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Abstract

In recent years, there has been a growing interest in agpBayesian networks and their ex-
tensions to reconstruotgulatory networkg§rom gene expression data. Since the gene expression
domain involves a large number of variables and a limited lmemof samples, it poses both com-
putational and statistical challenges to Bayesian netweakning algorithms. Here we define a
constrained family of Bayesian network structures sugdbl this domain and devise an efficient
search algorithm that utilizes these structural conssamfind high scoring networks from data.
Interestingly, under reasonable assumptions on the wikgprobability distribution, we can pro-
vide performance guarantees on our algorithm. Evaluatiomeal data from yeast and mouse,
demonstrates that our method cannot only reconstruct aduglity model of the yeast regula-
tory network, but is also the first method to scale to the cexipf of mammalian networks and
successfully reconstructs a reasonable model over thdssdivariables.

Keywords: Bayesian networks, structure learning, gene networkse g&pression, approxima-
tion algorithms

1. Introduction

Learning Bayesian network structure from data (Cooper and Heitskd992; Heckerman et al.,
1994) and its application to reconstrggne regulatory networkisom biological data (Friedman
et al., 2000; Pe’er et al., 2001; Hartemink et al., 2002; Ong et al., 200&ol et al., 2002; Yoo
et al., 2002) is a subject of current research.

Regulatory networks control the expression of thousands of genebvingicell, modulating
the expression levels of individual genes based on external andahtnditions. To regulate
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Figure 1: Biological regulation: Signals activate signaling molecules (SMjchwin turn acti-
vate transcription factors (TF). When activated, these bind to DNA regylaequences.
Combinations of such binding events control the levels of MRNA transcriptiarcom-
binatorial manner.

the expression of a gene, specialized proteins catiatscription factors (TFspind to regulatory
sequences on the DNA ¢dirget genesand work in a combinatorial fashion to ensure the correct
amount is being transcribed (Figure 1). The behavior of those tratiserifactors is in turn con-
trolled by the cell's environment through the actionsignaling proteins (SPs) The combined
network of transcription factors and signaling proteins forms a regulgargram controlling the
expression of individual genes directly (by regulator TFs) and intyréby regulator SPs). Since
these networks serve as the information processing devices of cellsf grisab interest to uncover
their structure and the regulation functions that they encode.

How can we learn such regulatory programs? An experimental techrugileg DNA microar-
raysallows us to simultaneously measure the expression of thousands of gelees/arious con-
ditions and perturbations, providing biologists with global observationseoitrkings of the cell.
Importantly, microarrays measure not only the expression levels of tgegets, but also of genes
encoding regulators - TFs and SPs. As has been previously demaomgRater et al., 2001, 2002;
Segal et al., 2003), in many cases a TF’'s expression level is a gory fords activity, allowing
us to construct a network that relates the gene expression of a tangetogéne gene expression of
its regulators. However, there are also numerous cases where aclitity és not determined by
its expression level, but rather by other types of biochemical eventghtitadre unobserved in mi-
croarray data. Fortunately, in some of these cases, a change in tees&prof indirect regulators
(such as SPs that control the TF’s activity) may be observed in micyoareasurements, allowing
us to detect an indirect regulatory relation in lieu of the direct event.

Following these biological considerations, it is expected that regulatomairttens between the
genes would often result in corresponding statistical dependenciesdretandom variables repre-
senting their expression. Thus, a Bayesian network approach to teguletwork reconstruction
treats the expression level of each gene as a random variable and attepgiisiate the structural
features of the dependencies in their joint probability distribution from dB&yesian networks
are particularly well suited for this domain, as has been demonstrated lpystaties (Friedman
et al., 2000; Pe’er et al., 2001; Hartemink et al., 2002). First, experimevittence indicates that
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the regulatory network is sparse, such that only a few genes directisottime transcription of a
given target (Martinez-Antonio and Collado-Vides, 2003; Shen-Oal.e2002; Lee et al., 2002).
Second, microarray measurements are typically noisy, necessitatingabjtisitt model. Finally,
biological networks contains many important hidden variabdeg. the actual activity level of the
regulators) which can be handled well in a Bayesian networks framework

Nevertheless, the biological domain raises several important challemgkesifning Bayesian
networks. The central difficulty is that contrary to previous applicatioristoarrays measure thou-
sands of variables (genes) across at most a few hundred samples, €Vkn if a search for the
optimal solution (over a prohibitively large space) was possible, statistiisé fis likely to lead to
spurious dependencies, resulting in models that significantly overfit tae da

This problem becomes even more pronounced when considering the gomglgatory net-
works of mammals. While Bayesian network approaches have been rglatieeessful in tackling
networks of a unicellular model organism, the Baker's y&icharomyces cerevisjabey have
yet to achieve similar success in mammalian systems, such as human or mouse leedks.or-
ganisms have considerably more complex regulatory systems, with a lamgéenwof regulators
and target genes, and much more complex combinatorial regulatory fusicibmctiphering these
networks can have significant implications to the understanding of animalageaent and com-
mon diseases. A central question toward these important applications igfiagiarsimonious
set ofmajor regulators at the center of a given response, and distinguishing temafilditional
redundant regulators or by product effects.

In this paper, we propose a novel approach to address these i8aemnforce biologically-
motivated restrictions to limit the search to simple network structures that significaduce the
space of possible networks, while highlighting the most relevant biologit@iniration. We devise
a search algorithm that utilizes these structural constraints to efficientlyifjhdsboring networks.
Furthermore, under reasonable assumptions on the underlying probdisititpution, we provide
guarantees on our algorithm’s performance, thus providing an approamadgorithm for a certain
class of Bayesian networks. This is of particular interest, becausexapyation algorithms for
learning Bayesian networks have only been developed for polytrasg(pta, 1999).

We evaluate the performance of our algorithm on synthetic and real g@nession data sets
for both yeast and mammals. Our results show good structure reconstraotgynthetic data and
that the model learned from gene expression data generalizes wellderutest data. Importantly,
our results also illustrate the ability of the learned models to successfullysteaonbiologically
correct regulatory relations in complex mammalian systems.

2. Regulation Model

Our gene regulation model is a Bayesian network that describes regulaltions between genes.
In this network, each random variable corresponds to the gene sigrdsvel of a specific gene.
If geneY is a parent of gen¥X in the Bayesian network, we interpret this &6 fegulates X We
denote byPay the set of all regulators (parents) of the gene (variakleAny gene that “regulates”
in our model is termed &egulator. The key point behind to our approach is that we enforce a
number of biologically motivated constraints to limit these regulators and thé gtayrcture.

Unlike a standard Bayesian network, we limit the possible regulators {sarenhe network to
a set of candidate regulatags Our candidate sef is chosen based on prior biological knowledge,
and contains known and putative regulators in the organism being stidtéel. that while finding
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Figure 2: A literature reconstruction of the Bactefial Coli regulation network from (Martinez-
Antonio and Collado-Vides, 2003). Notice this includes small top layer afleggrs and
many targets for each.

which genes in a genome may function as regulators in general is ofterbteadiading which
regulators aractivein a data set is difficult. Our inference will focus on this latter question.

