate models also allow objects to shanestiparent set. In
many ways, they allow a more expressive dependency structure than metuteks, as they allow
a richly structured hierarchical set of variables, determined by thedhpktte structure. However,
variables in one plate can only depend on variables in an enclosing plate, glate models are not
sufficiently expressive to encode the inter-module dependencies in a metulerk. Hierarchical
Bayesian models are more expressive than module networks in that theypaltameters of dif-
ferent variables to be statistically related but not necessarily equal. éoweerarchical Bayesian
approaches are not a language that includes structure as well asepens so that an additional
representation layer would have to be added to provide a framework simitaodale networks.
One can easily extend module networks with ideas from the hierarchicalsiayframework, al-
lowing the parameters of different variables in the same module to be codrblateot necessarily
equal. Most importantly, neither plates nor the hierarchical Bayesian Warkénave provided a
method that allows us to learn automatically which subsets of variables shraraqiars.

OOBNs and PRMs extend Bayesian Networks to a setting involving multiple redéijedts,
and allow the attributes of objects of the same class to share parameterpandealey structure.
One can view the module network framework as a restriction of these frarkewehere we have
one object for every variabldg, with a single attribute corresponding to the valuofEach module
can be viewed as a class, so that the variables in a single module shamaéhygrshabilistic model.
As the module assignments are not known in advance, module networkspond most closely
to the variant of these frameworks where theréyfge uncertainty— uncertainty about the class
assignment of objects. However, despite this high-level similarity, the modtiereframework
differs in certain key points from both OOBNs and PRMs, with significant ichpa the learning
task.

In OOBNSs, objects in the same class must have the same internal structysaranteteriza-
tion, but can depend on different sets of variables (as specified in thpingaof variables in an
object’s interface to its actual inputs). By contrast, in a module network f éifieovariables in a
module (class) must have the same specific parents. This assumption grdatgg the size and
complexity of the hypothesis space, leading to a more robust learning atgofith the other hand,
this assumption requires that we be careful in making certain steps in theustrgearch, as they
have more global effects than on just one or two variables. Due to thdseedifes, we cannot
simply apply an OOBN structure-learning algorithm, such as the one prognseangseth and
Nielsen (2003), to such complex, high-dimensional domains.

In PRMs, the probabilistic dependency structure of the objects in a clas$eisined by the
relational structure of the domain (e.g., Bestattribute of a particular car object might depend on
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the Incomeattribute of the object representing this particular car’s owner). In tee odmodule
networks, there is no known relational structure to which probabilisticrigr@cies can be attached.
Without such a relational structure, PRMs only allow dependency modetifigul at the class level.
Thus, we can assert that the objects in one class depend on someatggrentity of the objects
in another. We cannot, however, state a dependence on a particuletriobfe other class (without
some relationship specified in the model). Getebal. (2000) attempt to address this issue using
a class hierarchy. Their approach is very different from oursjirey some fairly complex search
steps, and is not easily applied to the types of domains considered in this pape

To better relate the PRM approach to module networks, recall the relatidnstween module
networks and clustering, as described in Section 4.2. As we discussethrwiew the module
network learning procedure as grouping variables into clusters thed e same probabilistic
dependency model. As shown in Figure 5, we are taking the data points iratieb{esx instances)
matrix, and grouping rows. As we discussed, in other settings, we ofteip @olumns (instances).
In fact, in many cases, the notion of “variables” and “instances” is soraearbitrary. PRMs allow
us to define a probabilistic model where the value of a data point depethl®ibgroperties of
the rows and properties of the column. In particular, we can define arigtiebute for either
rows, columns, or both; the values of this hidden attribute would corresieos clustering of rows,
or columns, or a two-sided clustering of both rows and columns simultane(aesdySegaét al.
(2001)).

