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Abstract
In recent years, there has been a growing interest in applying Bayesian networks and their ex-

tensions to reconstructregulatory networksfrom gene expression data. Since the gene expression
domain involves a large number of variables and a limited number of samples, it poses both com-
putational and statistical challenges to Bayesian networklearning algorithms. Here we define a
constrained family of Bayesian network structures suitable for this domain and devise an efficient
search algorithm that utilizes these structural constraints to find high scoring networks from data.
Interestingly, under reasonable assumptions on the underlying probability distribution, we can pro-
vide performance guarantees on our algorithm. Evaluation on real data from yeast and mouse,
demonstrates that our method cannot only reconstruct a highquality model of the yeast regula-
tory network, but is also the first method to scale to the complexity of mammalian networks and
successfully reconstructs a reasonable model over thousands of variables.

Keywords: Bayesian networks, structure learning, gene networks, gene expression, approxima-
tion algorithms

1. Introduction

Learning Bayesian network structure from data (Cooper and Herskovits, 1992; Heckerman et al.,
1994) and its application to reconstructgene regulatory networksfrom biological data (Friedman
et al., 2000; Pe’er et al., 2001; Hartemink et al., 2002; Ong et al., 2002; Imoto et al., 2002; Yoo
et al., 2002) is a subject of current research.

Regulatory networks control the expression of thousands of genes in aliving cell, modulating
the expression levels of individual genes based on external and internal conditions. To regulate

c©2006 Dana Pe’er, Amos Tanay, and Aviv Regev.



PE’ ER, TANAY, AND REGEV

TFTF

SP SP

Gene
Regulatory DNA

Transcribed mRNA

Signal Signal

Figure 1: Biological regulation: Signals activate signaling molecules (SM), which in turn acti-
vate transcription factors (TF). When activated, these bind to DNA regulatory sequences.
Combinations of such binding events control the levels of mRNA transcription ina com-
binatorial manner.

the expression of a gene, specialized proteins calledtranscription factors (TFs)bind to regulatory
sequences on the DNA oftarget genesand work in a combinatorial fashion to ensure the correct
amount is being transcribed (Figure 1). The behavior of those transcription factors is in turn con-
trolled by the cell’s environment through the action ofsignaling proteins (SPs). The combined
network of transcription factors and signaling proteins forms a regulatoryprogram controlling the
expression of individual genes directly (by regulator TFs) and indirectly (by regulator SPs). Since
these networks serve as the information processing devices of cells, it is of great interest to uncover
their structure and the regulation functions that they encode.

How can we learn such regulatory programs? An experimental technique,calledDNA microar-
raysallows us to simultaneously measure the expression of thousands of genes under various con-
ditions and perturbations, providing biologists with global observations of the workings of the cell.
Importantly, microarrays measure not only the expression levels of targetgenes, but also of genes
encoding regulators - TFs and SPs. As has been previously demonstrated (Pe’er et al., 2001, 2002;
Segal et al., 2003), in many cases a TF’s expression level is a good proxy to its activity, allowing
us to construct a network that relates the gene expression of a target gene to the gene expression of
its regulators. However, there are also numerous cases where a TF’s activity is not determined by
its expression level, but rather by other types of biochemical events, thatthat are unobserved in mi-
croarray data. Fortunately, in some of these cases, a change in the expression of indirect regulators
(such as SPs that control the TF’s activity) may be observed in microarray measurements, allowing
us to detect an indirect regulatory relation in lieu of the direct event.

Following these biological considerations, it is expected that regulatory interactions between the
genes would often result in corresponding statistical dependencies between random variables repre-
senting their expression. Thus, a Bayesian network approach to regulatory network reconstruction
treats the expression level of each gene as a random variable and attemptsto estimate the structural
features of the dependencies in their joint probability distribution from data.Bayesian networks
are particularly well suited for this domain, as has been demonstrated by early studies (Friedman
et al., 2000; Pe’er et al., 2001; Hartemink et al., 2002). First, experimental evidence indicates that
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the regulatory network is sparse, such that only a few genes directly control the transcription of a
given target (Martinez-Antonio and Collado-Vides, 2003; Shen-Orr et al., 2002; Lee et al., 2002).
Second, microarray measurements are typically noisy, necessitating a probabilistic model. Finally,
biological networks contains many important hidden variables (e.g. the actual activity level of the
regulators) which can be handled well in a Bayesian networks framework.

Nevertheless, the biological domain raises several important challenges for learning Bayesian
networks. The central difficulty is that contrary to previous applications,microarrays measure thou-
sands of variables (genes) across at most a few hundred samples. Thus, even if a search for the
optimal solution (over a prohibitively large space) was possible, statistical noise is likely to lead to
spurious dependencies, resulting in models that significantly overfit the data.

This problem becomes even more pronounced when considering the complex regulatory net-
works of mammals. While Bayesian network approaches have been relatively successful in tackling
networks of a unicellular model organism, the Baker’s yeastSaccharomyces cerevisiae, they have
yet to achieve similar success in mammalian systems, such as human or mouse cells.These or-
ganisms have considerably more complex regulatory systems, with a larger number of regulators
and target genes, and much more complex combinatorial regulatory functions. Deciphering these
networks can have significant implications to the understanding of animal development and com-
mon diseases. A central question toward these important applications is finding a parsimonious
set ofmajor regulators at the center of a given response, and distinguishing them from additional
redundant regulators or by product effects.

In this paper, we propose a novel approach to address these issues.We enforce biologically-
motivated restrictions to limit the search to simple network structures that significantly reduce the
space of possible networks, while highlighting the most relevant biological information. We devise
a search algorithm that utilizes these structural constraints to efficiently find high scoring networks.
Furthermore, under reasonable assumptions on the underlying probabilitydistribution, we provide
guarantees on our algorithm’s performance, thus providing an approximation algorithm for a certain
class of Bayesian networks. This is of particular interest, because approximation algorithms for
learning Bayesian networks have only been developed for polytrees(Dasgupta, 1999).

We evaluate the performance of our algorithm on synthetic and real gene expression data sets
for both yeast and mammals. Our results show good structure reconstruction on synthetic data and
that the model learned from gene expression data generalizes well to unseen test data. Importantly,
our results also illustrate the ability of the learned models to successfully reconstruct biologically
correct regulatory relations in complex mammalian systems.

2. Regulation Model

Our gene regulation model is a Bayesian network that describes regulatory relations between genes.
In this network, each random variable corresponds to the gene expression level of a specific gene.
If geneY is a parent of geneX in the Bayesian network, we interpret this as “Y regulates X”. We
denote byPaX the set of all regulators (parents) of the gene (variable)X. Any gene that “regulates”
in our model is termed aregulator. The key point behind to our approach is that we enforce a
number of biologically motivated constraints to limit these regulators and the graph structure.

Unlike a standard Bayesian network, we limit the possible regulators (parents) in the network to
a set of candidate regulatorsC . Our candidate setC is chosen based on prior biological knowledge,
and contains known and putative regulators in the organism being studied.Note, that while finding
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Figure 2: A literature reconstruction of the BacterialE. Coli regulation network from (Martinez-
Antonio and Collado-Vides, 2003). Notice this includes small top layer of regulators and
many targets for each.

which genes in a genome may function as regulators in general is often tractable, finding which
regulators areactivein a data set is difficult. Our inference will focus on this latter question.