In fact, previous biological studies indicate that only a small fraction of@kmptial regulators
may be active in a given data set. Accordingly, we also constrain the stilptoperties of the
graph, seeking a Bayesian network in which only a limited number of gemesegulatorsij.e.,
have an outdegree greater than zero. Moreover, extensive stutiethibacteria and yeast (Shen-
Orr et al., 2002; Martinez-Antonio and Collado-Vides, 2003; Lee et 8022 (Figure 2) indicate
that each such “master regulatory gene” may affect the transcriptionrof genes (indeed, only 3-
6% of the yeast and human genes respectively encode TFs). Thagpeet each regulator to have
a high out-degree. These constraints result in a graph of small depttnich Vayers containing
a small number of regulators control a large bottom layer of target genasistent with current
biological understanding.

In addition to its biological relevance, this network structure has an obwdtaistical moti-
vation: Only when a gene consistently scores high as a parent for maeg,gdo we believe it
indicates a true signal. An occasional high score as a parent of a sengesgjattributed to spurious
chance. Since learning an accurate genetic network is not possible inrtieatcdata paucity in
the gene expression domain, our restrictions represent a reasorstldeder approximation of the
network which preserves its biological relevance. In fact, for most biokd applications, false
positives are significantly more “costly” than false negatives, and findirapust set of key regu-
lators whom are most strongly supported by the data (as offered by aielyni®a more important
goal then discovering their complete set of targets.

We now provide a formal definition of our model: régulation graphis a Bayesian network
with the following restrictions on its structure.

Definition 1 Given a set of random variable¥ = {Xy,..., Xy}, a set ofcandidate regulators”
and the constants d and k, we definegulation graphg to be a Bayesian network ovarso that:
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Figure 3: Regulation graph. The top layer is associated with the regulatdthe bottom layer is
associated with all other variables. The key concept behind the reguigéiph is a small
number of regulators, each with many targets. Note, the illustrated nitrogeimotiam
response was automatically inferred by our algorithm from a gene esipnedata set.

¢ All parents belong to the candidate s&X,Pay C C.
e The number of parents for each variable (indegree) is bounded biXdPax| < d.

e The total number of parents in the model is bounded by k: We term theithreafrall parent
sets in the network to be the graphé&gulatorsdenoted byR , thus we constraif® | < k.

The graph structure is best visualized as a graph with a shallow depth:toptkeyers, a small
set of regulators (chosen from a large Sgtpossibly regulating each other and in the bottom layer,
all other variables (see Figure 3).

2.1 Optimization Problem

Since a regulation graph is a Bayesian network, the straightforwardagpto learning its structure
would be to use the typical heuristic greedy hill-climbing search (Heckera288) used for this
task. This involves traversing the space of legal models in a greedy fassiiog local operators
such as adding, removing or reversing a single edge. At each stepehation that best improves
the score is chosen.

Unfortunately, the standard approach is likely to fail as the limited numbergodators spec-
ified by the regulation graph could be quickly used up. For example, we nsyter search for
a regulation graph over 2000 variables, limited to 30 regulators. We beginthdtempty graph
and in a greedy fashion add the optimal edge at each iteration. In manysefitheations, a new
regulator is added to the regulator get Therefore, after little over 30 iterations, no new regulators
could be added t&®_ and all subsequent legal steps would only involve adding edges figutaters
already in® . While these regulators might be the best parents for a small set of varidinesands
of other variables remain unexplained in the model.

In fact, contrary to learning regular Bayesian networks, the choicarafis for a variablX in
our model is no longer independent of the parents chosen for othables. Since the total number
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of parents in the model is limited tq choosing a parent for one variable can limit the choice of
parents for other variables. Thus, a regulator should be add@dtdy when itis a good parent for
many variables concurrently. Any search algorithm we design must takiatinigccount and add a
regulator to ssetof target genes in each greedy step.

Fortunately, once a regulator sgtis given, finding the optimal regulation graph constrained
to R is polynomial, and for most practical cases efficient. For any givenblarighere is a small
number, (5) of possible parent sets (compared(gq possible parent sets for Bayesian networks
bounded by an indegree dj.! Thus, it is quick to calculate the local score, dendsedré X; P),
for all possible parents sets and choose the highest scoring parents.

Pax = argmax g |pj<qScoréX;P) 1)

When R _is not given, we can use use this property to efficiently evaluate the quéliapyo
potential set of regulators.

Definition 2 We define thetility, F(R) of a regulator seR as:

F(R):%l max ScoréX;; P) (2)

PCR,|P|<d
|

The utility of a regulator selR can be computed quickly and closely approximates the score of the
optimal network constrained &, denoted SCORMR). F(R) scores a graph structure resulting
from independently choosing the optimal parents for each variable, éinerefore an upper bound
on SCORER). Note, that an independent choice of parents for each variable matplaatructure
containing cycles. Thus, a legal Bayesian network might have a somet s&ts that score sub-
optimally. However, since cycles can form only between the variabl®s wvhich is a relatively
small part of the entire networlk << n), we expect that SCORR) is usually only slightly less
thanF (R). Furthermore, acyclicity can be resolved within a subgraph involving kbnigdes (the
complexity of solving this problem is constant iim though exponential ik). In most practical
cases, only a few short cycles form and the optimal solution can be easiiglf In comparison,
resolving cyclicity in a Bayesian network can be exponential (k << n), since cycles can form
among anyn variables

We treatF (R) as a scoring function that measures the quality of regulator sets. This implies a
new optimization problem to find a small set of regulatats which maximize this score:

Definition 3 TheBest Regulator Sgiroblem: Given a set of variable, a data set of samples D,
a set of candidate parents, and the constants d and k, we wish to find

R = argma&ca‘R‘ng(R) 3)
|

1. We typically used ranging between 3 to 5 aridranging between 30 to 70, whereasis in the thousands and’| is
in the hundreds.

2. In our typical setting wherkeranges between 30 to 70 and> 2000, the difference in score after breaking the cycles
is negligible. With high probability this difference would not change our ohoitregulating se® . Therefore, for
the remainder of this paper, we ignore the issue of cyclicity.
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This problem is conceptually similar to tt&et Coveiproblem, a classical hard problem. The
challenge is that the regulator ®Rtmust be chosen from a much larger candidate’sahd there
are (/) possible regulator sets. While there does not seem to be any efficierithatyto find an

optimal solution, we next present an efficient algorithm that attempts to appatit.

3. MinReg Learning Algorithm

We now turn to the task of learning a regulation model (specified by a segofators®, and a
parent structure on the variablesif) from a training set® = {x[1],...,x[M]}, consisting of\
instances drawn independently from an unknown distribugipki)). Our goal is to choose the set
of regulatorsk_and learn the regulatory graph structure that best explains this distribWmtake
a score-based approado this learning task and we define a scoring function that measures how
well each candidate model fits the observed data.

