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Supplementary figures  
 

 

Figure S1 – Related to Figure 1 – Response to MAPK inhibition A. pERK levels in all 

cell lines, 2, 4 and 8 hours following treatment with PD901. pERK stays low throughput 

the 8 hours and therefore does not explain the heterogeneity observed between cell 

lines. B. Comparison of MEK and BRAF inhibitors in a BRAF-V600E cell line shows an 

almost identical transcriptional response. Scatter plot shows fold change of all genes 



with a 50nM of PD325901, a MEK inhibitor (x-axis), compared with a 2uM of PLX4720, a 

BRAF inhibitor (y-axis). Almost all genes fall directly on the diagonal. Colo829 doesn’t 

grow in the conditions used to generate these growth curves. C-D. Scatter plots 

representation of the data in figure 1B. Each dot represents the difference of percentage 

of TUNEL+ cells between PD901 and DMSO, dividing MITF+ and MITF- cell lines (B), 

and PTEN-WT and PTEN-null (C). These mutations do not fully explain the phenotypic 

differences between cell lines. 

 

  



 

Figure S2 – Related to figure 2 – Correlation between known genetic variants and gene 

expression -  A. Histograms of p-values comparing expression levels of BRAF-mut with 

NRAS-mut cell lines using t-test, before and after pathway inhibition. No gene passes 

FDR correction with q-value<0.05. See number of targeted genes in figure 2. B. 

Histograms of p-values comparing expression levels of PTEN-null/mut with PTEN-WT in 

BRAF-mut cell lines using t-test, before and after pathway inhibition. No gene passes 

FDR correction with qvalue<0.05. 

 

 

  



 

Figure S3 – Related to figure 4 – COSPER links pathway activity with gene expression 

levels -  A. Full cluster, including all genes, of the cluster presented in figure 3A. B. MITF 

mRNA expression levels before (x-axis) and after (y-axis) MEK inhibition. Steady state 

and fold change levels are negatively correlated. C. Levels of MITF protein isoforms in 

12 cell lines, before and 8 hours after MEK inhibition. Each isoform is regulated to 

different degrees in the different cell lines, supporting a context-specific control of MITF 

by the MAPK pathway.. Strong (S) and Weak (W) film exposures are shown. D. 

COSPER clusters together genes with the same context-specific regulation but with 

different regulation patterns. For example, the cluster here is associated with the STAT3 



context, but contains 3 regulation patterns. The cluster in figure 4C shows one such 

pattern out of the 3 identified by COSPER. E. Levels of STAT3 and pSTAT3-S727 are 

similar in all cell lines and do not explain the differential activation of pSTAT3-Y705. 

 

  



 

Figure S4 – Related to figure 5 – Response to IFN/ treatment - A. Dose-dependent 

response to IFN and . The cytotoxicity of IFN was assessed in high pSTAT1 cell line, 

48 hours after treatment using SubG1 percentage. IFN has a weaker cytotoxic effect 

than IFN, and both show dose-dependent effects. 1000Units/mL of IFN was used for 

all experiments in this manuscript. Cells plated in 6 well plates, 200K cells/well, in 2mL of 

growth media. B. Growth curves of 2 low- (top) and 2 high- (bottom) pSTAT1 cell lines 

with MEK inhibition, IFN or both. 50K cells per well were plated in 6-well plates with 

2mL of media and treated 24 hours later. Cells were counted every 24 hours up to 72 

hours. Cytotoxic levels in figure 5E. C. Comparison of MEK inhibition and BRAF 

inhibition, with and without combination with IFN. Cells were plated in 6 well plates, 

200K cells/well with 2mL media. 24 hours after plating cells were treated with DMSO, 

50nM PD901 with or without IFN, 2uL of PLX4720 with or without IFN. 