In fact, previous biological studies indicate that only a small fraction of all potential regulators
may be active in a given data set. Accordingly, we also constrain the structural properties of the
graph, seeking a Bayesian network in which only a limited number of genes are regulators,i.e.,
have an outdegree greater than zero. Moreover, extensive studies inboth bacteria and yeast (Shen-
Orr et al., 2002; Martinez-Antonio and Collado-Vides, 2003; Lee et al., 2002) (Figure 2) indicate
that each such “master regulatory gene” may affect the transcription of many genes (indeed, only 3-
6% of the yeast and human genes respectively encode TFs). Thus, weexpect each regulator to have
a high out-degree. These constraints result in a graph of small depth, in which layers containing
a small number of regulators control a large bottom layer of target genes,consistent with current
biological understanding.

In addition to its biological relevance, this network structure has an obviousstatistical moti-
vation: Only when a gene consistently scores high as a parent for many genes, do we believe it
indicates a true signal. An occasional high score as a parent of a single gene is attributed to spurious
chance. Since learning an accurate genetic network is not possible in the current data paucity in
the gene expression domain, our restrictions represent a reasonable first order approximation of the
network which preserves its biological relevance. In fact, for most biological applications, false
positives are significantly more “costly” than false negatives, and findinga robust set of key regu-
lators whom are most strongly supported by the data (as offered by our model) is a more important
goal then discovering their complete set of targets.

We now provide a formal definition of our model: Aregulation graphis a Bayesian network
with the following restrictions on its structure.

Definition 1 Given a set of random variablesX = {X1, . . . ,Xn}, a set ofcandidate regulators- C

and the constants d and k, we define aregulation graph, G to be a Bayesian network overX so that:
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Figure 3: Regulation graph. The top layer is associated with the regulators and the bottom layer is
associated with all other variables. The key concept behind the regulationgraph is a small
number of regulators, each with many targets. Note, the illustrated nitrogen catabolism
response was automatically inferred by our algorithm from a gene expression data set.

• All parents belong to the candidate set:∀X,PaX ⊂ C .

• The number of parents for each variable (indegree) is bounded by d:∀X, |PaX| ≤ d.

• The total number of parents in the model is bounded by k: We term the the union of all parent
sets in the network to be the graph’sregulators, denoted byR , thus we constrain|R | ≤ k.

The graph structure is best visualized as a graph with a shallow depth: in thetop layers, a small
set of regulators (chosen from a large setC ), possibly regulating each other and in the bottom layer,
all other variables (see Figure 3).

2.1 Optimization Problem

Since a regulation graph is a Bayesian network, the straightforward approach to learning its structure
would be to use the typical heuristic greedy hill-climbing search (Heckerman,1998) used for this
task. This involves traversing the space of legal models in a greedy fashionusing local operators
such as adding, removing or reversing a single edge. At each step, the operation that best improves
the score is chosen.

Unfortunately, the standard approach is likely to fail as the limited number of regulators spec-
ified by the regulation graph could be quickly used up. For example, we may wish to search for
a regulation graph over 2000 variables, limited to 30 regulators. We begin withthe empty graph
and in a greedy fashion add the optimal edge at each iteration. In many of these iterations, a new
regulator is added to the regulator setR . Therefore, after little over 30 iterations, no new regulators
could be added toR and all subsequent legal steps would only involve adding edges from regulators
already inR . While these regulators might be the best parents for a small set of variables, thousands
of other variables remain unexplained in the model.

In fact, contrary to learning regular Bayesian networks, the choice of parents for a variableX in
our model is no longer independent of the parents chosen for other variables. Since the total number
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of parents in the model is limited tok, choosing a parent for one variable can limit the choice of
parents for other variables. Thus, a regulator should be added toR only when it is a good parent for
many variables concurrently. Any search algorithm we design must take thisinto account and add a
regulator to asetof target genes in each greedy step.

Fortunately, once a regulator setR is given, finding the optimal regulation graph constrained
to R is polynomial, and for most practical cases efficient. For any given variable, there is a small
number,

(k
d

)

, of possible parent sets (compared to
(n

d

)

possible parent sets for Bayesian networks
bounded by an indegree ofd).1 Thus, it is quick to calculate the local score, denotedScore(X;P),
for all possible parents sets and choose the highest scoring parents.

PaX = argmaxP⊂R ,|P|≤dScore(X;P) (1)

WhenR is not given, we can use use this property to efficiently evaluate the quality of any
potential set of regulators.

Definition 2 We define theutility , F(R) of a regulator setR as:

F(R) =
n

∑
i=1

max
P⊂R,|P|≤d

Score(Xi ;P) (2)

The utility of a regulator setR can be computed quickly and closely approximates the score of the
optimal network constrained toR, denoted SCORE(R). F(R) scores a graph structure resulting
from independently choosing the optimal parents for each variable, and istherefore an upper bound
on SCORE(R). Note, that an independent choice of parents for each variable may leadto a structure
containing cycles. Thus, a legal Bayesian network might have a some parent sets that score sub-
optimally. However, since cycles can form only between the variables inR, which is a relatively
small part of the entire network (k << n), we expect that SCORE(R) is usually only slightly less
thanF(R). Furthermore, acyclicity can be resolved within a subgraph involving onlyk nodes (the
complexity of solving this problem is constant inn, though exponential ink). In most practical
cases, only a few short cycles form and the optimal solution can be easily found. In comparison,
resolving cyclicity in a Bayesian network can be exponential inn (k << n), since cycles can form
among anyn variables.2

We treatF(R) as a scoring function that measures the quality of regulator sets. This implies a
new optimization problem to find a small set of regulators,R , which maximize this score:

Definition 3 TheBest Regulator Setproblem: Given a set of variablesX , a data set of samples D,
a set of candidate parentsC , and the constants d and k, we wish to find

R = argmaxR⊂C ,|R|≤kF(R) (3)

1. We typically used ranging between 3 to 5 andk ranging between 30 to 70, whereasn is in the thousands and|C | is
in the hundreds.

2. In our typical setting wherek ranges between 30 to 70 andn≥ 2000, the difference in score after breaking the cycles
is negligible. With high probability this difference would not change our choice of regulating setR . Therefore, for
the remainder of this paper, we ignore the issue of cyclicity.

172



M INREG

This problem is conceptually similar to theSet Coverproblem, a classical hard problem. The
challenge is that the regulator setR must be chosen from a much larger candidate setC and there
are

(|C |
k

)

possible regulator sets. While there does not seem to be any efficient algorithm to find an
optimal solution, we next present an efficient algorithm that attempts to approximate it.

3. MinReg Learning Algorithm

We now turn to the task of learning a regulation model (specified by a set of regulatorsR , and a
parent structure on the variables inX ) from a training set (D = {x[1], . . . ,x[M]}, consisting ofM
instances drawn independently from an unknown distributionP(X )). Our goal is to choose the set
of regulatorsR and learn the regulatory graph structure that best explains this distribution. We take
a score-based approachto this learning task and we define a scoring function that measures how
well each candidate model fits the observed data.