Given a scoring function, our task is to devise a search algorithm capidféciently finding a
high scoring model. As discussed in Section 2.1, the hard part of théhdedodind the optimal set
of regulators,®. Our novel greedy algorithm for this task, MinReg (sketched in Figurédgins
with an empty set of regulators and an empty graph structure. At each iterfticeach possible
candidate, we construct an increment regulator set by adding thatlesstb the current regulator
set. We calculate the score for each of the increment regulator sets aoskdfe one that gives
the largest gain. Each tin® is updated, we calculate the optimal regulation graph restricted to the
current regulator seR . We continue to iterate until some stopping criterion is reached.

A crucial point is to correctly define the gain of a given regulator at éacation. We calculate
a local score between a variable and its regulasigig\WWhen considering a new candidate regulator
c € C as a parent for a variab}, we measure not how wetlscores foX, but how much additional
gainc gives toX’s local score. Thus, each of the regulating parents provide a distinttilsution
to the score.

Definition 4 We define thenarginal utility of adding a regulator se€ to an already chosen regu-
lator setR as

F(C|R)=F(CUR)—-F(R) 4
1

Thus, at each iteration, we add the candidate regulator with the largeshaiarigjity.

3.1 a-modularity and Performance Guarantees

MinReg is a greedy algorithm, which at each iteration, adds to the model theibgte regulator
according to some local criterion This greedy approach does notsaidgdead to a global opti-
mum. Can we characterize the situations in which the MinReg algorithm is leagags@nsider

the case wher&coréX;A) + ScoréX; B) is significantly less thascoréX; AUB). In this situa-
tion, neitherA nor B would be attractive enough to get selected by themselves in any of theygreed
steps, whereas their joint contribution may be significantly higher than amy otimbination of
regulators. Thus, the greedy algorithm is misled to choose an inferiolategset. Importantly,

this is a biologically-plausible scenario, since synergy between regulatersvedl-documented
phenomenon.
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MinReg Algorithm
Beginwith an empty regulator s&® and an empty graph
In each iteration find the candidate regulator with the highest marginal utility:
¢* = argmax. -F(c| ®)
Iterate over each candidate regulate C
calculateF(c| R)
Iterate over each variablX = Xy, ..., X,
approximate its best parents restrictedta) ¢
MaXpc g uc,|P|<d ScoréX;; P)
Add local score ofX; to utility of ¢
Add best candidate regulator # and update the regulation graph
until stopping criterion(3.3.1)

Figure 4: Overview of the MinReg algorithm. The algorithm consists of twaetkgreedy loops.
The external loop finds the optimal SRtof k regulators. For eack € X an internal loop
finds an optimal set of paren@say.

We argue that this characterizes the only situation in which our algorithm Yédshow that if
we can bound the severity of such effects, we can derive a woksecas bound on the algorithm’s
performance: in this case, MinReg is approximation algorithmguaranteed to find a solution
which is not too far from optimal. To formally prove this guarantee, we intcedine notation of
a-modularfunctions.

Definition 5 Let f be a function defined over subsetgoff is monotone increasing if forall subsets
A,B s.t. A C B, the following holds
f(A) < f(B)

Definition 6 (Lehmann et al., 2001) Let f be a function defined over subsels bis a-modular
(a > 1) if and only if for all subset#\, R and for all singletons Z, the following holds:

f(AUZIR) < f(AJR) +af(Z|R)

Note that this is a generalization of sub-modular functidng sub-modular foax = 1. One
might consider as some measure on the convexityfobver the space of subsets frath For
larger a, more “synergy” can be gained by joining sets together. We will show thatkifcan
bound the amount of “synergy” between regulators, we can boundribrecd our greedy algorithm
accordingly.
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Lemma 7 The following are equivalent definitions afmodular functions: ( (Lehmann et al.,
2001))

1. For any subsetS C T and singleton Z T we have {Z|S) > af(Z|T).
2. For any subsetS C T and subseY we have {V|S) > af(V|T).
3. For any subset8, B, we have {A)+af(B) > f(AUB)+af(ANB)

These equivalent formulations offer us another perspective: theimahngilities of a-modular
functions are “almost” (up to a factor of) monotone decreasing. This fits our intuition that/as
grows larger, the utility of adding new regulators diminishes.

Theorem 3.1:If F is ana-modular and monotone increasing functibitien the MinReg algorithm
(presented in Figure 4) is a polynomial time approximation algorithm for the Begtilator Set:
Denote by OP|[the optimalk regulator set (i.e. that maximiz€9 and by MINREG the regulator
set found by the MinReg algorithm, then

(a+ 1)F (MINREGy) > F(OPT;) (5)

This theorem provides assurance that while MinReg is a very quick algothiat greedily
takes locally optimal steps, the score of the regulator set found by MinRegj too far away (at
most a factor of 3 a) from the optimal solution reached by exhaustively enumerating all possible
regulator sets.

Proof: Our proof is by induction. Fdk = 1, the optimal solution is the best single regulator and this
is exactly the regulator found by the MinReg algorithm therefore MINREGOPT;. We assume
that(a + 1)F (MINREGy_1) > F(OPT_1) and prove it foik.

SetJ = argmax.-F (1), the best single regulator fiandJ = argmaxop, F (1), the best single
regulator in OPFE. Note,J is the first regulator chosen by the MinReg algorithm.

We define the following sub-problem imitating the behavior of the greedy igdtgor Let
F(Y)=F(YU{J})—F(J), our goal is to find a set d&f— 1 regulators that optimizé on C\ {J}.

This is exactly what MinReg does after it chooskem the first iteration. We denote b®PT,_1
and MINREG,_1 the optimal and greedy solutions respectively to this new sub problem. It is
easy to see tha is a a-modular function and that our induction holds féras well, that is,
(0 +1)F (MINREGy_1) > F(OPTi_1).
By the inductive hypothesis, it suffices to show that the incrememtriodular, i.e.:

F(OPT,) —F(OPTi_1)
F(OPTy)

(o +1)F (MINREGy) — F (OPT_1) =
(o +1)F (MINREGy)

IN A

simply by subtraction of the same value on both sides. By the induction hypotres we have
that

F(OPTk) — F(OPTi_1) (a+1)(F(MINREGy) — F(MINREG_1))

<
< (a+1)F(MINREGy) — F(OPTi_1)

3. While the marginal utilities should be almost monotone decreasing, we tharunction itself to be monotone
increasing.
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becauséa + 1)F (MINREGy_1) > F(OPTi_1). Note that

F(MINREGy) — F(MINREG_1) =
F(MINREGy) — F(MINREGy_1 U {J}) +F(J) =F(J)

sinceMINREG;_1 U {J} = MINREG by the very way in which the MinReg algorithm works. Thus
to prove the induction fok it is enough to show that:

F(OPTk) — F(OPT_1) < (o +1)F(J) (6)
SinceOPT;_1 is at least as good as any solution of dize1, by definition:
F(OPTc-1) > F(OPT\ {J}) = F(OPT\ {J}U{3}) -F(J) 7
By a-modularity ofF:

A

F(OPT) < F(OPT\ {J}) +aF (J) (8)
Subtracting (7) from (8) gives:

F(OPT) —F(OPTi 1) < [F(OPT\ {J}) —F(OPT\ {J} u{3})] + [aF () +F(I)]  (9)
Monotonicity of F implies thatF (OPTi\ {J}) < F(OPT\ {J} U{J}), therefore, the first bracket

gives a negative contribution. Maximality dfimplies thatF(J) > F(J), therefore the second
bracketis< (a+1)F(J). 11

It remains to show thdt is both monotone and-modular. RecallF is a sum of maximizations
of local scoring functionsF = 3y max g |p<q ScorgX;; P). The local maximizations are clearly
monotone, ifS C T, thenVX, max -t ScoréX; P) > max-sScoréX;P). ThusF, being the sum
of monotone functions, is monotone as well.

