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SUMMARY

Drugs that inhibit the MAPK pathway have therapeu-
tic benefit in melanoma, but responses vary between
patients, for reasons that are still largely unknown.
Here we aim at explaining this variability using pre-
and post-MEK inhibition transcriptional profiles in a
panel of melanoma cell lines. We found that most
targets are context specific, under the influence of
the pathway in only a subset of cell lines. We devel-
oped a computational method to identify context-
specific targets, and found differences in the activity
levels of the interferon pathway, driven by a deletion
of the interferon locus.We also discovered that IFNa/
b treatment strongly enhances the cytotoxic effect of
MEK inhibition, but only in cell lines with low activity
of interferon pathway. Taken together, our results
suggest that the interferon pathway plays an impor-
tant role in, and predicts, the response to MAPK inhi-
bition in melanoma. Our analysis demonstrates the
value of system-wide perturbation data in predicting
drug response.

INTRODUCTION

Advances in the identification and understanding of oncogenic

pathways, as well as the development of highly specific drugs,

allow clinicians to tailor treatments based on tumor genomics.

However, drug response is variable in both experimental sys-

tems and in the clinic, even when all tumors harbor mutations

that activate the pathways targeted by the drugs (Flaherty

et al., 2010; Joseph et al., 2010; Pratilas et al., 2009; Slamon

et al., 2001).

Here, we focus on the variability in response to ERK-MAPK

pathway inhibition in melanoma. At least 70% of melanoma tu-

mors harbor an oncogenic mutation in the ERK-MAPK pathway

(Hodis et al., 2012), and drugs targeting this pathway have been

approved with observed clinical success (Sosman et al., 2012).

However, phenotypic responses to MAPK pathway inhibitors,

both in patients and in vitro, vary dramatically (Flaherty et al.,

2010; Joseph et al., 2010).

Several molecular mechanisms have been proposed to

explain response heterogeneity. Feedback reactivation of the

pathway attenuates the inhibitory effects of the drugs (Lito

et al., 2012; Poulikakos et al., 2010). Other studies found

PTEN and MITF status correlated to response heterogeneity

(Johannessen et al., 2013; Paraiso et al., 2011; Xing et al.,

2012), but these explain only part of the observed variability.

While these factors may contribute to the heterogeneous

response, they are limited by characterizing the overall pheno-

typic response, without distinguishing cytotoxic from cytostatic

phenotypes.

We aim to explain the phenotypic variability in response to

MAPK inhibition by studying the transcriptional response to

this inhibition. While most studies use correlation between ge-

netic and genomic features and phenotypic outcome to identify

predictive features (Barretina et al., 2012; Garnett et al., 2012),

we take a different approach. We use pre- and post-MEK inhibi-

tion expression data in a panel of genetically diverse cell lines to

get a better understanding of the targets and pathways regulated

by ERK-MAPK, and use these regulation patterns, and how they

differ between tumors, to explain the variability in response to

treatment. In this study, genes with changes in their mRNA levels

following MEK inhibition are defined as targets of the MAPK

pathway.

We found extensive heterogeneity in the transcriptional

response to MEK inhibition between cell lines. Although all cell

lines harbor a MAPK pathway activating mutation (either NRAS

or BRAF), a vast majority of MAPK targets are context-specific,

under the control of the pathway in only a subset of cell lines

(hereafter, a context refers to any subset of the cell lines, with

or without a known, shared, and unique genetic feature). As

these differences could reveal themolecular mechanisms under-

lying phenotypic variance, we developed a computational tool,

context-specific regulation (COSPER), to identify context-spe-

cific targets using pre- and postperturbation gene expression

data.

Analysis with COSPER revealed that the IFN-type I pathway

presents context-specific behavior.While studying this pathway,

we found that type I interferon (IFNa/b) strongly enhances the

cytotoxic response of MEK inhibition. We show that cell lines
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with high basal activity of the interferon pathways are resistant

to MEK inhibition alone or its combination with IFNa/b. We iden-

tified that a deletion of the interferon locus is correlated with

basal activity level of the interferon pathway and predicts the

cytotoxic response of MEK inhibition.

Our results demonstrate that inhibition of a key oncogenic

pathway leads to substantially different transcriptional pro-

grams in different cell lines. We show that a better understand-

ing of the interactions and activity state of different pathways

would enable clinicians to tailor new and unexpected drug

combinations to individual patients, which may lead to better

clinical responses.

RESULTS

Cell lines harboring MAPK-activating mutations vary in their

response to inhibition of the pathway, both in rate of proliferation

and death (Xing et al., 2012). To characterize the targets

and crosstalk of the ERK-MAPK pathway, we chose a panel

of 14 genetically diverse melanoma cell lines. This panel

represents the spectrum of common genetic aberrations in mel-

anoma—MAPK mutations, MITF amplification, and PTEN dele-

tion (Figure 1A).

We compared the transcriptional and phenotypic response to

MAPK pathway inhibition of both NRAS-mut and BRAF-mut cell

lines using a MEK inhibitor (PD325901, 50 nM) that fully inhibits

the pathway in all cell lines at 8 hr (see Figure S1A available

online), and not the clinically used BRAF inhibitor, which works

on BRAF-mut cells only. A comparison of the MEK inhibitor

with a BRAF inhibitor (PLX4720; Tsai et al., 2008) in a BRAF-

V600E cell line shows almost identical transcriptional response,

both in the genes affected and in the extent of transcriptional

change (see Supplemental Informationand Figure S1B for more

information).

We first characterized the cell lines’ phenotypic responses to

MEK inhibition. The cell lines display a wide range of cytotoxic re-

sponses, as well as differences in proliferation under MEK inhibi-

tion (Figures 1B and 1C). Notably, and contrary to previously pub-

lished results (Barretina et al., 2012; Xing et al., 2012), we found

that key genetic aberrations common in melanoma, including

MITF and PTEN status, and MAPK mutation type, fail to fully

explain the response heterogeneity (Figures 1B, S1C, and S1D).
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Figure 1. Phenotypic Heterogeneity in Response to MEK Inhibition in Melanoma

(A) BRAF, NRAS, PTEN, andMITF status show the genetic diversity of our panel of 14 cell line panel. We used 50 nM of PD325901 that fully inhibits the pathway in

both NRAS and BRAF mutant cell lines (Figure S1A).