 

 

Figure S5 – Related to figure 6 – Identifying the mechanisms underlying response to 

treatment - A. Time course protein levels following treatment with IFN of one high 



pSTAT1 cell line (SkMel39) and one low (A375). Response amplitude and dynamics is 

almost identical in the two cell lines. B. 22 genes with the highest fold change following 

IFN treatment. The transcriptional response is similar in all cell lines, both with low- and 

high- basal activation of the pathway. Notably, the fold change of several genes reaches 

100 fold, just 8 hours after treatment. C. Lack of synergistic and additive effects of MEK 

inhibition and IFN. Scatter plots show the fold change of all genes with a combination of 

MEK inhibition and IFN (x-axis) and the sum of fold changes with each treatment alone. 

Significant deviations from the diagonal represent synergism between drugs. Only one 

gene, CCL4, deviates from the diagonal in all 6 cell lines. D. Same as figure 6C, with 

DAPI staining to confirm nucleus positioning. E. Cleaved caspases 9 and 3 following 

MEK inhibition, IFN treatment, or their combination. This figure includes 4 cell lines that 

were not part of the original caspase analysis, and were included here to support the 

association between pSTAT1 levels and activation of the caspase pathway. F. Caspase 

9 and APAF1 levels (arrow marks APAF1 band) are not correlated with pSTAT1 levels 

or with cytotoxic response to MEK inhibition. G. Levels of known caspase inhibitors are 

not correlated with the cytotoxic phenotype or pSTAT1 levels. 

 

 

 
 

 

  



 

Figure S6 – Related to figure 7 – IFN levels regulated by an autocrine loop and deletion 

of IFN locus  - A. Protein levels following MEK inhibition of 6 known inhibitors of the JAK-

STAT pathway in two cell lines (SkMel105 - high pSTAT1, A375 – low pSTAT1). Most 

proteins don’t change, although pSTAT1 goes up prior to 8h. Change of PIAS1 is similar 

in both cell lines. B. IFN genes with a significant differential expression between low- 

and high- pSTAT1 cell lines. IFNA6, IFNA8 and IFNB1 are located in the interferon locus 

(see figure 7). C. Conditioned media experiment shows that SkMel105, a high-pSTAT1 

cell line, releases cytokines to the media that lead to the upregulation of pSTAT1. In this 

experiment, SkMel105 was cultured for 24h, and then the media was transferred to 

A375, a low-pSTAT1 cell line. Cells were collected 30m and 1h following media transfer. 

Lanes for MEK inhibition 8h and self-conditioned media (CM-A375) are shown as 

controls. 

  



Supplementary tables 
 
CTBP2 LDLRAP1 
C14orf104 GSK3B 
SLC20A2 HERC1 
ZNF275 C5orf22 
ADSS TTC15 
C8orf55 CREBL2 
WDR75 DNAJC3 
TRIM65 UBAC1 
BAG5 SETD4 
SSBP4 BTBD10 
LYSMD2 CHD2 
TMEM206 ANKRD54 
SRXN1 GOT1 
ZFAND1 IL16 
RCC1 PPM1A 
WDR74 CBFA2T2 
JMJD4 C19orf12 
MTHFD2 KDM4A 
WDR89 RCBTB1 
NOB1 HOMER3 
ANKRD37 SNX30 
ZBTB42 WDHD1 
ACTR3B FEM1B 
PSMG4 MTMR10 
LENG9 AKAP11 
NR6A1  
BCORL1  
PAX3  
ABTB1  
ABR  
FNBP1L  
CNPPD1  
ZZZ3  
GNA13  
PEAK1  
Table S1 – List of genes from figure 2A 
 
Gene symbols of the genes from figure 2A. The correlation of these genes with MITF 
levels is reveled only upon MEK inhibition.  
 
 
 
 
  



Table S2 – In a separate excel file – List of COSPER modules (Materials and Methods) 
 
Table S2 lists all modules identified by COSPER. Number of genes, and cell lines 
assigned to each of the contexts are listed for each module. 
 