Given a scoring function, our task is to devise a search algorithm capableof efficiently finding a
high scoring model. As discussed in Section 2.1, the hard part of the search is to find the optimal set
of regulators,R . Our novel greedy algorithm for this task, MinReg (sketched in Figure 4), begins
with an empty set of regulators and an empty graph structure. At each iteration, for each possible
candidate, we construct an increment regulator set by adding that candidate to the current regulator
set. We calculate the score for each of the increment regulator sets and choose the one that gives
the largest gain. Each timeR is updated, we calculate the optimal regulation graph restricted to the
current regulator setR . We continue to iterate until some stopping criterion is reached.

A crucial point is to correctly define the gain of a given regulator at eachiteration. We calculate
a local score between a variable and its regulatingset. When considering a new candidate regulator
c∈ C as a parent for a variableX, we measure not how wellc scores forX, but how much additional
gainc gives toX’s local score. Thus, each of the regulating parents provide a distinct contribution
to the score.

Definition 4 We define themarginal utilityof adding a regulator setC to an already chosen regu-
lator setR as

F(C | R) = F(C∪R)−F(R) (4)

Thus, at each iteration, we add the candidate regulator with the largest marginal utility.

3.1 α-modularity and Performance Guarantees

MinReg is a greedy algorithm, which at each iteration, adds to the model the best single regulator
according to some local criterion This greedy approach does not necessarily lead to a global opti-
mum. Can we characterize the situations in which the MinReg algorithm is lead astray? Consider
the case whereScore(X;A)+ Score(X;B) is significantly less thanScore(X;A∪B). In this situa-
tion, neitherA nor B would be attractive enough to get selected by themselves in any of the greedy
steps, whereas their joint contribution may be significantly higher than any other combination of
regulators. Thus, the greedy algorithm is misled to choose an inferior regulator set. Importantly,
this is a biologically-plausible scenario, since synergy between regulators isa well-documented
phenomenon.
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MinReg Algorithm
Beginwith an empty regulator setR and an empty graph
In each iteration find the candidate regulator with the highest marginal utility:
c∗ = argmaxc∈C F(c | R )

Iterate over each candidate regulatorc∈ C

calculateF(c | R )
Iterate over each variableX = X1, . . . ,Xn

approximate its best parents restricted toR ∪c
maxP⊂R ∪c,|P|≤d Score(Xi ;P)
Add local score ofXi to utility of c

Add best candidate regulator toR and update the regulation graph
until stopping criterion(3.3.1)

Figure 4: Overview of the MinReg algorithm. The algorithm consists of two nested greedy loops.
The external loop finds the optimal setR of k regulators. For eachX ∈ X an internal loop
finds an optimal set of parentsPaX.

We argue that this characterizes the only situation in which our algorithm fails.We show that if
we can bound the severity of such effects, we can derive a worst case error bound on the algorithm’s
performance: in this case, MinReg is anapproximation algorithm, guaranteed to find a solution
which is not too far from optimal. To formally prove this guarantee, we introduce the notation of
α-modularfunctions.

Definition 5 Let f be a function defined over subsets ofC . f is monotone increasing if forall subsets
A,B s.t. A ⊆ B, the following holds

f (A) ≤ f (B)

Definition 6 (Lehmann et al., 2001) Let f be a function defined over subsets ofC . f is α-modular
(α ≥ 1) if and only if for all subsetsA,R and for all singletons Z, the following holds:

f (A∪Z|R) ≤ f (A|R)+α f (Z|R)

Note that this is a generalization of sub-modular functions,f is sub-modular forα = 1. One
might considerα as some measure on the convexity off over the space of subsets fromC . For
larger α, more “synergy” can be gained by joining sets together. We will show that ifwe can
bound the amount of “synergy” between regulators, we can bound the error of our greedy algorithm
accordingly.
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Lemma 7 The following are equivalent definitions ofα-modular functions: ( (Lehmann et al.,
2001))

1. For any subsetsS⊆ T and singleton Z/∈ T we have f(Z|S) ≥ α f (Z|T).

2. For any subsetsS⊆ T and subsetV we have f(V|S) ≥ α f (V|T).

3. For any subsetsA,B, we have f(A)+α f (B) ≥ f (A∪B)+α f (A∩B)

These equivalent formulations offer us another perspective: the marginal utilities of α-modular
functions are “almost” (up to a factor ofα) monotone decreasing. This fits our intuition that asR

grows larger, the utility of adding new regulators diminishes.

Theorem 3.1: If F is anα-modular and monotone increasing function,3 then the MinReg algorithm
(presented in Figure 4) is a polynomial time approximation algorithm for the BestRegulator Set:
Denote by OPTk the optimalk regulator set (i.e. that maximizesF) and by MINREGk the regulator
set found by the MinReg algorithm, then

(α+1)F(MINREGk) ≥ F(OPTk) (5)

This theorem provides assurance that while MinReg is a very quick algorithm that greedily
takes locally optimal steps, the score of the regulator set found by MinReg isnot too far away (at
most a factor of 1+α) from the optimal solution reached by exhaustively enumerating all possible
regulator sets.
Proof: Our proof is by induction. Fork= 1, the optimal solution is the best single regulator and this
is exactly the regulator found by the MinReg algorithm therefore MINREG1 = OPT1. We assume
that(α+1)F(MINREGk−1) ≥ F(OPTk−1) and prove it fork.

SetJ = argmaxI∈C F(I), the best single regulator inC andĴ = argmaxI∈OPTk
F(I), the best single

regulator in OPTk. Note,J is the first regulator chosen by the MinReg algorithm.
We define the following sub-problem imitating the behavior of the greedy algorithm. Let

F̂(Y) = F(Y∪{J})−F(J), our goal is to find a set ofk−1 regulators that optimizêF on C \{J}.
This is exactly what MinReg does after it choosesJ in the first iteration. We denote byˆOPTk−1

and ˆMINREGk−1 the optimal and greedy solutions respectively to this new sub problem. It is
easy to see that̂F is a α-modular function and that our induction holds forF̂ as well, that is,
(α+1)F̂( ˆMINREGk−1) ≥ F̂( ˆOPTk−1).