(B) Mean percentage ± SD of TUNEL+ cells after 72 hr of treatment with DMSO (control) or PD901 (50 nM). MAPK mutation, PTEN status, and MITF status are

listed at the bottom.

(C) Growth curves of untreated (blue) and MEK-inhibited (green) cells showing variation in response.
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Heterogeneity in Transcriptional Response to MAPK
Inhibition
To identify MAPK transcriptional targets and how these differ

across cell lines, we characterized the transcriptional response

before and after MEK inhibition. We measured gene expression

8 hr followingMEK inhibition to capture the peak of the transcrip-

tional changes following inhibition (Pratilas et al., 2009).

Our data show that MEK inhibition reveals transcriptional pat-

terns that are not observable in steady state expression—genes

that display no correlation in their gene expression levels before

pathway inhibition—become strongly correlated following MEK

inhibition. In Figure 2A (list of genes in Table S1) we see a set

of genes that are only correlated in the context of MITF levels

in their transcriptional response to MEK inhibition. These same

genes show no correlation between themselves and with MITF

levels in their baseline, preinhibition levels. Their association

with MITF can therefore only be revealed when measuring their

postperturbation response. We found this phenomenon wide-

spread with almost 4,000 genes that behave in concert only after

perturbation (full details in Supplemental Information).

The most striking phenomenon observed in postinhibition

data is the heterogeneity in response to MEK inhibition across

different cell lines. Although all cell lines harbor a MAPK-acti-

vatingmutation,most genes are regulated by theMAPKpathway

in only a subset of the cell lines, and no two cell lines behave

similarly (Figure 2B). For example, only 18 genes change by

>2-fold in all 14 cell lines, but 936 genes pass this threshold

in four or more cell lines (Figure 2C). We term those genes

context-specific targets—under the control of the MAPK

pathway in only a subset of cell lines. The term ‘‘context’’ is

used to represent a known or unknown genetic or genomic back-

ground that is shared by a subset of cell lines, but not by the

others. Notably, we didn’t find a significant enrichment of genes

regulated by MAPK only in BRAF-mut or NRAS-mut cell lines

(Figures S2A and S2B).

Our data show that MEK inhibition leads to different pheno-

typic responses in different cell lines, and that MAPK regulates

different genes, and presumably different pathways, in different

cell lines. We hypothesized that that differential regulation

of pathways and genes underlies the phenotypic variability,

and that identifying context-specific targets might explain it.

Therefore, we investigated the patterns of context-specific

regulation.

Context-Specific Regulation
The first step in the analysis was to identify targets of the MAPK

pathway using postinhibition changes in expression levels. How-

ever, Figure 2C shows that choosing an arbitrary fold change

threshold and number of tumors to classify genes as targets

and nontargets can lead to misclassification. We therefore

developed a method that specifically searches for context-spe-

cific MAPK regulated genes using both pre- and postperturba-

tion data.

At the core of our method is the observation that some genes

show distinct patterns of context-specific regulation both before

and after MAPK inhibition. HEY1 is used as an example of

a context-specific regulated gene (Figure 3A). HEY1 has two

states, or contexts, that are detectable in both pre- and postin-

hibition expression levels. In one context (i.e., one set of cell

lines) it is not under the control of MAPK, and shows low basal
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Figure 2. Transcriptional Heterogeneity in

Response to MEK Inhibition in Melanoma

(A) MEK inhibition reveals transcriptional targets

of MEK (right), undetectable in steady-state

conditions (left). These genes are only regulated

by MEK in high-MITF cell lines. In this and other

heatmap figures, columns are samples, and rows

are genes. Red-black-green plots represent pre-

treatment levels comparing between cell lines,

and orange-white-blue plots show expression

fold change 8 hr after treatment (both in log2

scale). The same genes (in the same order) are

shown in both heatmaps; Table S1 lists the genes

in the figure.

(B) Three gene clusters demonstrating the extent

of context specificity of MAPK targets. In each of

the three clusters, cell lines show a different

response to MEK inhibition. Moreover, each cell

line is unique, and responses for each cell lines are

different in each cluster.

(C) Number of differentially expressed genes as a

function of fold change and number of cell lines.

Arbitrarily choosing the cutoff is likely to mislabel

hundreds of genes. BRAF and PTEN status are not

correlated with transcriptional response to MEK

inhibition (Figure S2).
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expression levels when MAPK is active, and its expression

doesn’t change after inhibition of the pathway (Figure 3A, red

dots). In the second group of cell lines (blue dots), HEY1 is upre-

gulated by MAPK and therefore shows high basal expression

levels before pathway inhibition, and its expression drops

following MEK inhibition.

As genes are often coregulated, we expect clusters of context-

specific coregulated genes (Figure 3B). Using clusters of genes

to identify contexts and context-specific targets enables us to

computationally reduce the experimental noise, and increase

the probability that the association between a context and a

gene is a product of an underlying biological phenomenon rather

than a spurious association.

We developed a computational method—COSPER—that

uses pre- and postinhibition transcriptional data to identify

context-specific coregulated clusters of genes.
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Figure 3. COSPER Identifies COntext-SPEcific Regulation—Genes Are under the Control of MAPK inOnly a Subset of Cell Lines, Both Before

and After Inhibition

(A) HEY1 is an example for a context-specific target, regulated byMAPK in only a subset of cell lines (blue dots). MEK inhibition doesn’t affect its expression in the

other group of cells (red), and its basal expression is lower in these cell lines.

(B) A cartoon of context-specific regulation exhibited by HEY1. ERK upregulates a set of targets only in genetic context 2, while it has no effect in the context 1

(upper panel). Therefore, the genes are downregulated following MEK inhibition only in genetic context 2 (lower panel).