  



Antibody Company Catalog number

APAF-1 Abcam Ab32372 

Casp 7 (cleaved) cell signaling 9492 

Casp 9 (cleaved) cell signaling 7237 

Caspase 7 cell signaling 9492 

Caspase 9 cell signaling 9508 

cIAP1 cell signaling 7065 

cIAP2 cell signaling 3130 

Cytochrome C abcam ab110325 

GAPDH cell signaling 5174 

IRF1 cell signaling 8478 

IRF7 cell signaling 4920 

Livin cell signaling 5471 

MITF abcam ab12039 

pERK1/2 cell signaling 9101 

PIAS1 cell signaling 3550 

PIAS3 cell signaling 9042 

PIASy cell signaling 4392 

pSTAT1 Y701 cell signaling 9167 

pSTAT2  cell signaling 4441 

pSTAT3 Y705 cell signaling 9138 

SOCS1 cell signaling 3950 

SOCS2 cell signaling 2779 

SOCS3 cell signaling 2932 

STAT1 cell signaling 9175 

STAT2 cell signaling 4594 

STAT3 cell signaling 9139 

XIAP cell signaling 2045 

Table S3 – Related to Materials and Methods 
 
List of antibodies used in this study.  
 
 
  



Supplementary information 

Microarray preprocessing 

Samples for microarrays were harvested 8h post treatment. RNA was extracted using a 

Qiagen RNeasy kit, and labeled using Agilent’s one-color labeling protocol. Labeled 

cRNA was hybridized to Agilent’s 8x60 human gene expression arrays (expect for 

Colo829 and SkMel28 that were added to the panel after the first batch). MEK inhibition 

and basal state expression levels were measured in biological duplicates. Data 

normalization is described in supplementary material. Genatomy was used for data 

visualization and enrichment analysis (Litvin et al., 2009). 

Agilent’s software was used to assess raw signal intensity. Preprocessing of both the 

MEKi panel and the IFN experiment was similar. Each of the 3 batches were processed 

independently - MEKi panel 1, MEKi panel 2 and the IFN panel. 

Preprocessing consists of 3 steps – probe filtering, data normalization and probe 

averaging.  

 

Probe filtering 

Log2 values were used from this point on. Probes were filtered based on their values. 

Probes with low or high levels in more than 20% of samples were removed. This was 

done to remove noisy and saturated probes. The lower and upper thresholds were 

different in different batches, depending on labeling, hybridization and scan levels: 

 

 

 

Batch Lower threshold Upper threshold 

MEKi panel 1 6 16 

MEKi panel 2 7 18 

IFN panel 7 17.5 

 

Additionally, the Agilent probe flags were used to filter probes by a similar method: 

probes flagged in more than 20% of samples were removed. Flags that were used: 

will_above_bg, is_saturated, is_feat_non_uniform, is_feat_popn. 

 



A “rescue” step was used to return probes representing genes that no probe was left to 

represent them. Probes representing the same gene with a high correlation (Pearson 

>0.75) were rescued. Additionally, probes with high SD (>3) were also rescued. 

 

Data normalization 

The 75th percentile of all samples was set to the average 75% by multiplying the values 

by a constant.  

 

Probe averaging 

Probes that measure the level of the same gene were averaged or filtered out.  

If the average Pearson correlation between all probes is > .75, probes are averaged. If it 

is lower, the probe with the lowest correlation is removed. Process repeats till probes are 

averaged or only two probes are left. If only two probes left and the correlation is low, the 

probe with the higher raw intensity is chosen.   

 

Merging duplicates 

Baseline expression levels are mean-normalized at the gene level. Fold change is 

calculated against the control (baseline expression) of the cell line. Data from the two 

MEKi panels are combined at this point by averaging the baseline expression and fold 

change data.  

COSPER ‐ Context‐Specific Regulation 

COSPER – COntext  SPEcific Regulation – is designed to identify genes that are directly 

regulated by the MAPK pathway (or any other perturbed pathway) in only a subset of cell 

lines. It is based on the assumption that genes under the direct control of a pathway are 

correlated before pathway inhibition and show a correlated expression change after 

pathway inhibition. Since we are looking for genes under the control of the pathway in 

only a subset of cell lines, we expect expression changes in only these cell lines.  