By the inductive hypothesis, it suffices to show that the increment isα-modular, i.e.:

F(OPTk)− F̂( ˆOPTk−1) ≤ (α+1)F(MINREGk)− F̂( ˆOPTk−1) ⇒

F(OPTk) ≤ (α+1)F(MINREGk)

simply by subtraction of the same value on both sides. By the induction hypothesis on F̂ we have
that

F(OPTk)− F̂( ˆOPTk−1) ≤ (α+1)(F(MINREGk)− F̂( ˆMINREGk−1))

≤ (α+1)F(MINREGk)− F̂( ˆOPTk−1)

3. While the marginal utilities should be almost monotone decreasing, we want the function itself to be monotone
increasing.
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because(α+1)F̂( ˆMINREGk−1) ≥ F̂( ˆOPTk−1). Note that

F(MINREGk)− F̂( ˆMINREGk−1) =

F(MINREGk)−F( ˆMINREGk−1∪{J})+F(J) = F(J)

since ˆMINREGk−1∪{J}= MINREGk by the very way in which the MinReg algorithm works. Thus
to prove the induction fork it is enough to show that:

F(OPTk)− F̂( ˆOPTk−1) ≤ (α+1)F(J) (6)

Since ˆOPTk−1 is at least as good as any solution of sizek−1, by definition:

F̂( ˆOPTk−1) ≥ F̂(OPTk \{Ĵ}) = F(OPTk \{J′}∪{J})−F(J) (7)

By α-modularity ofF :
F(OPTk) ≤ F(OPTk \{Ĵ})+αF(Ĵ) (8)

Subtracting (7) from (8) gives:

F(OPTk)− F̂( ˆOPTk−1) ≤ [F(OPTk \{Ĵ})−F(OPTk \{Ĵ}∪{J})]+ [αF(Ĵ)+F(J)] (9)

Monotonicity ofF implies thatF(OPTk \{Ĵ}) ≤ F(OPTk \{Ĵ}∪{J}), therefore, the first bracket
gives a negative contribution. Maximality ofJ implies thatF(J) ≥ F(Ĵ), therefore the second
bracket is≤ (α+1)F(J).

It remains to show thatF is both monotone andα-modular. Recall,F is a sum of maximizations
of local scoring functions:F = ∑n

i=1maxP⊂R,|P|≤d Score(Xi ;P). The local maximizations are clearly
monotone, ifS⊂ T, then∀X,maxP⊂T Score(X;P) ≥ maxP⊂SScore(X;P). ThusF , being the sum
of monotone functions, is monotone as well.

Empirically we observe thatF is α-modular, usually for relatively smallα (see 4.1.1). At first
this might sound surprising, since as mentioned above, synergy is known toplay an important role
in biological regulation, and we do not expectScore(X;P) to beα-modular in the gene expression
domain. Fortunately, while regulators are synergistic for specific targets,F is a sum over thousands
of variables. Even if the synergy between two regulators is very high, thissynergy would need to
hold for many targets, otherwise it would average out when summing over allof X . We empirically
tested the synergy between regulators and groups of regulators in both yeast and mammalian data
sets, the worst factor we encountered was 1.2. Therefore, we make the assumption ofα-modularity
of F with α = 2 in the gene expression domain.

3.2 Scoring Function

To define the local scoreScore(X;P), we adopt the Bayesian paradigm and use the Bayesian BDe
scoring function (Heckerman et al., 1994; Heckerman, 1998) commonly used for learning Bayesian
networks. The Bayesian score evaluates the posterior probability of the graph given the data:

scoreB(G : D) = logP(D | G)+ logP(G)

whereP(D | G) takes into consideration our uncertainty over the parameters and averages the prob-
ability of the data over all possible parameter assignments toG .

P(D | G) =
Z

P(D | G ,θ)P(θ | G)dθ
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The particular choice of the priorsP(G) andP(θ | G) determines the exact Bayesian score.
The BDe score refers to a certain class of priors with several desirableproperties (as detailed in

(Heckerman, 1998))In particular, the BDe score of an entire regulationgraphG , decomposes into
sum over the local scores for each variable.

score(G : D) = ∑
i

Score(Xi ;PaXi ) (10)

We use these local decomposed scores as the local score for our algorithm.

3.3 MinReg Implementation

A general overview of the MinReg algorithm was presented in Section 3. Several details in Min-
Reg’s implementation lead to substantial speed-up of the naı̈ve algorithm, such that our implemen-
tation can generate a model over thousands of genes within few minutes.

First, we define a functionfX for each variableX, fX(R ) = maxP⊂R ,|P|≤d Score(X;P). This is
the optimal contribution ofX to F , restricted to a regulator setR . Thus, we have 3 levels of scoring
functions:Score- for a particular variable and its parents,fX - the optimal score of a single variable
X, andF(R ) = ∑X∈X fX(R ).

The näıve greedy algorithm hask iterations. In each iteration,F(c|R ) is calculated for all
c∈ C . Since each calculation ofF(c|R ) requires calculatingfX(c|R ) for all X ∈ X , fX is calculated
k|C ||X | times. Calculation offX requires calculatingScorefor each of the

(k
d

)

possible sets of
parents. While this is constant inn, in practicekd could be very large. We devise a number of
heuristics based onα-modularity to reduce the number of times we need to calculate each of the 3
functionsF , fX, andScore.

We employ a branch and bound approach toF(c|R ), using theα-modularity ofF to filter out
candidates with little potential. In the first iteration, for allc∈ C we calculate Util(c) = F(c). We
store the candidate regulators in a heap sorted by Util(c). At any given time, Util(c) = F(c|A), for
someA ⊆ R . The α-modularity ofF ensures thatαUtil(c) ≥ F(c|R ) (see Lemma 7). In most
cases, we expect the regulator with the highest marginal utility to be toward thetop of the heap.

Once a new regulator is added toR , the marginal utilities change and need to be recalculated.
In each subsequent iteration, we traverse down the heap and only re-evaluate candidates for whom
α∗Util(c) is greater than the best marginal valuation found thus far, denotedc∗. Each timeF(c|R )
is calculated, we use this value to update Util(c) in the heap. Once we reach a candidate such
that α ∗Util(c) < F(c∗|R ) we stop traversing the heap, asα-modularity ensures that none of the
candidates beyond this point can be better thanc∗. While this branch and bound does not change
the worst case complexity, for most practical cases, only the few topmost candidates are examined
in each iteration.

While the previous speed-up came at no loss in the quality of the final solution,the next two
heuristics reduce accuracy. These heuristics are based on the assumption thatScoreis α-modular in
most cases (though probably by a larger factor). This assumption is reasonable (albeit not always
accurate). While regulation is sometimes synergistic, functions such as XOR are rare in biology and
even when synergy exists, it is bounded by a reasonable constant. More importantly, we expect the
synergistic pairs are themselves uncommon.

Similarly to how Util(c) approximatesF(c|R ), we cache UtilX(c) as an approximation of
fX(c|R ). WheneverF(c|R ) is calculated, we do so only approximately:F(c|R ) = ∑X∈X UtilX(c).
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In the first iteration we initialize UtilX(c) = fX(c), for eachc ∈ C andX ∈ X . In subsequent it-
erations, we only recalculatefX(c|R ) (and update UtilX(c)) for thoseX’s whose parent setPaX

changed in the previous iteration. This is especially effective in later iterations wherePaX rarely
changes.

Finally, instead of calculatingfX exactly, we approximate it using a greedy algorithm similar to
Figure 4. We start with no parents and at each iteration add best parent, argmaxc∈R fX(c|PaX) to

PaX. This only requiresd|R | calculations ofScoreinstead of
(|R |

d

)

.

3.3.1 STOPPINGCRITERION

Formally, the best regulator set problem requires a predefined constant k, specifying the number of
regulators in the model. However, there are no obvious biological grounds for choosing a particular
“good” k, as there is a trade-off between fine resolution (offered by a larger number of regulators)
and statistical robustness (from a small number of regulators).