(C) COSPER identifies gene clusters with context-specific regulation. The cluster contains genes controlled by MAPK only in cell lines with high-MITF mRNA

expression. MITF expression, which is not part of this cluster, is in the top row. Several patterns of regulation (up- and downregulation) are shown.
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COSPER Identifies Context-Specific MAPK-Regulated
Genes
COSPER can be viewed as a biclustering algorithm, designed to

identify gene clusters that show context-specific regulation pat-

terns (Figure 3B). In each cluster, the cell lines are divided into

two groups, or contexts, and the genes have a distinct but

different behavior in each context, both before and after pathway

inhibition. Combining data from both pre- and postpathway inhi-

bition focuses the search to genes that are likely to be regulated

by the MAPK pathway. By identifying the genes regulated by the

pathway in only a subset of cell lines, e.g., sensitive versus resis-

tant, COSPER helps focus the analysis on genes and pathways

that are likely to contribute to the phenotypic response to

pathway inhibition.

COSPER is not restricted to the patterns depicted in Figure 3A,

and can identify any context-specific pattern of regulation (Fig-

ure 3C). Overall, COSPER identified 70 context-specific clusters

with five genes or more, and assigned a total of 1,024 genes to

clusters (genes are allowed to belong to more than one cluster;

list of all clusters appears in Table S2; for full algorithmic detail,

see Supplemental Information). Fifteen clusters associate with

MITF, containing 401 genes in total. These clusters either have

a perfect correlation with MITF expression, such as the cluster

in Figure 3C, or have one to two cell lines that ‘‘switch

sides’’—they behave similarly to cell lines with the opposite

MITF status (Figures 4A and S3A, which include HEY1).

Notably, none of the clusters correlate with the oncogenic acti-

vation of MAPK (BRAF or NRAS), or with the cells’ PTEN status.

Moreover, we also explicitly tested for genes correlated with

these aberrations, but no gene’s expression was found to be

significantly associated with these mutations (see Supplemental

Information and Figure S2).

Inferring Pathway Activity Using COSPER
COSPER identifies clusters of genes downstream of MAPK that

show context-specific behavior. Using standard gene set enrich-

ment analysis methods, we can postulate the pathways that

govern the differential expression of those genes, and the activity

of the clusters’ regulators.

For example, the clusters in Figures 3C and 4A demonstrate

the different roles ofMITF isoforms.While the cluster in Figure 3C

correlates with MITF mRNA expression, the cluster in 4A corre-

lates with the abundance of the MITF-M protein isoform (Fig-

ure 4B). MITF itself is also regulated by MAPK, both at the

mRNA and protein levels (Figures S3B and S3C).

The different functional annotations of the genes in the two

clusters suggest that different MITF isoforms regulate different

processes. The promoters for genes in the MITF-M cluster

are highly enriched for the MITF binding site (CACATG) (Levy

et al., 2006) (p value = 10�3 compared with 0.7 for genes in

MITF-expression cluster; see Supplemental Information for

details). However, the MITF-expression cluster, but not the

MITF-M cluster, is enriched for the GO annotation ‘‘melanocyte

differentiation’’ (q value = 10�4), suggesting that another isoform

of MITF is responsible for cellular differentiation.

An additional cluster COSPER identified is correlated with

STAT3 activity (Figures 4C and S3D). Gene ontology enrichment

analysis found that the genes in the cluster are enriched for cyto-

kine-cytokine receptor pathway (q value < 10�3), and with miR-

19 andmiR-17 (q value < 10�3), two miRs known to be regulated

by pSTAT3 (Dai et al., 2011; Zhang et al., 2012), which led us to

suspect that this cluster is associated with STAT3 regulation. We

confirmed these predictions by measuring STAT3 activity in the

cell lines. Levels of pSTAT3-Y705, an indicator for STAT3 activ-

ity, but not of pSTAT3-S727, match the cluster’s contexts (Fig-

ures 4D and S3E).

Using the MITF and STAT3 examples, we showed that by

combining information from both steady-state and postpertur-

bation data, COSPER infers both network state and interactions

between pathways. However, when running COSPER on each

data set alone, the resulting clusters are much larger, less spe-

cific, and therefore less informative than the clusters resulting

from using both conditions (for full comparison analysis, see

Supplemental Information). Steady-state data give a point of

reference and provide information on basal pathway activation

state, while postinhibition data enables the identification of

genes directly regulated by the MAPK pathway. Therefore,

only by using both data sets does COSPER identify the state

and interconnectivity of pathways.

Interferon-STAT1 Pathway Is Differentially Regulated in
Cell Lines
COSPER also identified a cluster that contains several interferon

targets, IRF7, IRF9, CCL5, and IFI44L (Figure 5A), which reflect

the activity of the type I interferon pathway (Hecker et al.,

2013). Since type I interferon (IFNa/b) is one of the few approved

drugs for metastatic melanoma, we decided to focus on this

cluster.

The cluster splits the cell lines into two groups; the first con-

tains three cell lines with an upregulation of interferon response

genes, and cell lines in the second context express these genes

at lower levels. Levels of pSTAT1-Y701, an indicator of the inter-

feron-STAT1 activity levels (Platanias, 2005), confirmed that the

high basal expression levels of the pathway targets correspond

with high signaling activity of the pathway (Figure 5B). Notably,

the cell lines with upregulation of the STAT1-interferon response

genes are not the same three cell lines with low activity of STAT3.

High basal activity of the STAT1-interferon pathway has been

previously shown to be necessary, but not sufficient, for IFNa/

b-induced apoptosis (Jackson et al., 2003). To test this claim,

three low- and three high-pSTAT1 cell lines were treated with

IFNb, and apoptosis levels were assessed by TUNEL. All low-

pSTAT1 and two high-pSTAT1 cell lines were resistant to the

cytotoxic effects of IFNb, and one high-pSTAT1 cell line was

marginally sensitive (Figure 5C). Both IFNa and IFNbwere tested,

and as previously shown (Leaman et al., 2003), IFNb led to a

stronger apoptotic response than IFNa (Figure S4A); thus, IFNb

was chosen for further analysis. Our results confirmed the previ-

ous findings that STAT1 activity is necessary, but not sufficient,

for IFNa/b sensitivity.