Empirically we observe thd is a-modular, usually for relatively smatl (see 4.1.1). At first
this might sound surprising, since as mentioned above, synergy is knguewtan important role
in biological regulation, and we do not exp&ttoré X; P) to bea-modular in the gene expression
domain. Fortunately, while regulators are synergistic for specific tarfgaéssa sum over thousands
of variables. Even if the synergy between two regulators is very highsymergy would need to
hold for many targets, otherwise it would average out when summing ovefr &Il We empirically
tested the synergy between regulators and groups of regulators indedhand mammalian data
sets, the worst factor we encountered was Therefore, we make the assumptioroefodularity
of F with a = 2 in the gene expression domain.

3.2 Scoring Function

To define the local scorBcordX;P), we adopt the Bayesian paradigm and use the Bayesian BDe
scoring function (Heckerman et al., 1994; Heckerman, 1998) commoatyfos learning Bayesian
networks. The Bayesian score evaluates the posterior probability ofdapl given the data:

scorgs(G : D) = logP(D | G)+logP(G)

whereP(D | G) takes into consideration our uncertainty over the parameters and avénageob-
ability of the data over all possible parameter assignmenga to

P(D|G) = [P(D|G.0)P(®| G)do
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The particular choice of the prio” G) andP(6 | G) determines the exact Bayesian score.

The BDe score refers to a certain class of priors with several despedperties (as detailed in
(Heckerman, 1998))In particular, the BDe score of an entire regulgtiaph G, decomposes into
sum over the local scores for each variable.

scordG : D) = ZScorQXi;PaN) (10)
|
We use these local decomposed scores as the local score for outhabgor

3.3 MinReg Implementation

A general overview of the MinReg algorithm was presented in Section Ber&8ledetails in Min-
Reg’s implementation lead to substantial speed-up of tiveragorithm, such that our implemen-
tation can generate a model over thousands of genes within few minutes.

First, we define a functiorfiy for each variableX, fx (R ) = max g pj<q ScoréX;P). This is
the optimal contribution oK to F, restricted to a regulator s&. Thus, we have 3 levels of scoring
functions:Score- for a particular variable and its parentg, - the optimal score of a single variable
X, andF (R) = yxex fx(R).

The ndve greedy algorithm hak iterations. In each iteratiorf (c|®) is calculated for all
ce C. Since each calculation &f(c|R ) requires calculatindx (c|® ) for all X € X, fx is calculated
k|C||X| times. Calculation offx requires calculatingcorefor each of the('g) possible sets of
parents. While this is constant in in practicek? could be very large. We devise a number of
heuristics based om-modularity to reduce the number of times we need to calculate each of the 3
functionsF, fx, andScore

We employ a branch and bound approaclF{o|® ), using thea-modularity ofF to filter out
candidates with little potential. In the first iteration, for ak C we calculate Utilc) = F(c). We
store the candidate regulators in a heap sorted bydjitiAt any given time, Uti{c) = F(c|A), for
someA C R. Thea-modularity of F ensures thatUtil(c) > F(c|X) (see Lemma 7). In most
cases, we expect the regulator with the highest marginal utility to be towatdlug the heap.

Once a new regulator is added®g the marginal utilities change and need to be recalculated.
In each subsequent iteration, we traverse down the heap and onlgluate candidates for whom
o« Util (c) is greater than the best marginal valuation found thus far, demdtdéthch timeF (c|R)
is calculated, we use this value to update (djilin the heap. Once we reach a candidate such
that o« Util (c) < F(c*|R) we stop traversing the heap, @asmodularity ensures that none of the
candidates beyond this point can be better ttiariWhile this branch and bound does not change
the worst case complexity, for most practical cases, only the few toprandidates are examined
in each iteration.

While the previous speed-up came at no loss in the quality of the final soltiiemext two
heuristics reduce accuracy. These heuristics are based on the #sauhgiScoreis a-modular in
most cases (though probably by a larger factor). This assumption snagas (albeit not always
accurate). While regulation is sometimes synergistic, functions such as ¥JBra in biology and
even when synergy exists, it is bounded by a reasonable constard.ifdportantly, we expect the
synergistic pairs are themselves uncommon.

Similarly to how Util(c) approximates=(c|X ), we cache Utit(c) as an approximation of
fx(c|R.). WhenevefF (c|R ) is calculated, we do so only approximateR(c|R ) = 3 xx Utilx(c).
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In the first iteration we initialize Utj{(c) = fx(c), for eachc € ¢ andX € X. In subsequent it-
erations, we only recalculatg (c|® ) (and update Utd(c)) for thoseX’s whose parent seRay
changed in the previous iteration. This is especially effective in later itesatidrerePay rarely
changes.

Finally, instead of calculatindx exactly, we approximate it using a greedy algorithm similar to
Figure 4. We start with no parents and at each iteration add best paigmeg. 4 fx (c|[Pax) to

Pax. This only requiresl| ® | calculations oScoreinstead of( /).

3.3.1 SOPPINGCRITERION

Formally, the best regulator set problem requires a predefined coksspecifying the number of
regulators in the model. However, there are no obvious biological geofandhoosing a particular
“good” k, as there is a trade-off between fine resolution (offered by a largabauof regulators)
and statistical robustness (from a small number of regulators).

We address this fine balance by taking an adaptive approach. We destisgping criterion
for the addition of new regulators to our model. We continue to add regulasolsng as their
contribution to the score is significantly better than random regulators. Werge a set om
random regulators with similar properties to the real candidate regulatows olata. We construct
these by sampling regulators with replacement from the original candidattater set. For each
sampled regulator, we randomly permute the order of its samples. Thus,nidtenraegulators
have the same distribution over their values, but these are independbettafget variables. We
calculate the score for these random regulators in a manner similar to ticame@édate set and store
these in a heap. This provides us with an empirical distribution for the sc@reanfdom regulator.

We continue to add regulators to our model as long as they score greatgnéhrandom candi-
dates. We update the scores in the candidate heap in a similar manner to tamdéddtes, pruning
the heap using-modularity. We stop once a random regulator scores better than amggeddtor.