We address this fine balance by taking an adaptive approach. We devisea stopping criterion
for the addition of new regulators to our model. We continue to add regulatorsas long as their
contribution to the score is significantly better than random regulators. We generate a set ofm
random regulators with similar properties to the real candidate regulators in our data. We construct
these by sampling regulators with replacement from the original candidate regulator set. For each
sampled regulator, we randomly permute the order of its samples. Thus, the random regulators
have the same distribution over their values, but these are independent ofthe target variables. We
calculate the score for these random regulators in a manner similar to the realcandidate set and store
these in a heap. This provides us with an empirical distribution for the score ofa random regulator.

We continue to add regulators to our model as long as they score greater than the random candi-
dates. We update the scores in the candidate heap in a similar manner to the realcandidates, pruning
the heap usingα-modularity. We stop once a random regulator scores better than any realregulator.

4. Experimental Results

We evaluated our algorithm on two data sets, a compendium of yeast expression profiles and a data
set of mouse B-lymphocyte expression profiles. The distinct two data sets provide us each with
a different realistic evaluation context. The yeastS. cerevisiaeis the most extensively studied or-
ganism on a genomic scale, and has the most extensively characterized regulatory system among
eukaryotes. In addition to an extensive amount of microarray data, identifying cis-regulatory ele-
ments (Bussemaker et al., 2001) and TF binding events (ChIP-chip experiments) (Lee et al., 2002;
Harbison et al., 2004) is tractable on a genomics scale. Finally, decades ofcareful studies on individ-
ual gene functions are documented in a genome database (Cherry et al., 2001). Together, these data
sources will allow us to carefully evaluate the success of our method in light of current biological
knowledge.

Mammalian regulatory systems, such as those of the laboratory mouse, are notoriously diffi-
cult to elucidate, both experimentally and computationally. First, these networksare significantly
more complex, involving a larger number of regulators, binding to long promoter and enhancer se-
quences. In particular, different cell types and cell states employ different regulatory networks to
process signals. Furthermore, this complexity renders both genomics studies of regulatory events
(such as ChIP-chip experiments) and computational ones (such as discovery of cis-elements) dif-
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ficult or intractable. In fact, the sole available source of relevant data in mammalian systems is
typically microarray measurements of expression profiles. Importantly, no successful method was
demonstrated to date for reconstructing regulatory networks from mammalian expression profiles.
Even partial success of MinReg in reconstructing mammalian regulation would constitute a signifi-
cant scientific advance.

The yeast data set contained 358 samples combined from the Compendium (Hughes et al.,
2000) and stress (Gasch et al., 2000) data sets.4 We compiled a setC of 466 candidate regulators
for yeast, which includes any gene with a potential regulatory role based on annotation or sequence
homology. The expression profiles were discretized into 3 values:down-regulated, no changeand
up-regulated.5 We included only 3755 genes with significant change in gene expression inat least
15 samples. We set the maximal indegree,d = 3, a reasonable estimate for the regulation of most
yeast genes (in particular under a limited number of condition).6 We conservatively setα = 2 based
on empirical evaluation of the data (see Section 4.1.1 below). We applied our MinReg algorithm to
this data set resulting in a yeast regulation model with 44 key regulators.

The mouse data set consisted of 204 samples from purified spleenic B-lymphocytes (Sambrano
et al., 2002), subjected to a number of stimuli (ligands) and combinations of these stimuli. We
compiled a list of 684 candidate regulators using criterion similar to the yeast candidate regulator
set.7 We discretized the data as in yeast, except that the data was discretized into 5levels: strongly
down regulated, weakly down regulated, no change, weakly upregulated and strongly upregulated.
We included only the 4373 genes that significantly changed in at least 18 samples. We ran the
MinReg algorithm on this data and inferred a regulation model with 75 key regulators.

We employed both statistical and biological criteria to evaluate the performanceof the algo-
rithm. We examine our assumptions ofα-modularity, the ability of our algorithm to generalize to
unseen data, and the accuracy of the reconstruction on synthetic data. To demonstrate the accuracy
of our algorithm in reconstructing the real yeast and mammalian regulatory network, we devise
an approach to infer regulator function from our model, and compare thatto the known central
regulators in the relevant biological processes.

4.1 Statistical Evaluation

In this section we well evaluate the statististical robustness of the MinReg algorithm. We focus on
two issues, is the assumption of alpha-modularity a reasonable one for our gene expression domain,
and how well does our learned model generalize to unseen test data.

4. The Compendium (Hughes et al., 2000) contains 276 deletion mutants from various functional classes and the Stress
data set (Gasch et al., 2000) contains 82 samples of responses to 12 different stress conditions.

5. The Bayesian score is based on a multinomial distribution. Exact continuous measurement is a very noisy estimate
of the actual gene expression and in our experience, discrete states better represent gene activity. We used a soft
discretization based on a linear piecewise step function for each level of activity.

6. While some genes might have more regulators, there is not enough data to learn such complex regulatory function
from so few samples. Importantly, our goal is to robustly learn the key regulatory relations, not the full detailed
network.

7. Mouse has many more known regulators, but only 1/3 the mouse genome was printed on the microarray and only
these genes were included in the analysis.
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4.1.1 ALPHA MODULARITY

MinReg employs a greedy approach, evaluating only the addition of single regulators to the model at
each iteration, potentially missing a better combination of regulators.8 Based on the assumption of
α-modularity ofF , Theorem 3.1 ensures that the score of the greedy solution is not much worse than
the score of the optimal solution. Furthermore, to improve the speed performance, theα-modularity
of F is used strongly by the implementation to bound the number of the regulators that are evaluated
from the heap at each iteration.9

To empirically evaluate theα-modularity ofF in the two data sets used, we calculated the pair-
wise gain in score for all pairs of regulators in the candidate setC . Thus, for each pair of candidates
c1 andc2, we calculated the worstα usingF(c1∪c2), F(c1) andF(c2). In addition, we calculated
the worstα for 10,000 pairs of random subsets,C1,C2 ⊂ C , ranging between 2 to 8 regulators each,
usingF(C1∪C2),F(C1) andF(C2). For the yeast and B-lymphocyte data, the worstα empirically
encountered were 1.184 and 1.229, respectively. We usedα = 2 as a conservative overestimation to
determine when to stop evaluating candidates in the heap at each iteration.

To further boost speed, we make a weak (but inaccurate) assumption that Scoreis close toα-
modular, allowing MinReg to reconstruct a large network over thousands of genes in a few minutes,
rather than overnight. We evaluated the effect of this additional modificationon MinReg’s per-
formance by comparing its affect on the likelihood of test data in cross validation, as well on the
enrichment of GO annotations in target sets (see sections 4.1.2 and 4.2.1) Indeed, based on these
two criteria, assumingα-modularity ofScoredoes not hurt the algorithm’s performance.

4.1.2 CROSSVALIDATION

To evaluate the statistical robustness of our learned model and its ability to generalize to unseen
data, we tested MinReg’s performance in 5-fold cross validation. We randomly split the data into 5
equal parts, and ran MinReg 5 times. Each time using 4/5 of the samples as training samples to to
learn both the structure and parameters of the regulation model, and withholding 1/5th of the data
samples as a testing set. We then used the inferred model and gene expression of inferred regulators
in the test data to predict the expression levels of all 3755 variables in eachtest sample. That is,
given the expression of regulators in themth sample, we useP(X | PaX[m]) to predict the value of
X in that sample.