IFNb Enhances the Cytotoxic Response of MEK
Inhibition in Low-pSTAT1 Cell Lines
According to the expression data, MEK inhibition leads to an up-

regulation of the IFNa/b pathway. Analysis of protein levels by

western blots indicates an increase in pSTAT1 levels after MEK
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Figure 4. Analysis of the Clusters’ Genes Fa-

cilitates the Identification of Pathways that

Exhibit Context-Specific Interactions with

the MAPK Pathway

(A) A cluster associated with MITF-M protein levels

identified by COSPER. Its genes are overexpressed

in high-MITF-M cell lines and are downregulated

only in these cells after MEK inhibition. MITF

expression is in the top row. The cluster is almost

perfectly correlated with MITF expression, except

for one cell line highlighted in green. The binding site

of MITF is overrepresented in the promoters of the

cluster genes (p value = 10�3). Only part of this

cluster’s genes is shown (full cluster appears in

Figure S3A).

(B) MITF protein levels in all 14 cell lines. A2058

(green rectangle) is the only lowmRNA-MITF cell line

that expresses the MITF-M isoform.

(C) Additional cluster identified by COSPER. The

cluster’s genes are enriched for STAT3-related GO

annotations (full cluster appears in Figure S3D). A

bar indicating pSTAT3 levels appears in top row.

(D) As predicted by COSPER, pSTAT3-Y705 levels

are correlated with the cluster. Cell lines with low-

pSTAT3 are marked in red, matching the first three

pSTAT3-low cell lines shown in (C).
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Figure 5. IFNb Enhances Cytotoxic Response of MEK

Inhibition in Low-pSTAT1 Cell Lines

(A) COSPER identified a cluster containing several known

interferon targets (marked in red). Three cell lines have high

target expression, and MEK inhibition upregulates the pathway

in the other 11 cell lines. A bar indicating pSTAT1 levels at the

top and these are different than the high-pSTAT3 cell lines of

Figure 4.

(B) pSTAT1-Y701, a marker for interferon-STAT1 pathway ac-

tivity, is correlated with the gene expression and shows high

basal activation level in the three high cell lines (blue).

(C) High interferon pathway activity is necessary, but not suffi-

cient, for IFN-induced death. We used TUNEL staining as a

marker for apoptosis 72 hr after IFNb treatment (mean levels ±

SD). Only one out of three high-pSTAT1 cell lines respond to

IFNb (red) and none of the low-PSTAT1 lines respond to IFNb.

We used IFNb, and not IFNa, due to its higher efficacy (see

Figure S4A).

(D) MEK inhibition leads to upregulation of pSTAT1 in all cell

lines.

(E) MEK inhibition induces death in low-pSTAT1 cell lines only

(green). IFNb dramatically enhances the cytotoxic effect of MEK

inhibition in low-pSTAT1 cell lines (purple). High-pSTAT1 cell

lines show only mild response to the MEK inhibitor and its

combination with IFBb (right). IFNb alone (red) has almost no

cytotoxic response.
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inhibition, confirming a crosstalk between MAPK and STAT1

(Figure 5D). Because interferon activity seems to be required

for IFN-induced death, we hypothesized that IFN might syner-

gize with MEK inhibition to increase apoptosis.

The cytotoxic effect of MEK inhibition on both high- and low-

pSTAT1 cell lines was assessed. We found that high-pSTAT1

cell lines are mostly resistant to the cytotoxic effects of MEK

inhibition, while low-pSTAT1 cells are sensitive (Figure 5E).

Notably, both groups contain NRAS and BRAF mutant cell lines

and cell lines with high and low MITF expression, although both

MITF-low cell lines and NRAS mutant cell lines have been previ-

ously reported to be less sensitive to MAPK pathway inhibition

(Barretina et al., 2012; Solit et al., 2006). Moreover, the results

show that the cytotoxic response of MEK inhibition is indepen-

dent of its cytostatic response. For example, SkMel133 con-

tinues to grow rapidly under MEK inhibition (Figure 1C) but has

relatively high apoptosis levels under MEK inhibition.

We then examined the cytotoxic effect of the combination of

MEK inhibition and IFNb. While IFNb as a single agent has no

cytotoxic effect on low-pSTAT1 cell lines, it notably enhances

the cytotoxic response of MEK inhibition, increasing TUNEL-

positive cells by almost 2-fold (Figures 5E and S4B). Moreover,

while low-pSTAT1 cell lines show a strong sensitivity to the com-

bination of MEK inhibition and IFNb, high-pSTAT1 cell lines seem

to be resistant to the cytotoxic effects of both MEK inhibition

alone and the dual treatment (Figure 5E). To confirm that the ef-

fect of IFNb on the cytotoxic response of MAPK pathway inhibi-

tion is not specific to MEK inhibition, we show a similar behavior,

albeit slightly weaker, between a BRAF inhibitor (PLX4720) and

IFNb (Figure S4C).

Transcriptional Response to IFN Is Similar in All Cell
Lines
Our data demonstrated that basal activation level of the inter-

feron pathway predicts the cytotoxic response toMEK inhibition.

We hypothesized that these phenotypic differences are associ-

ated with changes in the interferon pathway and its response

to IFNa/b treatment. We therefore characterized the signaling

and transcriptional responses to IFNb and MEK inhibition.

Western blots show that activation of STAT1 by IFNb is iden-

tical, in both timing and extent, in a low-pSTAT1 cell line and a

high-pSTAT1 cell line, and inhibition of MEK does not alter this

response (Figures 6A and S5A). Interestingly, we found that the

levels of pSTAT1 in the so-called ‘‘high-pSTAT1 cell lines’’ are

substantially lower than pSTAT1’s levels following IFNb treat-

ment (compare Figure 6A with Figure 5B).