 

COSPER uses pre-perturbation data to limit the search for genes under direct regulation 

of the perturbed pathway. After inhibition of a key signaling pathway such as MAPK, 

cellular events, such as metabolism, cell cycle and apoptosis, lead to expression 

changes of thousands of genes. Although the expression of those genes changes after 

MAPK inhibition, they are not directly regulated by MAPK. However, genes under the 



direct control of MAPK pathway depend on its activation levels both before and after 

inhibition of the pathway. For example, HEY1 (figure 3A) is under the control of MAPK in 

only a subset of cell lines. In HEY1 case, it is overexpressed by MAPK in cell lines with 

high MITF levels. Therefore, only in MITF-high cell lines, HEY1 expression levels 

decrease after MEK inhibition. Both pre- and post-inhibition expression levels are 

needed in order to determine this relationship.  

 

COSPER is therefore designed to find genes with context-specific regulation patterns 

(figure 3B). It is consists of 3 major steps: 

1. Gene level – identify binary splits with high scores for both baseline expression 

and fold change and construct clusters. 

2. Merge related clusters – allows removal of spurious correlations and averaging 

the noise caused due to the small sample size.  

3. Add high scoring genes to the remaining clusters  

 

A detailed description of each of the steps follows the section on the NormalGamma 

score.   

 

 

NormalGamma score 
 
The algorithm is based on the NormalGamma score (DeGroot, 2004; Segal et al., 2003). 

The NormalGamma is a Bayesian score that takes variance, mean and number of data 

points into account. It gives a higher score to a data matrix with low variance.  

We use this score since we are looking to reduce the variance of the samples. Our 

algorithm searches for genes that behave similarly in a subset of samples. For example, 

we are looking for a subset of samples where a predefined set of genes is up-regulated, 

compared with the rest of the samples where the genes are not under pathway control. 

Mathematically, this problem can be viewed as a subset of samples where the data have 

a lower variance compared with the variance of all samples combined. The 

NormalGamma score is driven mainly by data variance and is thus suitable for our 

needs.  

 

The score: 
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The score used to assess the quality of the split is: 

NormalGamma(right samples) + NormalGamma(left samples) - NormalGamma(all 

samples) 

 

Step 1: Creating clusters 

First, genes with low fold change and/or low variance in steady state are removed. 

Genes were considered only if they changed by more than 0.7 fold change (log2 scale) 

in at least 1 cell line, and at a steady-state expression value of 0.4 in at least 2 samples 

(to remove genes with extreme outliers in one sample that pass a standard-deviation 

based threshold). Additionally, all long non-coding RNA transcripts were removed. 5391 

genes remain for further analysis.  

 

Then, gene expression is normalized. Basal expression levels of each gene are set to 

have =0 and �=1. Fold change for each gene is standardized only (�=1). 

 

Next, clusters are built bottom-up – genes are assigned to “splits”, and a split with more 

than one gene assigned to it is considered a cluster. However, in order to filter out 

spurious associations we only consider clusters with 5 or more genes. All genes are 

tested across all valid binary splits. A valid split assigns at least 2 samples to each 

sample group. The test is based on permutations and the NormalGamma score.  

 

A gene is assigned to a split if its NormalGamma scores (as defined in the previous 

section) in both the baseline expression and fold change are better than 99% of the split 



permutations (pvalue<0.01). Additionally, in order to keep the best split-gene pairs only, 

an additional threshold is used: 

NormalGamma (right)+ NormalGamma (left)- NormalGamma(all samples)>1 

 

To determine whether clusters with more than 5 genes can be constructed by chance. 

We permuted the samples in the fold change expression data and performed this step 

on the permutated data. No clusters with 5 or more genes were constructed.  Hence we 

believe the resulting clusters represent biological phenomenon.  

 

Step 2: Merging clusters 

A gene assigned to a split is very likely to be assigned to similar splits. A similar split 

might have one or more samples switching “sides” (figure 4A). Each split has 13 similar 

splits with a distance=1, where one sample has switched sides, and 91 splits with 

distance=2.  

The NormalGamma score is not strong enough to discriminate between the “true” split 

and neighboring splits, since the distribution of scores is very tight. However, we can 

assume that a gene is more likely to be assigned to the real biological split, and less 

likely to be associated with a split with a distance>0 from the real split. We also work 

under the assumption that a true biological “context” is likely to influence many genes, 

and therefore larger clusters are more biologically relevant.  

We use these two assumptions in order to identify the real gene-split associations and 

remove irrelevant clusters.  