We compared the likelihood of test data in several different models. As a baseline, we used the
marginal probability of each variable to predict its value. Since most of the variables had a high
frequency of the value 0 (their corresponding gene’s expression remained unchanged most of the
time), even this simple predictor scored well (Figure 5, crosses). As competition to our MinReg
algorithm, we generated 44 clusters using standard k-means clustering (Duda and Hart, 1973; Tava-
zoie et al., 1999) and randomly chose from within each cluster a gener ∈ C as its “regulator”. For
each cluster we usedP(X | r) as our predictor. While cluster representatives somewhat improved
the prediction over the baseline (0.06 log-loss/instance, Figure 5, circles), our MinReg algorithm
clearly provided the best predictions (0.11 log-loss/instance, Figure 5, triangles). In conclusion, our
cross-validation demonstrates that the model generated by the MinReg algorithm performs well on

8. This assumption is made implicitly by the classic and widely used greedy Bayesian network learning algo-
rithm (Heckerman, 1998), that considers greedy moves of adding, removing and reversing a single edge at each
step.

9. Typically, after the first few iterations, only a few regulators are evaluated at each iteration.
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Figure 5: Cross validation of the predictive capabilities of our model on test
data. The graph measures the number of variables correctly predicted
at each probability. We compare our model (triangles) to the null model
(crosses) that uses the marginal distribution of each variable and to a
model based on cluster representatives (circles)

test data and that most of the information in an entire microarray can be captured by a small set of
key regulators.

4.1.3 SYNTHETIC DATA

To evaluate the accuracy of the MinReg algorithm in a controlled setting, we generated synthetic
data from a known regulation network. This gives a known ground truth towhich we can compare
the learned models. To make the data realistic, we generated synthetic data from the regulation
model inferred from the yeast gene expression data above. While the inferred network is less com-
plex than a true biological network, both share the same underlying probabilitydistribution of the
discretized data. We randomly sampled 10 data sets from this regulation model, each set consisting
of 358 samples (same number of samples as the original data set). We tested MinReg’s ability to
reconstruct the correct network independently on each of these 10 synthetic data sets.

Our first test evaluated MinReg’s choice of regulators. On average (over 10 repeats), MinReg
correctly reconstructed 84% (39) of the generating 44 regulators. Theworst case was 80% (35) and
best case 91% (40). As for false positives, on average 74% of the reconstructed regulators were
correct (worst case 71% and best case 77%).

Next we evaluated the detailed model itself. The generating model contained 6616 edges and
we checked how many of those were correctly recovered. On average70% of these were recovered
(worst case 69% and best case 72%). In each model the percent of correct edges was a bit higher,
with an average of 74% (worst case 72% and best case 77%). Even when we did not limit to
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candidate regulators (settingC = X ) our reconstruction of regulators was surprisingly good, 42/47
of the regulators were correct and 76% of the individual edges were correctly reconstructed.

In summary, using only a small number of samples, MinReg is capable of learning a model over
thousands of variables, reconstructing most of the relationships correctly.

4.2 Biological Evaluation

The crucial test for the success of our approach is in reconstructing the main aspects of a real
regulatory program. The true underlying biology is vastly more complex than the simple regulation
model that generated the synthetic data. In a real biological system, there are more regulators
working together in more complex functions, feedback loops, and unobserved events. Furthermore,
the expression data probing these is noisy. Unfortunately, since our knowledge on the principles
and specifics of real regulatory networks is limited, so is our ability to test ourmodel based on
“realistic” simulated data. Due to this lack of biological knowledge we also do not have a gold
standard network in any organism.

Fortunately, while evaluating each specific connection is impossible at the moment, we can
estimate whether our model has correctly captured the overall biological regulatory events in the
system. To do this, we rely on the functional annotations available for many genes, which describe
(using the controlled vocabulary of the Gene Ontology (Consortium, 2000)) the molecular function,
biological process and cellular location of individual genes. Thus, as described below, we will
evaluate our reconstructed model by the ability to use it to correctly deduce the functional annotation
of regulators, and by the fit of these annotations to the relevant biologicalsystem. Importantly, such
functional characterization of key regulators is a critical biological task inits own right.

4.2.1 ANNOTATING REGULATORS

Our approach is based on the understanding that the biological function of a regulator is mediated
by its set of targets. Therefore, the common shared function of its set of targets (e.g. enzymes
involved in amino acid (AA) metabolism) characterizes the overall biological process it regulates
(e.g. amino acid metabolism). Continuing with the AA metabolism example, if our reconstructed
model is good, we expect a regulator of AA metabolism to have many inferredtargets involved in
AA metabolism. More generally, we expect that the function associated with a regulator based on
its set of targets in the model (as reflected by significant enrichment for a particular annotation) will
fit with the known function of this regulator (as reflected by its own annotation).

More formally, we denote byXr the set of targets of a regulatorr in our network structure.
For each annotation termA, we calculate the fraction of genes inXr associated withA and use the
hyper-geometric distribution to calculate a p-value for this fraction. We report for each regulator,
all the significant annotation terms with which it was associated and compare them to the known
annotations for that regulator, and to the main functions expected in the biological systems we
examine.

4.2.2 EVALUATING THE YEAST REGULATORY NETWORK

Based on this test, our reconstructed yeast network corresponds wellto previous findings. Specifi-
cally, the model derived functions for 8 of the top 10 regulators (sorted by p-value) coincided with
their known biological roles. Of the remaining two regulators, we were able toassign a putative role
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to one previously uncharacterized gene, but failed to identify the correct role of the other.10 Further-
more, we examined numerous individual edges underlying these derivedassociations demonstrating
that they are indeed supported by previously described regulator-target relations, lending support to
our global analysis.

Additionally, the sequence motif representing binding site preference, is known for many yeast
transcription factors. As an additional source of validation for MinReg’starget sets, we use a puta-
tive map that uses these motif models to predict the gene targets of these transcription factors (Har-
bison et al., 2004). Similarlly to testing enrichment for GO annotations, we testedfor enrichment
of motifs in the promoter regions in each target set. In the case of signaling proteins, we tested for
enrichment of the known transcription factor target activated by the signaling protein (see figure 1).
A correct match between regulator and motif was found for 6 of the top 8 regulators,11 Sst2 (Ste12),
Met28, Uga3, Slt2 (Rlm1), Tpk2 (Msn2/4), and Tec1. Together the correct functional annotation
and the occurance of the known motif in the regulatory regions, strongly support the quality of our
reconstructed network. A more detailed and biologically oriented analysis ofa simplified version
of the proposed algorithm has been published in (Pe’er et al., 2002).

4.2.3 THE IMPORTANCE OFCANDIDATE REGULATORS

The pre-defined set of candidate regulators,C, is the only source of prior biological knowledge
to our algorithm. In addition to focusing the model on regulatory relations, it narrows the search
space and significantly reduces the running time of the algorithm (which is quadratic in the size of
candidate set).