To search for more global regulatory differences in the inter-

feron response, and to assess the effects of IFNbmore quantita-

tively, we measured gene expression levels 8 hr after treatment

with PD325901, IFNb, or their combination in three low- and three

high-pSTAT1 cell lines (Figure S5B). No significant differences in

the transcriptional response following the treatmentsareapparent

after 8 hr of treatment. Additionally, MEK inhibition does not alter

the IFNb response, and no synergy between treatments is re-

vealed (see Supplemental Information and Figure S5C).

These data suggest that the differences in the phenotypic

response are not due to the basal activation level of the interferon

pathway.

The Caspase Pathway Is Only Activated in Low-pSTAT1
Cell Lines
Since the transcriptional response to IFNb fails to explain the

differences in the cytotoxic response between the cell lines,

we moved to characterize the apoptotic pathway directly.

The intrinsic apoptotic pathway is initiated by the release of cy-

tochrome c (CytoC) from the mitochondria, which, together with

Apaf-1, cleaves and activates initiator and executioner caspases

(Bratton and Salvesen, 2010). Surprisingly, we found that inhibi-

tion ofMEK is sufficient to induce release of CytoC in all cell lines,

and the release is enhanced by cotreatment with IFNb (Fig-

ure 6B). We further confirmed that this behavior in single-cell

fluorescent microscopy, which demonstrates that CytoC is

released in all cells in both high- and low-pSTAT1 cell lines (Fig-

ures 6C and S5D). However, althoughMEK inhibition initiates the

intrinsic pathway in high-pSTAT1 cell lines, and this response is

enhanced by IFN, these cell lines fail to undergo apoptosis.

CytoC release leads to apoptosis by activating the caspase

pathway. We found that caspase-9, an initiator caspase, and

caspases-7 and -3, executioner caspases, are cleaved following

the release of CytoC by MEK inhibition in low-pSTAT1 cell lines

only (Figures 6D and S5E). Combinatorial treatment leads to a

stronger and faster activation of these two caspases, but IFNb

treatment alone does not activate them (Figures 6D and S5E).

Importantly, caspases are not cleaved in high-pSTAT1 cell lines,

although CytoC is released. To confirm the association between

pSTAT1 levels and caspase activation, we extended our panel to

ten cell lines, adding two additional high- and two additional low-

pSTAT1 cell lines. As with the original set of cell lines, caspases

are cleaved only in low-pSTAT1 cell lines (Figure S5E). The lack

of caspase activation may explain the cytotoxic resistance to

treatment.

Additional components, such as APAF-1, cIAP1-2, and XIAP,

play parts in the activation of the caspase pathway (Soengas

et al., 2001). We therefore assessed the baseline expression

levels of these proteins in our cell line panel, but found no corre-

lation between their levels and the cytotoxic response to the

treatments (Figures S5F and S5G). Additionally, we confirmed

that caspase-9, the upstream caspase of the caspase pathway

(Riedl and Shi, 2004), is expressed in comparable levels in all

cell lines (Figure S5F).

Deletion of Interferon Locus Correlates with Cytotoxic
Response
Basal activity of the interferon pathway predicts the cytotoxic

response to MEK inhibition and its combination with IFNa/b.

Levels of pathway inhibitors from the SOCS and PIAS family

are similar in all cell lines and fail to explain the differences in

the basal activation of the pathway (Figure S6A). We therefore

sought to identify genetic lesions that could be responsible for

the differential basal activation of this pathway.

Using the large number of samples in The Cancer Genome

Atlas (TCGA)melanoma data set, we associated STAT1 pathway

activity levels with genetic aberrations (see Experimental Proce-

dures). To infer pathway activity, we used the genes in the

STAT1 cluster identified by COSPER. This gene cluster reflects

pSTAT1 levels and is also highly correlated in the TCGA data

set (Figure 7A).
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A Interferon response is similar in 
    high- and low-pSTAT1 lines

B Cytochrome C is released upon MEK inhibition 
     and IFN treatment

D Activation of Caspase 7,9 in low pSTAT1 cell lines

C Cytochrome C release following MEK inhibition
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Figure 6. Elucidating the Cytotoxic Response of IFNb and MEKi
(A) Response to IFNb, as measured by pSTAT1 and IRF1 levels, is similar in both high- and low- pSTAT1 cell lines, and MEK inhibition doesn’t alter the response

(for transcriptional response, see Figure S5B). Notably, basal activity level of the pathway in high-pSTAT1 cell lines is much lower than the induction in pathway

activity after IFNb treatment.

(B) MEKi activates the intrinsic apoptotic pathway by CytoC release from the mitochondria, �36 hr after treatment. IFNb enhances the response in all cell lines,

including the high-pSTAT1-resistant cell lines.

(C) Fluorescent microscopy staining of CytoC shows similar patterns of CytoC release in both high- and low-pSTAT1 cell lines. CytoC is released from the

mitochondria in all cells following MEK inhibition. See Figure S5D for the images with nucleus staining.

(D) Caspase-7 and -9 are cleaved and activated following MEK inhibition in low-pSTAT1 cell lines only. IFNb enhances this effect but fails to activate the pathway

by itself. Both caspases are not cleaved in high-pSTAT1 cell lines. To reinforce the association between STAT1 levels and response to MEK inhibition, we tested

four more cell lines. Both high- and low-pSTAT1 levels respond with accordance to their STAT1 levels (Figure S5E).