From this perspective, the module network framework can be viewediag blesely related
to a PRM where the module assignment is a hidden attribute of a row. For examfile gene
expression domain, the expression value of ggmemicroarraya; depends on attributes bothgf
and ofaj. The gena; only has one attribute, representing its module assignment. Theagriag
attributes representing the expression levels of the different regulattive array. The expression
level of geneg; in experiment; then depends on all of these attributes, i.e., on the gene’s module
assignment and on the values of the regulators. A key difference bethe®RM-based approach
and our module network framework is that, in the PRM, the regulators cimeroselves participate
in the probabilistic model without leading to cycles. This restriction forces gslexrt a relatively
small set of candidate regulators in advance. Moreover, as no plisballlependency model is
learned for regulators, this approach cannot discover compounthtery pathways, which are
often of great interest.

Overall, the module network framework places strong restrictions on theesshof the set of
objects and on the dependency structures that can be representezligridhese restrictions allow
us to formulate a reasonably effective algorithm for learning which vesabhare parameters.
Although it is possible to define such algorithms for the rich representationefivorks such as
plates, OOBNSs, or PRMs, it remains to be seen whether such algorithm&damp effectively,
given that the much larger search space can introduce both computgtiobbgims and problems
related to overfitting.

8. Discussion and Conclusions

We have introduced the framework ofodule networksan extension of Bayesian networks that
includes an explicit representationmbdules— subsets of variables that share a statistical model.
We have presented a Bayesian learning framework for module netwohish Wearns both the
partitioning of variables into modules and the dependency structure ofreadtle. We showed
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experimental results on two complex real-world data sets, each includingiregants of thou-
sands of variables, in the domains of gene expression and stock matketeddlts show that our
learned module networks have much higher generalization performanca tBayesian network
learned from the same data.

There are several reasons why a learned module network is a bettel thadea learned
Bayesian network. Most obviously, parameter sharing between veasiablhe same module al-
lows each parameter to be estimated based on a much larger sample. Motigisvaliows us
to learn dependencies that are considered too weak based on statistiogl®fvariables. These
are well-known advantages of parameter sharing; the interesting afpmat method is that we
determine automatically which variables share parameters.

More interestingly, the assumption of shared structure significantly restrectpace of possible
dependency structures, allowing us to learn more robust models thanl¢lansed in a classical
Bayesian network setting. While the variables in the same module might behzoreliag to the
same model in underlying distribution, this will often not be the case in the emipiigtaibution
based on a finite number of samples. A Bayesian network learning algorithtreat each variable
separately, optimizing the parent set and CPD for each variable in aneindept manner. In the
high-dimensional domains in which we are interested, there are bound pubeus correlations
that arise from sampling noise, inducing the algorithm to choose parernthaetio not reflect real
dependencies, and will not generalize to unseen data. Converselynadale network setting,
a spurious correlation would have to arise between a possible pareatlarge number of other
variables before the algorithm would find it worthwhile to introduce the depecy.

The module network framework, as presented here, has several imgionigations, both from
a modeling perspective and from the perspective of the learning algorithm.

¢From a modeling perspective, it is important to recognize that a modulenkdésaot a uni-
versally appropriate model for all domains. In particular, many domainsatdave a natural
organization of variables into higher level modules with common characteritissich domains,
a module network would force variables into sharing dependency stescaurd CPDs and may
result in poor representations of the underlying domain properties.

Even in domains where the modularity assumption is warranted, the module kehadels
we presented here may not be ideal. In particular, the module network meelgleesented here
allow each variable to be assigned to only one module. For instance, in taegaression domain,
this means that each gene is allowed to participate in only a single module. ThisgEs is
not realistic biologically, as biological processes often involve partiallylapping sets of genes,
so that many genes participate in more than one process. The framewsdnd in this paper,
by restricting each gene to only one module, cannot represent sudappiag processes with
different regulatory mechanisms. Recently (Segadl, 2003a; Battleet al,, 2004), we presented
one possible extension to the module network framework presented in thes, pemich allows
genes to be assigned to several modules. The expression of a genariicalgr array is then
modeled as a sum of its expression in each of the modules in which it particigatesach module
can potentially have a different set of regulators. Clearly, this apprfmc‘allocating” a variable
and its observed signal among different modules is only one possible madesna which is not
appropriate to all settings. Other domains will likely require the developmerthefr approaches.