To assess the impact of this prior knowledge on MinReg’s success, we examined MinReg’s bio-
logical accuracy when run on the yeast data set, in the absence of a pre-defined candidate regulator
set (i.e. C = X , such that any gene can be chosen as a regulator).12 MinReg chose 35 regulators,
only 6 of which were in the original candidate regulator set. This lack of “true” regulators suggests
the expression of co-regulated genes is often at least as predictive (and sometimes even more) than
that of the true regulating gene. While this model might be highly predictive andeven generalizes
well to new data, it does not reconstruct biological regulation, and is difficult to interpret.

Nevertheless, while6
35 is only a small fraction of the chosen regulators, this is a significant en-

richment compared to their fraction in the candidate set (pvalue 0.003). The fact that our procedure
results in a statistically significant enhancement of regulators is encouraging. We speculate that in
complex organisms, where combinatorial regulation is expected to play a bigger role, this approach
will be even more successful in detecting genes with a regulatory function.

4.3 Analysis of Mouse Data

In contrast to the significant success of several methods in reconstructing yeast regulatory networks,
no algorithm has so far successfully reconstructed a mammalian regulatory network. To examine

10. The results for the top 20 regulators are of similar quality: the associations for 13 regulators correspond their known
function,four regulators were previously uncharacterized and the associations for three regulators are unsupported.

11. These are 8/10 regulators we evaluated for gene function above, excluding 2 regulators for which no motif is currently
known.

12. Since the algorithm is quadratic inC , we reducedX by including only genes whose expression significantly changed
in ≥ 18 samples (versus 15 samples). This resulted in a set of 2828 genes for bothX andC . It is important to note
that in our data set, the expression of many candidate regulators remainsalmost constant. Only 148 genes from our
original candidate set of known and putative regulators were included inthe 2828 genes.
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whether MinReg can scale up to the challenge of a mammalian system, we evaluatedthe biological
accuracy of its reconstruction of a B-lymphocyte regulatory network.

We first examine whether the key regulators identified by the algorithm are known to participate
in the main biological process taking place in B lymphocytes under the tested stimuli-the decision
between cell proliferation and cell death. Indeed, the inferred regulatorset R includes the top
five genes - Trp53, Nfkb1, Jun, Fos and Bak1 - known to play a pivotal role in this decision. 16
additional inferred regulators are known to be directly involved in the regulation of proliferation
and cell death13 and seven others are involved in the regulation of the cell division cycle.14 Overall,
28/75 regulators are known to participate in regulation of the central process occurring in these
cells. Importantly, in multi-cellular organisms such as mouse, each cell type is characterized by a
distinct regulatory network (although some of the sub-systems may be used indifferent types of
cells). Indeed, 28 of the 75 inferred regulators are known to be involved in lymphocyte regulation:
7 genes (Nfkb1, Jun, Fos, Daxx, Syk, Gnai2, Csf1r) are known central regulators in B-lymphocytes,
15 genes are known to be active in the regulation of lymphocytes in general,and 6 others encode
cytokines and their receptors (important in the regulation of immune cells, including lymphocytes).
Taken together, this analysis indicates that 44 of the 75 inferred regulators are known regulators of
lymphocytes, cell proliferation and death or both.15 This suggests, that when applied to a complex
mammalian data set, MinReg is able to identify the key regulatory genes active in thissystem.
Finding such central regulatory genes is still a major biological task in most systems.

We next examined the quality of our model structure, based on its ability to predict the detailed
function of individual regulators (as described above for yeast). For each regulator, we compared
the 3 top significant annotation terms (P < 0.05) based on its predicted targets with its known
annotation terms (typically 5-6 per regulator). We defined 5 different categories16 and evaluated the
significance of our results by comparing to the null model of randomly assigning each regulator with
3 GO annotations (out of 2694 annotations tested). Based on these criteriathe predicted function for
over half (45/75) the regulators had at least some support in prior biological knowledge. Specifically,
the predicted functional annotation of 6/75 regulators was “very good” (P < 10−18), “good” for
28/75 additional regulators (P < 10−35), and “weak” for 11/75 genes. 12/75 genes had “no match”
to any annotations, but many of them were genes encoding relatively uncharacterized regulators with
little or no known annotations. Importantly, only 16 of 75 regulators were assigned no significant
annotation, indicating the biological coherence of our reconstructed model,where regulators are
associated with functionally related targets.

To illustrate the quality of our findings, we highlight several specific examples. First, we note
that some of the “very good” annotations demonstrate that MinReg can provide an extensive biolog-
ical characterization of the regulatory function of genes. For example, our model indicates that the
protein Map3k1 functions in the MAP Kinase Signaling Pathway has a signal transducer activity
and works in the Growth factor signaling pathway. Importantly, the model alsoidentified several
of Map3k1’s targets, including Fos and Nfkb1. This is a highly accurate characterization of the

13. They are Aaft, Daxx, Foxo1, Gadd45g, Gnai2, Hipl2, Igbp1, Il2rh, Jund1, Itgb4, Map3k1, Rgs15, Rras2, Rsu1,
Socs1, and Zmynd11.

14. They are Ax1, Camk2b, Csfir, Elk3, Maf, Tbl1, Rgs2, and Tbl1.
15. We expect that many of the other inferred regulators may be just ascorrect, and are simply not characterized by

current biological knowledge. They suggest therefore novel biological hypotheses for experimental validation.
16. Our categories are: “Very good” (more than one exact match); “good” (1 exact match), “weak” (1 approximate match

to a related term), “no match” (significant annotation were associated with the regulator but none match any known
annotations) and “no p-value” (no significant annotations were associated with the regulator).
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molecular function of this protein, and of its biological regulatory role. SinceMap3k1 is a signaling
protein (rather than a transcription factor) this is a particularly important achievement, since direct
assays of regulatory function (based on cis-elements and protein-DNA binding) cannot help in this
task. Indeed, our method detects and correctly associates a whole rangeof regulators - including
transcription factors, kinases and phosphotases. For example, Aatf, the apoptosis antagonizing tran-
scription factor, is correctly associated with the apoptotic pathway and the mitoticcell cycle. Dusp4,
the dual specificity phosphatase 4, is correctly associated with protein-tyrosine-phosphatase activity
and MAPK signaling pathway. Finally, we emphasize that the main benefit of our approach is in
suggesting novel hypotheses for further research. Thus, “weak”and “no match” associations may
present the most important biological leads emanating from MinReg’s results. For example, the Jun
oncogene (assigned to the “Weak” category), was predicted by our method to be involved in the
Oncogene associated pathway and Cell proliferation and differentiation.While multiple abstracts
in the published literature clearly and strongly support these two associations, Jun’s current GO
annotation includes neither.

4.3.1 COMPARISON TOMODULE NETWORKS

Does MinReg have significant benefits in reconstructing mammalian regulatorynetworks over other
(related) reconstruction approaches? To address this question, we compared MinReg’s performance
on the B-lymphocyte data set to that of the Module Networks algorithm (Segalet al., 2003, 2005).
Similar to MinReg, Module Networks associates a regulator to its targets based solely on depen-
dencies in gene expression. However, while MinReg considers each target gene separately, Module
Networks groups targets into sets (“modules”), such that all module genesshare exactly the same
regulatory program. In previous work (Segal et al., 2003), Module Networks was shown to be highly
successful in reconstructing the yeast stress regulatory network. Here, we applied Module networks
to the B-lymphocyte data and learn 75 modules and their associated regulation programs, involving
216 regulators overall. While many of the regulators overlapped those chosen by the MinReg al-
gorithm,17 these did not include 3 of the 5 known central regulators of cell proliferation and death
(Nfkb1, Fos, nor Bak1) identified by MinReg.