Molecular Cell 57, 1–13, March 5, 2015 ª2015 Elsevier Inc. 9

Please cite this article in press as: Litvin et al., Interferon a/b Enhances the Cytotoxic Response of MEK Inhibition in Melanoma, Molecular Cell (2015),
http://dx.doi.org/10.1016/j.molcel.2014.12.030



The copy number alteration most significantly associated with

the STAT1 gene signature is a deletion of the interferon locus

(q value = 10�4, FDR; Storey and Tibshirani, 2003), located in

chromosome 9p22. The locus contains a cluster of 26 interferon

genes (Figure 7B), and deletion of this locus corresponds to low

basal activity of the interferon pathway. Our panel confirms this

association—most cell lines with low pathway activity have

zero or one copy of the 9p22 locus, while all cell lines with high

activity have two or three copies (Figure 7C, p value = 0.05;

see Experimental Procedures for copy number assessment).

Interestingly, the interferon gene cluster on locus 9p22 is only

0.5 Mbs downstream of p16 (CDKN2A) (Figure 7B), a known

tumor suppressor gene deleted in roughly 60% of melanoma

tumors (Reed et al., 1995). Deletion of both p16 and the inter-

feron locus was previously reported (Naylor et al., 1997), but as

research focused on the role p16 in cancer, deletion of the inter-

feron locuswas viewed as a passengermutation. However, copy

number data show that both events are independent, and copy

number of the interferon locus and not p16 is associated with

the cytotoxic response to MEK inhibition (Figure 7C).

We confirmed that an autocrine loop is responsible for the

lower levels of pSTAT1, using a conditioned media experiment.

In these experiments media from high-pSTAT1 cell lines lead

to activation of STAT1 in low-pSTAT1 cell lines (Figure S6C),

confirming that high-pSTAT1 cell lines that harbor two copies

of the interferon locus produce and release cytokines, presum-

ably IFN, which leads to STAT1 activation.

To summarize, our results show that cell lines with fewer

copies of the interferon locus and lower expression of the

interferon genes are sensitive to the cytotoxic effects of MEK

inhibition (Figure 7D). Furthermore, IFNa/b enhances this cyto-

toxic response via an increase in CytoC release from the mito-

chondria. However, cell lines with high basal activity of the

interferon pathway are resistant to the cytotoxic effects of

the treatments, and although MEK inhibition leads to CytoC

release in these cell lines, it seems that an impairment of the

caspase activation mechanism leads to apoptosis aversion.

Taken together, we postulate that constitutive exposure to

IFN is adverse to cancer cells, and they overcome it by either

deactivation of the interferon pathway or by an impairment of

the apoptotic pathway.

DISCUSSION

Contemporary cancer drug development focuses on targeting

recurring oncogenic events, such as gene amplification and

overexpression (HER2) or activation (BRAF). This approach is

based on the principle of oncogene addiction. The underlying
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Figure 7. Deletion of Interferon Locus and IFN Expression Levels Explains the Two Interferon-Pathway States and Predicts Drug Response

(A) The interferon gene cluster identified by COSPER is highly correlated in the TCGAmelanoma expression data set. This allows us to infer pathway activity in the

TCGA tumors and associate it with DNA aberrations. Genes above the yellow line were used for association with DNA copy number.

(B) The interferon locus contains 26 interferon genes and is only 0.5 Mb downstream of CDKN2A (p16), a known melanoma tumor suppressor.

(C) Interferon locus copy number is also correlated with pathway activity in our 14 cell line panel (p value = 0.05). p16, however, only 0.5 Mb upstream, is not,

suggesting that interferon deletion and p16 deletion are two independent events. SkMel200, a high-pSTAT1 cell line, was added for purposes of CNV analysis.

Copy number of the interferon locus is also correlated with expression levels of interferon genes (Figure S6B), and conditioned media experiment shows that

cytokines are released from high-pSTAT1 cell lines (Figure S6C).

(D) A cartoon depicting the two network states, before and after MEKi and IFN treatment. Inhibition of MEK leads to CytoC release in both cellular contexts, and

IFN treatment enhances the response. However, caspase-9 is cleaved and activated only in low-pSTAT1 cell lines.
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assumption is that the downstream targets of the oncogenes

are the same in all tumors. Drug combinations are also sug-

gested based on the principle of similar network structure and

pathway dependencies in tumors harboring specific oncogenic

mutations.

However, our analysis of MAPK targets in MAPK-activated

melanomas reveals tremendous differences in underlying

network structure between tumors. Although we analyzed the

transcriptional output of MEK inhibition only in MAPK-activated

melanoma cell lines, each cell line had a unique transcriptional

response. Moreover, a vast majority of downstream targets of

the MAPK pathway are context-specific—under the control of

the pathway in only a subset of cell lines.

To detect context-specific targets using pre- and postinhibi-

tion expression data, we developed COSPER, a biclustering al-

gorithm that identifies coexpressed genes that are under the

control of the MAPK pathway in only a subset of cell lines. There

are several benefits to identifying clusters of context-specific,

coregulated genes. First, we can apply enrichment analysis to

the coexpressed genes and identify the pathway that likely reg-

ulates their expression. Second, by using postinhibition data to

narrow the gene set to only those that respond to perturbation,

we specifically search for pathways regulated by the MAPK

pathway. Third, the context—partitioning the cell lines into two

groups—can assist in the identification of genetic aberrations

that are more frequent in one group versus the other, thus also

associating a genetic lesion with pathway activation. Fourth,

the subgrouping of cell lines can also be associated with a

phenotype, such as growth rate, response to treatment, ‘‘stem

cell-ness,’’ and others. Together, context-specific coregulated

clusters link genetic lesions to a MAPK-regulated pathway and

a phenotype, and can assist in the understanding of response

heterogeneity.

Using COSPER, we identified a possible interaction between

MEK inhibition and IFNa/b, two approved treatments for mela-

noma. An experimental validation uncovered two key findings:

first, IFNa/b enhances the cytotoxic response of MEK inhibition;

second, cell lines with high basal activity of the interferon

pathway exhibit much lower cytotoxicity under MEK inhibition.

We found that a deletion of the interferon locus is correlated

with, and explains, the basal activity level of the interferon

pathway, and therefore predicts the cytotoxic response to

MEK inhibition. However, our results indicate that the basal ac-

tivity level is not the mechanism for the sensitivity and resistance

to IFNa/b and MEK inhibition. Instead, we found an impairment

of the caspase activation mechanism that may explain the cyto-

toxic resistance.