 

The cluster merging algorithm is a iterative process. Each cycle identifies the largest 

cluster, its genes are removed from all its neighboring clusters, and the process iterates 

till no more clusters can be identified.  

 

The steps are: 

1. Each cluster is scored based on its overlap with its neighbors: 
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 we used d=2. 



2. We then choose the largest cluster, and remove its genes from all clusters with a 

distance<=d.  

 

To save computing time, only clusters that enter the algorithm with 5 or more genes are 

allowed to be selected.  

 

Step 3: Adding genes to remaining clusters 

In the last step, after filtering most clusters out, we relax the statistical thresholds and 

add genes to the clusters (see Litvin et al 2009). We found this step to be necessary due 

to the small sample size, and the relatively high noise of gene expression data. 

The thresholds used in this step are: 

 Permutation pvalue<0.05. 

 NormalGamma (right)+ NormalGamma (left)- NormalGamma(all samples)>0 

 

*Code available on Pe’er lab’s website 

(http://www.c2b2.columbia.edu/danapeerlab/html/).  

 

 

Perturbation reveals patterns hidden in pre‐perturbation data 
 

To identify genes that are correlated only post- but not pre- perturbation we used a 

method similar to step 1 in COSPER.  Specifically, we searched for clusters that show 

the behavior depicted in figure 2B, by associating genes to clusters only if they have a 

good score in post-perturbation data, but a bad score in steady state data.  

 

We used stringent thresholds to define “good” and “bad” scores. The good score was 

defined as a permutation-based NormalGamma score < 0.01, and a bad score was with 

a permutation p-value > 0.5. Additionally, we require that a gene will be associated only 

if the post-perturbation NormalGamma score will demonstrate: 

NormalGamma (right)+ NormalGamma (left)- NormalGamma(all samples)>0 

While the pre-perturbation score will be: 

NormalGamma (right)+ NormalGamma (left)- NormalGamma(all samples)<0 

 



To remove spurious associations, we only considered clusters with > 20 genes. Overall, 

3941 genes were associated with one or more clusters. As an example to this behavior, 

we show one such cluster in figure 2A. 

 

COSPER results on steady‐state or post‐inhibition data alone 

Combining pre- and post-inhibition data facilitates the identification of context-specific 

regulation and differential activation of pathways, while pre-inhibition data or steady state 

data alone fall short due to lower specificity and sensitivity.  

 

We ran COSPER on each data set alone (pre or post inhibition). The number of modules 

increases dramatically, to 2684 with steady state data, and 1524 with post-inhibition 

data, compared with only 70 when using both data sets. Specificity is lost and those 

numbers make it much harder to analyze and interpret the results, while also increase 

the statistical burden for any post-analysis statistical tests.  

 

Additionally, each cluster becomes much larger and less specific to MAPK targets.  For 

example, STAT3 module contains 740 genes, compared with 28 genes using both 

datasets.  While the later cluster is enriched for STAT3-related terms, the larger pre-

inhibition cluster is enriched for MITF related annotations, although the one group of 

samples contains both MITF-positive (3) and MITF-negative (8) cell lines.   The influence 

of MITF in melanoma is so strong (Principal component 1 is correlated with MITF and 

explain 30% of the variance), that by using only steady-state data all other signals 

become undetectable. Overall, the modules when running with steady state data alone 

are much larger, containing on average 194 genes compared with 33 when using the 

two datasets. This hampers power of many analysis tools, including LitVAn and gene set 

enrichment.  

 

COSPER results on post-inhibition data alone are even less informative, with 

enrichments and biological coherence for both the STAT3 and STAT1 modules 

completely missing and we no longer have tight modules that can narrow down 

individual pathways.  Instead we see general processes expected from inhibition of a 

key oncogenic pathway, such as cell cycle regulation, changes in metabolism, signal 

transduction, etc.  



 

The combination of pre- and post-inhibition data, therefore, provides specificity and limits 

the cluster genes to only genes directly regulated by MAPK, while also provides the 

context of regulation.  