4. Experimental Results

We evaluated our algorithm on two data sets, a compendium of yeast gigprpsofiles and a data
set of mouse B-lymphocyte expression profiles. The distinct two data satsl@ us each with
a different realistic evaluation context. The ye8stcerevisiaés the most extensively studied or-
ganism on a genomic scale, and has the most extensively charactegedatory system among
eukaryotes. In addition to an extensive amount of microarray data, idieqti€is-regulatory ele-
ments (Bussemaker et al., 2001) and TF binding events (ChIP-chipimgmes) (Lee et al., 2002;
Harbison et al., 2004) is tractable on a genomics scale. Finally, decacke®fl studies on individ-
ual gene functions are documented in a genome database (Cherry @04)., Pogether, these data
sources will allow us to carefully evaluate the success of our method in fghtreent biological
knowledge.

Mammalian regulatory systems, such as those of the laboratory mouse,tarieusdy diffi-
cult to elucidate, both experimentally and computationally. First, these netwogksignificantly
more complex, involving a larger number of regulators, binding to long pranaoig enhancer se-
guences. In particular, different cell types and cell states employeliffeegulatory networks to
process signals. Furthermore, this complexity renders both genomicssstifidiegulatory events
(such as ChlIP-chip experiments) and computational ones (such asalisod cis-elements) dif-
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ficult or intractable. In fact, the sole available source of relevant data mmadian systems is
typically microarray measurements of expression profiles. Importantiyiocessful method was
demonstrated to date for reconstructing regulatory networks from mammajaession profiles.

Even partial success of MinReg in reconstructing mammalian regulation wonglite a signifi-

cant scientific advance.

The yeast data set contained 358 samples combined from the CompendignegHet al.,
2000) and stress (Gasch et al., 2000) data’s#te compiled a set” of 466 candidate regulators
for yeast, which includes any gene with a potential regulatory role basadmotation or sequence
homology. The expression profiles were discretized into 3 valdesn-regulatedno changeand
up-regulatec® We included only 3755 genes with significant change in gene expressairast
15 samples. We set the maximal indegre; 3, a reasonable estimate for the regulation of most
yeast genes (in particular under a limited number of condifionVe conservatively set = 2 based
on empirical evaluation of the data (see Section 4.1.1 below). We appliedio&®€yg algorithm to
this data set resulting in a yeast regulation model with 44 key regulators.

The mouse data set consisted of 204 samples from purified spleenic Bdggiph (Sambrano
et al., 2002), subjected to a number of stimuli (ligands) and combinations sé gtenuli. We
compiled a list of 684 candidate regulators using criterion similar to the yeadidzde regulator
set/ We discretized the data as in yeast, except that the data was discretizedevets5strongly
down regulated, weakly down regulated, no change, weakly upredwdatestrongly upregulated.
We included only the 4373 genes that significantly changed in at leastmilesss We ran the
MinReg algorithm on this data and inferred a regulation model with 75 ke\tatys.

We employed both statistical and biological criteria to evaluate the perfornartbe algo-
rithm. We examine our assumptionsafmodularity, the ability of our algorithm to generalize to
unseen data, and the accuracy of the reconstruction on synthetic datambnstrate the accuracy
of our algorithm in reconstructing the real yeast and mammalian regulattworne we devise
an approach to infer regulator function from our model, and comparetdghtaie known central
regulators in the relevant biological processes.

4.1 Statistical Evaluation

In this section we well evaluate the statististical robustness of the MinRegtalgoMe focus on
two issues, is the assumption of alpha-modularity a reasonable one fogmeiegpression domain,
and how well does our learned model generalize to unseen test data.

4. The Compendium (Hughes et al., 2000) contains 276 deletion mutants/érious functional classes and the Stress
data set (Gasch et al., 2000) contains 82 samples of responsesiffefhtistress conditions.

5. The Bayesian score is based on a multinomial distribution. Exact coninmeasurement is a very noisy estimate
of the actual gene expression and in our experience, discrete sti#srepresent gene activity. We used a soft
discretization based on a linear piecewise step function for each levetizifya

6. While some genes might have more regulators, there is not enotaytodaarn such complex regulatory function
from so few samples. Importantly, our goal is to robustly learn the kgulagory relations, not the full detailed
network.

7. Mouse has many more known regulators, but only 1/3 the mousergewas printed on the microarray and only
these genes were included in the analysis.
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4.1.1 ALPHA MODULARITY

MinReg employs a greedy approach, evaluating only the addition of sirgléaters to the model at
each iteration, potentially missing a better combination of regul&t@&ased on the assumption of
o-modularity ofF, Theorem 3.1 ensures that the score of the greedy solution is not musé thran
the score of the optimal solution. Furthermore, to improve the speed perfoentaea-modularity
of F is used strongly by the implementation to bound the number of the regulatorsaleatduated
from the heap at each iteratién.

To empirically evaluate tha-modularity ofF in the two data sets used, we calculated the pair-
wise gain in score for all pairs of regulators in the candidate’s@thus, for each pair of candidates
¢, andcy, we calculated the worst usingF (ciUcy), F(c1) andF(cy). In addition, we calculated
the worsta for 10,000 pairs of random subse®,, C, C C, ranging between 2 to 8 regulators each,
usingF (C1UC»),F(C1) andF(Cy). For the yeast and B-lymphocyte data, the warsimpirically
encountered were 1.184 and 1.229, respectively. Weaise@ as a conservative overestimation to
determine when to stop evaluating candidates in the heap at each iteration.

To further boost speed, we make a weak (but inaccurate) assumptidcitrais close toa-
modular, allowing MinReg to reconstruct a large network over thousagsnes in a few minutes,
rather than overnight. We evaluated the effect of this additional modificatioMinReg’s per-
formance by comparing its affect on the likelihood of test data in cross v@lidaas well on the
enrichment of GO annotations in target sets (see sections 4.1.2 and 4deéjljiased on these
two criteria, assuming-modularity ofScoredoes not hurt the algorithm’s performance.

4.1.2 (ROSSVALIDATION

To evaluate the statistical robustness of our learned model and its ability évatjea to unseen
data, we tested MinReg’s performance in 5-fold cross validation. Weoralydsplit the data into 5
equal parts, and ran MinReg 5 times. Each time using 4/5 of the samples agjtssniples to to
learn both the structure and parameters of the regulation model, and wittth@/8ih of the data
samples as a testing set. We then used the inferred model and geneierptisderred regulators
in the test data to predict the expression levels of all 3755 variables intesickample. That is,
given the expression of regulators in timh sample, we usB(X | Pax[m]|) to predict the value of
X in that sample.

We compared the likelihood of test data in several different models. Aseliba, we used the
marginal probability of each variable to predict its value. Since most of thiablas had a high
frequency of the value 0 (their corresponding gene’s expressioained unchanged most of the
time), even this simple predictor scored well (Figure 5, crosses). As ddimpdo our MinReg
algorithm, we generated 44 clusters using standard k-means clusteridg éD0d Hart, 1973; Tava-
zoie et al., 1999) and randomly chose from within each cluster algeng as its “regulator”. For
each cluster we usd@(X | r) as our predictor. While cluster representatives somewhat improved
the prediction over the baseline (0.06 log-loss/instance, Figure 5, cjroi@sMinReg algorithm
clearly provided the best predictions (0.11 log-loss/instance, Figurasgles). In conclusion, our
cross-validation demonstrates that the model generated by the MinRemjrafgperforms well on

8. This assumption is made implicitly by the classic and widely used greedgsiay network learning algo-
rithm (Heckerman, 1998), that considers greedy moves of addéamgoving and reversing a single edge at each
step.