Although MEK inhibition leads to, and IFNb increases, the

release of CytoC from the mitochondria in all cell lines, regard-

less of their interferon-pathway basal activity level, caspases 9,

7, and 3 are activated only in cell lines with low interferon

pathway activity. We failed, however, to identify the lesion that

prevents caspase activation in cell lines with high interferon

pathway activity. Understanding the mechanism of resistance

can support the development of new drugs and treatments.

Taken together, these results suggest that constitutive expo-

sure to IFN is adverse to cancer cells, and they overcome it by

either deactivation of the interferon pathway or an impairment

of the apoptotic pathway. Weichselbaum et al. have previously

linked interferon to drug response (Weichselbaum et al., 2008),

showing that interferon pathway activity predicts survival of

breast cancer patients following chemotherapy and radiation.

Our analysis of the TCGA data shows that a lower basal activity

of the interferon pathway in breast cancer is associated with a

deletion of IRF1, Interferon Response Factor 1, a necessary pro-

tein for interferon-induced death (data not shown) (Sancéau

et al., 2000).

The interferon pathway might have important clinical implica-

tions in melanoma and other cancers. Since interferon pathway

activity predicts the cytotoxic response to MEK inhibition

in vitro, it is possible that its signaling activity, interferon

expression levels, and/or interferon locus copy number can

be used as a biomarker for treatment by MAPK pathway inhib-

itors. The clinical implications of IFNa/b treatment, however,

are less straightforward, and further studies are necessary to

check whether in the therapeutic window of IFN it has tumor-

specific effect.

To summarize, our work demonstrates that tumor networks

are more complex and varied than previously appreciated.

Although only MAPK-activated melanoma cell lines were exam-

ined, these were found to be heterogeneous and immensely

varied. Moreover, while all BRAF mutant tumors are grouped

together and treated similarly in the clinic, the targets and path-

ways regulated by BRAF in different cell lines are vastly different.

Even with a small sample size of only 14 cell lines, pre- and post-

perturbation expression data empower the discovery of depen-

dencies and interactions between pathways. We believe that a

similar analysis of larger data sets of pre- and postinhibition

expression data can help identify additional context-specific

interactions.

Postperturbation data significantly enhance the ability to iden-

tify downstream targets (Niepel et al., 2013; Sachs et al., 2005).

Perturbations break correlated patterns, resolve cause and ef-

fect, and reveal regulation patterns that are not observed in

steady-state expression levels. It was previously shown that

response to perturbation varies significantly, even in cancer sub-

types that share similar oncogenic mutations (Duncan et al.,

2012; Niepel et al., 2014). However, analysis of postperturbation

protein levels typically focuses only on postperturbation

changes. When an important pathway such as MAPK is in-

hibited, many of the differentially expressed genes involve

response to stress, rather than genes that were regulated by

the pathway prior to the perturbation. Typical methods would

consider these MAPK targets (and indeed these respond to

MAPK inhibition); however, these are not regulated by MAPK in

physiological conditions, prior to MAPK inhibition. COSPER

can distinguish these using expression patterns prior to pertur-

bation. Moreover, COSPER takes context into account. This al-

lows us to identify gene clusters that only change in subsets of

cell lines, which would likely be dismissed by other methods.

By comparing both pre- and postperturbation gene expression,

and taking context into account, we can better identify pathways

that are regulated by MAPK in each cancer cell line. Therefore,

by combining information from both pre- and postperturbation

levels, we reveal the network structure governed by MAPK and

the differences in this structure in difference cell lines.
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The full scale of these differences is only revealed when exam-

ining a perturbed network, which highlights the importance of

postinhibition data, compared with steady-state data only. We

believe that our research has only scratched the surface, and

future studies with larger cohort size should be conducted, as

our data demonstrate the value of system-wide perturbation

analysis of tumors in the era of personalized medicine.

EXPERIMENTAL PROCEDURES

Cell Culture and Drug Treatment

Cell lines were obtained from A. Houghton (Memorial Sloan-Kettering Cancer

Center), except for Colo829 and A2058, which were purchased from ATCC. All

cell lines weremaintained in RPMI 1640 (Invitrogen 21870-092), supplemented

with 2 mM glutamine, 50 units/mL penicillin, 50 units/mL streptomycin, and

10% FBS (Omega Scientific), and incubated at 37�C in 5% CO2.

Samples for protein and gene expression analysis were plated at 60%–80%

confluency and incubated for 20–24 hr, then treated with PD325901 (50 nM),

interferon alpha (20,000 U/mL, R&D 11100), or interferon beta (1,000 U/mL,

R&D 11415). Control samples were collected untreated at time of treatment.

Gene Expression and Microarrays

Agilent’s 8 3 60 human gene expression was used, and samples were har-

vested 8 hr posttreatment. Experimental procedures and data normalization

are described in Supplemental Information.

We used Agilent’s 1 M SurePrint CGH arrays to assess copy number. DNA

was extracted using QIAGEN’s DNeasy kit and labeled and hybridized accord-

ing to Agilent’s protocol.

TCGA Data Analysis

TCGA expression and CGH data were downloaded from the TCGA website.

Genes for the STAT1 gene signature were a subset of COSPER’s STAT1

signature. All genes with a Pearson r2 > 0.5 with at least three additional

genes were included. Association with copy number was performed using

Pearson correlation between the mean of the gene signature and copy num-

ber levels of each gene. Pearson’s p values were corrected by FDR (Storey

and Tibshirani, 2003).

Protein Levels

Samples for protein analysis were lysed using RIPA buffer. Protein concentra-

tion was assessed using BCA staining. Samples were then normalized to a

fixed concentration and mixed with a 53 glycerol/SDS/DTT loading buffer. Ly-

sates were run on gradient (4%–12%) Bis-Tris gels. Primary antibodies are

listed in Table S3. After incubation with horseradish peroxidase- conjugated

secondary antibodies, proteins were detected using chemiluminescence.