 

Comparison of BRAF and MEK inhibition ‐ PLX4720 vs. PD901 

We used PD901 to inhibit the MAPK pathway, and not the more clinically used PLX4720 

BRAF-V600E inhibitor to allow a direct comparison of BRAF and NRAS mutant cell lines. 

To ensure the short-term drug effects are similar, we compared the transcriptional 

response of MalMe3M, a BRAF-V600E cell line, following PD901 or PLX4720 treatment. 

We assessed expression fold change at 1 hour, 2, 4, and 8 hours following treatment 

using Illumina HumanHT-12 microarrays.  

 

Preprocessing 

Illumina’s probe pvalues were used to filter out probes. Probes with p-value>0.05 in 

more than half of the samples were removed. Then microarrays were normalized 

according to their 75% percentile values. The 2 control array were averaged, and treated 

samples were compared to the averaged control to assess fold change.  

 

Results 

MEKi and BRAFi are remarkably the same at all time points. Although some probes 

were noisy, resulting in minor difference between treatments, no gene had a difference 

greater than 0.5 fold (on a log2 scale) between treatments at all time points. Only 6 

probes, out of 16000, had a difference of more than 1 fold at 8 hour time point (figure 

S1B). None of them had such difference at 4 hours, suggesting that the difference arises 

from measurement noise.  

We conclude that there is no difference in the short-time transcriptional response 

between treatments in this cell lines. 

 

Comparison of the response to MEK inhibition between known genetic contexts 

Both inactivation of PTEN and the type of MAPK activation (BRAF or NRAS) have been 

previously associated with the response to MAPK pathway inhibition. We examined 



whether these mutations are correlated with the transcriptional response to MEK 

inhibition or the basal expression levels prior to MEK inhibition. 

We used t-test to compare the expression levels between BRAF- and NRAS mutant cell 

lines (figure S2A), and between PTEN-null and PTEN-wild type cell lines (figure S2B). In 

both cases we found that no genes are associated with those genetic contexts (FDR q-

value < 0.05), either before of after pathway inhibition. 

PD901 and IFN microarray results 

Data Preprocessing 

Six cell lines were chosen for analysis. 3 are low-pSTAT1 – A375, SkMel133 and 

SkMel2, and 3 high-pSTAT1 – SkMel105, SkMel39 and WM1361. They were treated 

with 50nM PD901, 1000U/mL IFN or their combination. Samples were collected 8 

hours after treatment, control samples were collected at 0h. RNA extraction, labeling and 

hybridization were conducted as described under methods. Agilent human 8x60 gene 

expression arrays were used.  

Raw data normalization and filtering were conducted as described above, with a low 

threshold of 7, and an upper threshold of 17.5.  

IFN response in high‐ vs. low‐ pSTAT1 cell lines 

The IFN response includes dozens of genes with a dramatic induction in gene 

expression, of up to 500 fold, in all 6 cell lines (figure S5B).  

There is, however, a difference in the extent of change in high- vs. low- pSTAT1 cell 

lines, that can be attributed to the different basal expression level of those genes (data 

not shown). The maximum level of expression seems to be similar in all cell lines, but 

high pSTAT1 cell lines have a higher basal activity and therefore the fold change is 

lower.  

 

In order to compare the activation of the pathway between the two cell line groups, it is 

better to use the final expression level, i.e. the basal expression+fold change. However, 

such comparison reveals the expression of no genes is statistically significant different 

between high- and low-pSTAT1 cell lines (using t-test and FDR correction).  

 

We therefore determine that there is no difference in the response to IFN between 

high- and low-pSTAT1 cell lines.  



Combinatorial treatment and synergy 

To test whether the MEK inhibition and IFN synergize at the level of gene expression, 

we compared the fold change of the dual treatment with that of MEKi+IFN as single 

agents. Over all, those responses are very similar (figure S5C). 

 

If no synergy exists, the values of Both-(MEKi+IFN) should be close to 0. Only one 

gene significantly deviates from 0 in all 6 cell lines. The gene is CCL4, and it is induced 

both by MEKi and IFN treatment as single agents, but a combinatorial treatment isn’t 

additive. 