For comparison, we can evaluate the Module Networks model by annotating each of its 206
regulators based on its associated targets (compiled across all 75 modules), resulting in 196 signifi-
cantly annotated regulators. When evaluating the annotation quality of the top 75 regulators (sorted
by p-value) by the same scale described above, we did not receive similarly significant results. In
fact, only 13/75 genes had any support in prior biological knowledge (1/75 scored “very good”, 7/75
scored “good”, and 5/75 scored “weak”). Furthermore, when examining only regulators identified
by both algorithms, MinReg’s associations outperform Module networks on23 regulators, while
Module networks only found a better association for one regulator (Gnai13). Thus, in the spe-
cific task of characterizing the molecular function and biological process controlled by a regulator,
MinReg overwhelmingly outperforms Module Networks in this mammalian data set. This suggests
that the detailed network and regulatory targets identified by MinReg are moreaccurate than those
discovered by Module Networks.

What may be the underlying reason for MinReg’s success over Module Networks? The central
goal of Module networks is to decompose the space of all genes into functionally coherent co-

17. Module networks learned on the real valued data, rather than the discretized expression values, further supporting the
robustness of the overlapping set of regulators.
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regulated modules, at the “cost” of constraining them to share exactly the same set of regulators.
While this constraint increases the statistical robustness and biological coherence (leading to a major
success on yeast data), it may be less suited to complex mammalian regulatory systems. In contrast,
MinReg focuses on finding the most dominant regulators and their targets in the data. A regulator
is only assigned to a target if that specific edge is sufficiently supported bythe data18 and each
gene chooses its unique set of regulators. We believe these two reasonscombined led to MinReg’s
superior performance in regulatory reconstruction.

5. Discussion and Conclusions

We have introduced the MinReg framework, a constrained Bayesian network for the reconstruction
of regulatory networks. The framework limits the total number of parents in themodel, thus focus-
ing on only a small parsimonious set of key regulators. We exploit these constraints to devise a novel
efficient approximation algorithm to search for a high scoring network from expression data. Under
reasonable assumptions on the underlying probability distribution, we can prove guarantees on our
algorithm’s performance. To derive these guarantees, we introduce thenotion of α-modularity, a
convexity measure of the scoring function over the space of possible parent sets. Approximation
algorithms with a performance guarantee rarely exist for Bayesian networks (Dasgupta, 1999) and
we hope this measure can be used to derive addition performance bounds for other sub-classes of
Bayesian networks.

Machine learning in the gene expression domain is especially challenging as itrequires learning
structures over thousands of variables using at most hundreds of samples. Our extensive experi-
mental results on real expression data demonstrate that our framework is up to this challenge: we
successfully infer regulatory relations over thousands of genes within minutes. Our results are
validated by statistical criteria (synthetic data, cross-validation) and biological ones (our ability to
correctly infer a correct set of key regulators and their detailed regulatory functions). Importantly,
unlike previous approaches, our method scales well to complex mammalian systems, discovering
key mammalian regulators (both signaling proteins and transcription factors) solely from expression
data.

While constraining the number of regulators carries obvious statistical and computational ad-
vantages, what does it cost us in biological accuracy? We claim that the focus on a small and
parsimonious regulatory set is as motivated biologically as it is statistically. Mostimportantly, any
complex biological network involves a multitude of genes and proteins, but biologists’ primary goal
is most typically to find the central genes, that play the most important functional role in the system.
In fact, a full and accurate model of the exact network at a given point,may fail to highlight those
central genes. Rather, by focusing on a small set of key regulators, MinReg can provide clear critical
leads for further research. Indeed, our analysis of the B lymphocyte data set indicates that MinReg
is able to focus on the very key regulators of a complex process (cell proliferation and death) as well
as on a significant number of cell specific regulators. Using an established “guilt-by-association”
approach (Wu et al., 2002; Ihmels et al., 2002), we further capitalize on the learned structure, and
identify the accurate functional roles of these proteins in regulating cellularprocesses. This is a
major feat, never before accomplished by a computational algorithm for a mammalian system. Im-
portantly, MinReg is not only superior to standard clustering, but it overwhelmingly outperforms in
this task the recently published Module Network algorithm (Segal et al., 2005).

18. Many genes in the final model do not have any regulator, as none scored well enough.
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Our method relies on the assumption that regulatory interactions between genes often result
in corresponding statistical dependencies between random variables representing their expression.
Recently, there have been a number of successful attempts to use other data sources - such ascis-
elements (Bussemaker et al., 2001; Segal et al., 2002) and transcription factor binding events (Bar-
Joseph et al., 2003) to infer regulatory relations in yeast. However, these successes cannot scale well
to mammalian systems, in which computational detection ofcis-elements is far less tractable (due
to long and ill-defined promoters), and experimental detection of binding events is currently very
limited (due to the genome size and the difficulty in carrying such experimentsin vivo). In contrast,
the collection of mammalian expression data is growing at an exponential rate, and methods such
as MinReg that rely solely on gene expression for network reconstruction are direly needed.

MinReg lies between two graphical model based approaches for learningregulatory networks:
unconstrained Bayesian networks and Module Networks Segal et al. (2005). While unconstrained
Bayesian networks allow for a reconstruction of finer structure, they have only been successful
at reconstructing small networks or subnetworks consisting of only a fewvariables Pe’er et al.
(2001); Hartemink et al. (2002); Imoto et al. (2002). In contrast, MinReg and Module Networks
can reconstruct a network over thousands of variables, based on theassumption that a small number
of regulators can be chosen from a pre-defined candidate set. All three approaches, assume that
regulator expression can be a proxy for its activity. Bioinformatics validation (of all approaches),
and experimental validation (of Module Networks (Segal et al., 2003)) indicates that they can be at
least partly successful in this task. This success is somewhat surprising, since actual protein activity
depends on many biochemical events in addition to mRNA transcription.

What accounts for the significant success of MinReg compared to Modulenetworks in mam-
malian network reconstruction? In the Module Network approach, genes are grouped into modules,
thus losing their individual identity and distinction. MinReg provides a finer structure, allowing
each gene an individual set of parents and regulatory function. Manyrecent biological papers stress
the importance of modularity in biological networks (Hartwell et al., 1999; Ihmels et al., 2002; Se-
gal et al., 2003; Bar-Joseph et al., 2003). Such organization facilitatesorchestrating coordinated
responses to external and internal signals by co-regulating genes thatparticipate in a common func-
tion or task. While modularity may be a general organizing principle of regulatory networks, it
may be too coarse grained on it own to represent the complex coordination between multiple genes
and biological process. Rather, complex mammalian regulation is probably orchestrated by few key
regulators, which combine together to regulate the genome, one target at a timethrough its unique
regulatory program.
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