9. Typically, after the first few iterations, only a few regulators are extaltiat each iteration.

180



MINREG

3000

T
% Entropy
Clustering
MinReg

S=0—=C=C=

2500

2000

1500

1000 -

number of genes with accuracy > X

500 -

0 1 1 1 -
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Probability of correct prediction

Figure 5: Cross validation of the predictive capabilities of our model on test
data. The graph measures the number of variables correctly predicted
at each probability. We compare our model (triangles) to the null model
(crosses) that uses the marginal distribution of each variable and to a
model based on cluster representatives (circles)

test data and that most of the information in an entire microarray can be edfityiia small set of
key regulators.

4.1.3 SYNTHETIC DATA

To evaluate the accuracy of the MinReg algorithm in a controlled setting, wergeed synthetic
data from a known regulation network. This gives a known ground trutthioh we can compare
the learned models. To make the data realistic, we generated synthetic datthér@egulation
model inferred from the yeast gene expression data above. While gresidiinetwork is less com-
plex than a true biological network, both share the same underlying probahditjbution of the
discretized data. We randomly sampled 10 data sets from this regulation maxteset consisting
of 358 samples (same number of samples as the original data set). We teskephMiability to
reconstruct the correct network independently on each of thesentlfesig data sets.

Our first test evaluated MinReg's choice of regulators. On averag® (@ repeats), MinReg
correctly reconstructed 84% (39) of the generating 44 regulatorswdlst case was 80% (35) and
best case 91% (40). As for false positives, on average 74% of tdomstucted regulators were
correct (worst case 71% and best case 77%).

Next we evaluated the detailed model itself. The generating model contaii€degiges and
we checked how many of those were correctly recovered. On avétdgef these were recovered
(worst case 69% and best case 72%). In each model the percemteftcedges was a bit higher,
with an average of 74% (worst case 72% and best case 77%). Evemwa did not limit to

181



PE'ER, TANAY, AND REGEV

candidate regulators (setting= X) our reconstruction of regulators was surprisingly good, 42/47
of the regulators were correct and 76% of the individual edges wereatly reconstructed.

In summary, using only a small number of samples, MinReg is capable of Igarmiodel over
thousands of variables, reconstructing most of the relationships tdgrrec

4.2 Biological Evaluation

The crucial test for the success of our approach is in reconstructthgndin aspects of a real
regulatory program. The true underlying biology is vastly more complex thasithple regulation
model that generated the synthetic data. In a real biological system, tteeraoae regulators
working together in more complex functions, feedback loops, and ungdasevents. Furthermore,
the expression data probing these is noisy. Unfortunately, since owrldaige on the principles
and specifics of real regulatory networks is limited, so is our ability to testmoadel based on
“realistic” simulated data. Due to this lack of biological knowledge we also ddhawe a gold
standard network in any organism.

Fortunately, while evaluating each specific connection is impossible at the moweran
estimate whether our model has correctly captured the overall biologmalatery events in the
system. To do this, we rely on the functional annotations available for margsgevhich describe
(using the controlled vocabulary of the Gene Ontology (Consortium, 28@®molecular function,
biological process and cellular location of individual genes. Thus,easribed below, we will
evaluate our reconstructed model by the ability to use it to correctly dededertbtional annotation
of regulators, and by the fit of these annotations to the relevant biolagissm. Importantly, such
functional characterization of key regulators is a critical biological tastsiown right.

4.2.1 ANNOTATING REGULATORS

Our approach is based on the understanding that the biological funétioregulator is mediated
by its set of targets. Therefore, the common shared function of its setgatsag.g. enzymes
involved in amino acid (AA) metabolism) characterizes the overall biologicatess it regulates
(e.g. amino acid metabolism). Continuing with the AA metabolism example, if our recomstiuc
model is good, we expect a regulator of AA metabolism to have many infeargdts involved in
AA metabolism. More generally, we expect that the function associated wébldator based on
its set of targets in the model (as reflected by significant enrichment fantigydar annotation) will
fit with the known function of this regulator (as reflected by its own annotation

More formally, we denote by; the set of targets of a regulatorin our network structure.
For each annotation tersy, we calculate the fraction of genesp associated witlA and use the
hyper-geometric distribution to calculate a p-value for this fraction. Wertdpoeach regulator,
all the significant annotation terms with which it was associated and companetohihe known
annotations for that regulator, and to the main functions expected in the ic@l@ystems we
examine.

4.2.2 B/ALUATING THE YEAST REGULATORY NETWORK

Based on this test, our reconstructed yeast network correspondmwedivious findings. Specifi-
cally, the model derived functions for 8 of the top 10 regulators (soryguhalue) coincided with
their known biological roles. Of the remaining two regulators, we were atdedign a putative role
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to one previously uncharacterized gene, but failed to identify the dontecof the othet® Further-
more, we examined numerous individual edges underlying these desgediations demonstrating
that they are indeed supported by previously described regulatet-tatgtions, lending support to
our global analysis.

Additionally, the sequence motif representing binding site preferencepisrkfor many yeast
transcription factors. As an additional source of validation for MinR&y'get sets, we use a puta-
tive map that uses these motif models to predict the gene targets of theseptaorstactors (Har-
bison et al., 2004). Similarlly to testing enrichment for GO annotations, we tésteshrichment
of motifs in the promoter regions in each target set. In the case of signatitgjms, we tested for
enrichment of the known transcription factor target activated by the lgngrnarotein (see figure 1).
A correct match between regulator and motif was found for 6 of the topBatmys! Sst2 (Ste12),
Met28, Uga3, Slt2 (RIm1), Tpk2 (Msn2/4), and Tecl. Together the cbfumctional annotation
and the occurance of the known motif in the regulatory regions, stronglyostithe quality of our
reconstructed network. A more detailed and biologically oriented analysisohplified version
of the proposed algorithm has been published in (Pe’er et al., 2002).

4.2.3 THE IMPORTANCE OFCANDIDATE REGULATORS

The pre-defined set of candidate regulat@sjs the only source of prior biological knowledge
to our algorithm. In addition to focusing the model on regulatory relations,rions the search
space and significantly reduces the running time of the algorithm (which drai@in the size of
candidate set).

To assess the impact of this prior knowledge on MinReg’s success,amaexd MinReg’s bio-
logical accuracy when run on the yeast data set, in the absence otlafpred candidate regulator
set {.e. C = X, such that any gene can be chosen as a regufgtdiinReg chose 35 regulators,
only 6 of which were in the original candidate regulator set. This lack oE*tregulators suggests
the expression of co-regulated genes is often at least as predictivedenetimes even more) than
that of the true regulating gene. While this model might be highly predictiveeaad generalizes
well to new data, it does not reconstruct biological regulation, and idiffio interpret.