We couldn’t identify any other genes that show a synergetic response in all 6 cell lines, 

or separately in low- or high-pSTAT1 lines (we defined synergy is the equation above >1 

or <-1). 

 

MITF binding site analysis 

To assess frequency of MITF binding site in gene promoters we used the motif 

CACATG, known to be a target sequence of MITF. Gene promoters were defined as 

5000bp upstream of their transcription start site, or up to the closest upstream gene, 

whichever is shorter. For each gene, number of binding motif in its promoter sequence 

was noted.  

To assess the significance of number of motif occurrences, we used the binomial 

distribution. Since the MITF-M and MITF-expression clusters are similar and share 

genes, for the purpose of this analysis genes were assigned to only one of the clusters 

based on their NormalGamma score. For each one of the two clusters, MITF-M and 

MITF-expression, we counted total number of motif occurrences in all the cluster genes. 

For simplicity, the expected probability of the motif to randomly appear in a DNA 

sequence is 2*1/46 (6 is the length of the motif, and 2 represent the two strands).  

The pvalue of X occurrences is the probability of randomly observing X or more 

occurrences in a random sequence, or 1-BINOMIAL_CDF(X, N, p), where N is total 

sequence length and p is 2/46.  

For MITF-M cluster, the total promoter sequence is 120735bp, with 83 motif occurrences 

(59 expected). For MITF-expression cluster, the total promoter sequence is 183399bp, 

with 86 occurrences (89 expected).  

 



Cytochrome C release 

Protocol for Cytochrome C release is taken, as is, from Majewski et al 2004. It is brought 

here for convenience: 

Lysis buffer: 20 mM Hepes-KOH, [pH 7.5], 210 mM sucrose, and 70 mM mannitol; 1.5 

mM MgCl2, 10 mM KCl2, protease inhibitor, and 1 mg digitonin/1mL lysis buffer. 

 

Cells are trypsinized, collected and spun down in 4C. They are then washed with PBS 

and spun down again. It is critical that cell pellets will be lysed immediately without 

freezing.  

Cells are gently suspended, without vortexing, in lysis buffer. Roughly double the cell 

pellet volume is used. They are incubated in 25C for 3-10min, depending all cell line. 

Spun down at 4C for 20 minutes at highest speed. Supernatant contains cytoplasmic 

fraction.  

Protein concentration was assessed using BCA.  

 

Fluorescent Microscopy  
Cells were plated onto Corning BioCoat Poly-D-Lysine glass 8-well culture slide (Corning 

354632) at a density of 15,000 to 40,000 cells/well and allowed to attach to the surface 

for 24 hours. Cells were then treated with 50 nM PD0325901, and the same volume of 

DMSO was added to controls at the time of treatment. 

CytoC released was measured 30 hours after treatment. Cells were washed 1X with 

PBS, fixed with 4% PFA in PBS for 10 min at room temperature, and washed 2X with 

PBS (5 min / wash). Cells were then blocked and permeabilized in 5% BSA/0.3% TX-

100 in PBS for 1 hr at room temperature. 

Cells were incubated with Anti-Cytochrome C antibody (Abcam ab110325) at 1 μg/mL in 

1% BSA/0.1% Tween-20 in PBS overnight at 4 °C, when washed 3X with 1% BSA/0.1% 

Tween-20 in PBS (5 min / wash), and then incubated with Alexa Fluor 488 Goat Anti-

Mouse IgG2a (γ2a) (Molecular Probes A-21131) at 1 μg/mL in 1% BSA/0.1% Tween-20 

in PBS for 45 min in the dark at room temperature. Cells were washed 3X with 1% 

BSA/0.1% Tween-20 in PBS  (5 min / wash). 

Cells then were counterstained with NucBlue Fixed Cell ReadyProbes Reagent 

(Molecular Probes R37606) for 10 min, and washed in 2X with PBS (5 min / wash). 



Slides were mounted with Fluoro-Gel with Tris Buffer (Electron Microscopy 

Sciences17985-10), and images were acquired using an inverted microscope (Nikon 

Eclipse TE2000-E) equiped with a 40X lens and illuminated with a mercury vapor short 

arc lamp (Olympus X-Ctie 120PC). 
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