Turning to the learning algorithm, one important limitation is our assumption that theeof
modules is determined in advance. For instance, in the biological domain,ritgenof regulatory
modules of an organism in an expression data set is obviously not knoavithas determining
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the number of modules should be part of the regulatory module discovéryltaSection 6.1 we
showed that, at least in synthetic data, where the number of modules is kn@wan use the
score of the model to select the correct number of modules by choosingptiel with the smallest
number of modules from among the highest scoring models. This obseris@anouraging, as it
suggests that we can extend our approach to select the number of magtolestically by adding
search steps that modify the number of modules and use the model scoregareanodels that
differ in their number of modules. However, much remains to be done on tiiéepn of proposing
new modules and initializing them.

Another important limitation of the learning algorithm is the use of heuristic searsklect
a single module network model. As other models may have comparable (or etter) kcores to
that of the final model selected, a critical issue is to provide confideriteagss for the structural
relationships reported by the model. This problem is common to many learninglatgs, includ-
ing standard methods for Bayesian network learning, but is particulante achen we are trying to
use the learned structure for knowledge discovery, as we do in the pidmgain. In this paper,
we addressed this issue only indirectly, through statistical generalizatisroteseld out data and
through the evaluation of our results relative to the to existing annotations@esjock categories
in the stock market domain).

As a more direct approach, in some cases we can make use of well knaiwod®iéor confi-
dence estimation such asotstrap(Efron and Tibshirani, 1993), which repeatedly learns models
from resamples of the original input data and then estimates the confidedifei@nt features of
the model based on the number of times they appear in all models learnedarsapproach was
adopted for estimating the confidence in features of a Bayesian netwénkemmanret al. (1999b)
and consequently applied by Friednetral. (2000b) for learning fragments of regulatory networks
from expression data. An alternative approach is to use Markov ChamevCarlo methods to sam-
ple models from the posterior given the data. It is fairly straightforwardstothe Bayesian score
we devised here within a Metropolis-Hastings sampling procedure Detie&t(2001) to perform
model averaging Hoetingt al. (1999). The challenge is to design sampling strategies that lead to
rapid mixing of the Markov Chain sampler. In the context of Bayesian ndtsyoecent results (e.g.,
(Friedman and Koller, 2003)) use the decomposable structure of theipogie efficient sampling.
In the context of module networks, we also need to construct efficiemplgag strategies over as-
signment functions. Recall that the space of possible assignment funitibnge, and sa priori
it is not clear that a simple sampling procedure (e.g., mirroring our seaatkgfrand moving one
variable at each step) will mix in reasonable time. Clearly, adapting suchdeon estimation
approaches for our models can greatly enhance the reliability of outsdsu require additional
development and validation.

In this paper, we focused on the statistical properties of our method. émaamnion biologi-
cal paper (Segadt al,, 2003b), we use the module network learned from the gene expressin d
described above to predict gene regulation relationships. There, fi@rped a comprehensive
evaluation of the validity of the biological structures reconstructed by otihade By analyzing
biological databases and previous experimental results in the literaturegnfiemed that many
of the regulatory relations that our method automatically inferred are indmeect. Furthermore,
our model provided focused predictions for genes of previously anacherized function. We per-
formed wet lab biological experiments that confirmed the three novel pietsove tested. Thus,
we have demonstrated that the module network model is robust enoughrt@lgaod approxima-
tion of the dependency structure between 2355 genes using only 17%cestd hese results show
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that, by learning a structured probabilistic representation, we identifyatgu networks from gene
expression data and successfully address one of the central prablanaysis of gene expression
data.
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