Nevertheless, whilg% is only a small fraction of the chosen regulators, this is a significant en-
richment compared to their fraction in the candidate set (pvalR@3). The fact that our procedure
results in a statistically significant enhancement of regulators is encogradka speculate that in
complex organisms, where combinatorial regulation is expected to play a baggethis approach
will be even more successful in detecting genes with a regulatory function.

4.3 Analysis of Mouse Data

In contrast to the significant success of several methods in recolsfyyeast regulatory networks,
no algorithm has so far successfully reconstructed a mammalian regula&twvgrk. To examine

10. The results for the top 20 regulators are of similar quality: the assawdtio 13 regulators correspond their known
function,four regulators were previously uncharacterized and gwcagions for three regulators are unsupported.

11. These are 8/10 regulators we evaluated for gene function abalediag 2 regulators for which no motif is currently
known.

12. Since the algorithm is quadraticdh we reduced( by including only genes whose expression significantly changed
in > 18 samples (versus 15 samples). This resulted in a set of 2828 gereH.X andC. It is important to note
that in our data set, the expression of many candidate regulators resaiost constant. Only 148 genes from our
original candidate set of known and putative regulators were includénaif828 genes.
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whether MinReg can scale up to the challenge of a mammalian system, we evétheabéalogical
accuracy of its reconstruction of a B-lymphocyte regulatory network.

We first examine whether the key regulators identified by the algorithm asegrkto participate
in the main biological process taking place in B lymphocytes under the tested stiheutiecision
between cell proliferation and cell death. Indeed, the inferred regus&tiaR includes the top
five genes - Trp53, Nfkbl, Jun, Fos and Bakl - known to play a divota in this decision. 16
additional inferred regulators are known to be directly involved in theledigun of proliferation
and cell death® and seven others are involved in the regulation of the cell division &fdBaerall,
28/75 regulators are known to participate in regulation of the central gsomecurring in these
cells. Importantly, in multi-cellular organisms such as mouse, each cell typaiaathrized by a
distinct regulatory network (although some of the sub-systems may be uskftenent types of
cells). Indeed, 28 of the 75 inferred regulators are known to be ingdatvée/mphocyte regulation:
7 genes (Nfkb1, Jun, Fos, Daxx, Syk, Gnai2, Csflr) are knowtrakregulators in B-lymphocytes,
15 genes are known to be active in the regulation of lymphocytes in geaarhb others encode
cytokines and their receptors (important in the regulation of immune cells, ingilgmphocytes).
Taken together, this analysis indicates that 44 of the 75 inferred regukat®known regulators of
lymphocytes, cell proliferation and death or bé#hThis suggests, that when applied to a complex
mammalian data set, MinReg is able to identify the key regulatory genes active isydtem.
Finding such central regulatory genes is still a major biological task in mettsg.

We next examined the quality of our model structure, based on its ability ticptbd detailed
function of individual regulators (as described above for yeastj.eBoh regulator, we compared
the 3 top significant annotation termB & 0.05) based on its predicted targets with its known
annotation terms (typically 5-6 per regulator). We defined 5 differentosiees® and evaluated the
significance of our results by comparing to the null model of randomly assjgach regulator with
3 GO annotations (out of 2694 annotations tested). Based on these thiégpidicted function for
over half (45/75) the regulators had at least some support in prior lidaldghowledge. Specifically,
the predicted functional annotation of 6/75 regulators was “very goBd® (L0~8), “good” for
28/75 additional regulator$(< 10-3%), and “weak” for 11/75 genes. 12/75 genes had “no match”
to any annotations, but many of them were genes encoding relativelgrautrized regulators with
litttle or no known annotations. Importantly, only 16 of 75 regulators wergaed no significant
annotation, indicating the biological coherence of our reconstructed matele regulators are
associated with functionally related targets.

To illustrate the quality of our findings, we highlight several specific examérst, we note
that some of the “very good” annotations demonstrate that MinReg caidpran extensive biolog-
ical characterization of the regulatory function of genes. For examptanodel indicates that the
protein Map3k1 functions in the MAP Kinase Signaling Pathway has a sigmatducer activity
and works in the Growth factor signaling pathway. Importantly, the modelidésaified several
of Map3kl's targets, including Fos and Nfkb1. This is a highly accurbtracterization of the

13. They are Aaft, Daxx, Foxol, Gadd45g, Gnai2, Hipl2, Igbplhl2Zlundl, Itgb4, Map3kl, Rgsl5, Rras2, Rsul,
Socsl, and Zmynd11.

14. They are Ax1, Camk2b, Csfir, EIk3, Maf, Tbl1l, Rgs2, and Tbl1.

15. We expect that many of the other inferred regulators may be justrasct, and are simply not characterized by
current biological knowledge. They suggest therefore novel bicdbypotheses for experimental validation.

16. Our categories are: “Very good” (more than one exact matgbpd” (1 exact match), “weak” (1 approximate match
to a related term), “no match” (significant annotation were associated vatretjulator but none match any known
annotations) and “no p-value” (no significant annotations were assedaiath the regulator).
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molecular function of this protein, and of its biological regulatory role. SMe@3k1 is a signaling
protein (rather than a transcription factor) this is a particularly importarieeeiment, since direct
assays of regulatory function (based on cis-elements and protein-Didfg) cannot help in this
task. Indeed, our method detects and correctly associates a wholeofaregeilators - including
transcription factors, kinases and phosphotases. For example, &afdptosis antagonizing tran-
scription factor, is correctly associated with the apoptotic pathway and the nagditzycle. Dusp4,
the dual specificity phosphatase 4, is correctly associated with proteisisigr phosphatase activity
and MAPK signaling pathway. Finally, we emphasize that the main benefitradmproach is in
suggesting novel hypotheses for further research. Thus, “waad™no match” associations may
present the most important biological leads emanating from MinReg’s reBoltexample, the Jun
oncogene (assigned to the “Weak” category), was predicted by our chaihme involved in the
Oncogene associated pathway and Cell proliferation and differentidfiinile multiple abstracts
in the published literature clearly and strongly support these two assosiaflan’s current GO
annotation includes neither.

4.3.1 GOMPARISON TOMODULE NETWORKS

Does MinReg have significant benefits in reconstructing mammalian regutetwprks over other
(related) reconstruction approaches? To address this questionmpaie MinReg's performance
on the B-lymphocyte data set to that of the Module Networks algorithm (Stgdl, 2003, 2005).
Similar to MinReg, Module Networks associates a regulator to its targets baksdyl en depen-
dencies in gene expression. However, while MinReg considers eag tgme separately, Module
Networks groups targets into sets (“modules”), such that all module gdvage exactly the same
regulatory program. In previous work (Segal et al., 2003), Modulemikks was shown to be highly
successful in reconstructing the yeast stress regulatory network, We applied Module networks
to the B-lymphocyte data and learn 75 modules and their associated regulatparps, involving
216 regulators overall. While many of the regulators overlapped thosenHay the MinReg al-
gorithm’ these did not include 3 of the 5 known central regulators of cell protifaraand death
(Nfkb1, Fos, nor Bakl) identified by MinReg.

For comparison, we can evaluate the Module Networks model by annotatohgod its 206
regulators based on its associated targets (compiled across all 75 mpadeking in 196 signifi-
cantly annotated regulators. When evaluating the annotation quality of thé tegulators (sorted
by p-value) by the same scale described above, we did not receive bimitarificant results. In
fact, only 13/75 genes had any support in prior biological knowledfy&(@cored “very good”, 7/75
scored “good”, and 5/75 scored “weak”). Furthermore, when exagnionly regulators identified
by both algorithms, MinReg’s associations outperform Module network&3oregulators, while
Module networks only found a better association for one regulator (GpaiThus, in the spe-
cific task of characterizing the molecular function and biological processalled by a regulator,
MinReg overwhelmingly outperforms Module Networks in this mammalian data set.sliggests
that the detailed network and regulatory targets identified by MinReg are amotgate than those
discovered by Module Networks.

What may be the underlying reason for MinReg’s success over Modeti@dwks? The central
goal of Module networks is to decompose the space of all genes into foallyiacoherent co-

17. Module networks learned on the real valued data, rather than timettied expression values, further supporting the
robustness of the overlapping set of regulators.
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regulated modules, at the “cost” of constraining them to share exactly the set of regulators.
While this constraint increases the statistical robustness and biologieabrme (leading to a major
success on yeast data), it may be less suited to complex mammalian regulatenyssyin contrast,
MinReg focuses on finding the most dominant regulators and their targets dath. A regulator
is only assigned to a target if that specific edge is sufficiently supporteticogatal® and each
gene chooses its unique set of regulators. We believe these two reasobisied led to MinReg’s
superior performance in regulatory reconstruction.

5. Discussion and Conclusions

We have introduced the MinReg framework, a constrained Bayesian riefiovahe reconstruction
of regulatory networks. The framework limits the total number of parents imibael, thus focus-
ing on only a small parsimonious set of key regulators. We exploit thes¢raonts to devise a novel
efficient approximation algorithm to search for a high scoring netwonkfeapression data. Under
reasonable assumptions on the underlying probability distribution, we cag guarantees on our
algorithm’s performance. To derive these guarantees, we introdugetioe of a-modularity, a
convexity measure of the scoring function over the space of possikdatpsets. Approximation
algorithms with a performance guarantee rarely exist for Bayesian netyWibasgupta, 1999) and
we hope this measure can be used to derive addition performance boumdker sub-classes of
Bayesian networks.

Machine learning in the gene expression domain is especially challenginggsiites learning
structures over thousands of variables using at most hundreds ofesan@ur extensive experi-
mental results on real expression data demonstrate that our framewgqrkdshis challenge: we
successfully infer regulatory relations over thousands of genes withintesn Our results are
validated by statistical criteria (synthetic data, cross-validation) and biabgites (our ability to
correctly infer a correct set of key regulators and their detailed regyl&unctions). Importantly,
unlike previous approaches, our method scales well to complex mammaliamsysliscovering
key mammalian regulators (both signaling proteins and transcription factdeg) om expression
data.

While constraining the number of regulators carries obvious statistical @ngwtational ad-
vantages, what does it cost us in biological accuracy? We claim thabtius on a small and
parsimonious regulatory set is as motivated biologically as it is statistically. igstrtantly, any
complex biological network involves a multitude of genes and proteins, blagists’ primary goal
is most typically to find the central genes, that play the most important funttigiedn the system.
In fact, a full and accurate model of the exact network at a given pmiay, fail to highlight those
central genes. Rather, by focusing on a small set of key regulatim®dg can provide clear critical
leads for further research. Indeed, our analysis of the B lymphoagtesit indicates that MinReg
is able to focus on the very key regulators of a complex process (céfpation and death) as well
as on a significant number of cell specific regulators. Using an estathliglidt-by-association”
approach (Wu et al., 2002; Ihmels et al., 2002), we further capitalizeete#rned structure, and
identify the accurate functional roles of these proteins in regulating celutaresses. This is a
major feat, never before accomplished by a computational algorithm for a m@anragstem. Im-
portantly, MinReg is not only superior to standard clustering, but it okehmingly outperforms in
this task the recently published Module Network algorithm (Segal et al.,)2005

18. Many genes in the final model do not have any regulator, as monedswell enough.
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Our method relies on the assumption that regulatory interactions betwees oftere result
in corresponding statistical dependencies between random variaptesenrting their expression.
Recently, there have been a number of successful attempts to use dthsoul@es - such ass-
elements (Bussemaker et al., 2001; Segal et al., 2002) and transcrgaionlfiinding events (Bar-
Joseph et al., 2003) to infer regulatory relations in yeast. Howeveg tuesesses cannot scale well
to mammalian systems, in which computational detectiocisélements is far less tractable (due
to long and ill-defined promoters), and experimental detection of bindingt®ve currently very
limited (due to the genome size and the difficulty in carrying such experintemigo). In contrast,
the collection of mammalian expression data is growing at an exponential natenethods such
as MinReg that rely solely on gene expression for network reconstruatedirely needed.

MinReg lies between two graphical model based approaches for leasgntatory networks:
unconstrained Bayesian networks and Module Networks Segal eD8b)2While unconstrained
Bayesian networks allow for a reconstruction of finer structure, they loaly been successful
at reconstructing small networks or subnetworks consisting of only avéevables Pe’er et al.
(2001); Hartemink et al. (2002); Imoto et al. (2002). In contrast, MmBed Module Networks
can reconstruct a network over thousands of variables, based assheption that a small number
of regulators can be chosen from a pre-defined candidate set. Adl #mgroaches, assume that
regulator expression can be a proxy for its activity. Bioinformatics validaiad all approaches),
and experimental validation (of Module Networks (Segal et al., 2003)3atels that they can be at
least partly successful in this task. This success is somewhat surpsisiog actual protein activity
depends on many biochemical events in addition to mMRNA transcription.

What accounts for the significant success of MinReg compared to Mogteorks in mam-
malian network reconstruction? In the Module Network approach, geeegeuped into modules,
thus losing their individual identity and distinction. MinReg provides a finarcstire, allowing
each gene an individual set of parents and regulatory function. késxant biological papers stress
the importance of modularity in biological networks (Hartwell et al., 1999; Isratal., 2002; Se-
gal et al., 2003; Bar-Joseph et al., 2003). Such organization facilibatbéestrating coordinated
responses to external and internal signals by co-regulating gengmtliaeipate in a common func-
tion or task. While modularity may be a general organizing principle of regylatetworks, it
may be too coarse grained on it own to represent the complex coordinatwadn multiple genes
and biological process. Rather, complex mammalian regulation is probablystrated by few key
regulators, which combine together to regulate the genome, one target atthrigh its unique
regulatory program.
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