CytoC release was assessed on fresh unfrozen pellets using sucrose/

mannitol buffer (Majewski et al., 2004). Full details are in the Supplemental In-

formation. Protocol for CytoC staining in fluorescent microscopy is detailed in

Supplemental Information.

Growth Curves and Apoptosis Levels

For growth curve measurement, 50,000 cells were plated in 6-well plates with

2 mL of growth media. Cells were counted every 24 hr following treatment us-

ing a cell counter (Coulter Z1), in triplicates.

Apoptosis was assessed by TUNEL staining. Cells were plated in 6-well

plates at 200,000 cells/well. Twenty-four hours after plating, cells were treated

with PD325901, and both floating and adherent cells were collected 72 hr after

treatment. TUNEL was performed using Invitrogen BrdU TUNEL kit.

Context-Specific Computational Model

A full description of COSPER can be found in the Supplemental Information. In

short, all genes are scored for all possible splits using both pre- and posttreat-

ment expression using the NormalGamma function. Genes with a strong asso-

ciation with a split join its cluster. Then similar clusters are merged, leaving

fewer clusters with more genes each.

ACCESSION NUMBERS

All microarray data are available on Gene Expression Omnibus under acces-

sion number GSE51115.
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doi.org/10.1016/j.molcel.2014.12.030.

ACKNOWLEDGMENTS

The authors would like to thank Meehan Crist, Ramon Parsons, Jacob Levin,

Ran Reshef, Sagi Shapira, and Catherine Wu for valuable comments. This

research was supported by Stand Up To Cancer Innovative Research Grant

(IRG08), National Institutes of Health (R01CA164729), and National Centers

for Biomedical Computing Grant 1U54CA121852-01A1. D.P. holds a Packard

Fellowship for Science and Engineering. O.L. is supported by the HHMI pre-

doctorate fellowship program.

Received: May 15, 2014

Revised: November 24, 2014

Accepted: December 17, 2014

Published: February 12, 2015

REFERENCES

Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim,

S., Wilson, C.J., Lehár, J., Kryukov, G.V., Sonkin, D., et al. (2012). The Cancer

Cell Line Encyclopedia enables predictive modelling of anticancer drug sensi-

tivity. Nature 483, 603–607.

Bratton, S.B., and Salvesen, G.S. (2010). Regulation of the Apaf-1-caspase-9

apoptosome. J. Cell Sci. 123, 3209–3214.

Dai, B., Meng, J., Peyton, M., Girard, L., Bornmann, W.G., Ji, L., Minna, J.D.,

Fang, B., and Roth, J.A. (2011). STAT3 mediates resistance to MEK inhibitor

through microRNA miR-17. Cancer Res. 71, 3658–3668.

Duncan, J.S., Whittle, M.C., Nakamura, K., Abell, A.N., Midland, A.A.,

Zawistowski, J.S., Johnson, N.L., Granger, D.A., Jordan, N.V., Darr, D.B.,

et al. (2012). Dynamic reprogramming of the kinome in response to targeted

MEK inhibition in triple-negative breast cancer. Cell 149, 307–321.

Flaherty, K.T., Puzanov, I., Kim, K.B., Ribas, A., McArthur, G.A., Sosman, J.A.,

O’Dwyer, P.J., Lee, R.J., Grippo, J.F., Nolop, K., and Chapman, P.B. (2010).

Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J.

Med. 363, 809–819.

Garnett, M.J., Edelman, E.J., Heidorn, S.J., Greenman, C.D., Dastur, A., Lau,

K.W., Greninger, P., Thompson, I.R., Luo, X., Soares, J., et al. (2012).

Systematic identification of genomicmarkers of drug sensitivity in cancer cells.

Nature 483, 570–575.

Hecker, M., Hartmann, C., Kandulski, O., Paap, B.K., Koczan, D., Thiesen,

H.J., and Zettl, U.K. (2013). Interferon-beta therapy in multiple sclerosis: the

short-term and long-term effects on the patients’ individual gene expression

in peripheral blood. Mol. Neurobiol. 48, 737–756.

Hodis, E., Watson, I.R., Kryukov, G.V., Arold, S.T., Imielinski, M., Theurillat,

J.P., Nickerson, E., Auclair, D., Li, L., Place, C., et al. (2012). A landscape of

driver mutations in melanoma. Cell 150, 251–263.

Jackson, D.P., Watling, D., Rogers, N.C., Banks, R.E., Kerr, I.M., Selby, P.J.,

and Patel, P.M. (2003). The JAK/STAT pathway is not sufficient to sustain

the antiproliferative response in an interferon-resistant human melanoma cell

line. Melanoma Res. 13, 219–229.

Johannessen, C.M., Johnson, L.A., Piccioni, F., Townes, A., Frederick, D.T.,

Donahue, M.K., Narayan, R., Flaherty, K.T., Wargo, J.A., Root, D.E., and

Garraway, L.A. (2013). A melanocyte lineage program confers resistance to

MAP kinase pathway inhibition. Nature 504, 138–142.

12 Molecular Cell 57, 1–13, March 5, 2015 ª2015 Elsevier Inc.

Please cite this article in press as: Litvin et al., Interferon a/b Enhances the Cytotoxic Response of MEK Inhibition in Melanoma, Molecular Cell (2015),
http://dx.doi.org/10.1016/j.molcel.2014.12.030

http://dx.doi.org/10.1016/j.molcel.2014.12.030
http://dx.doi.org/10.1016/j.molcel.2014.12.030


Joseph, E.W., Pratilas, C.A., Poulikakos, P.I., Tadi, M., Wang, W., Taylor, B.S.,

Halilovic, E., Persaud, Y., Xing, F., Viale, A., et al. (2010). The RAF inhibitor

PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E

BRAF-selective manner. Proc. Natl. Acad. Sci. USA 107, 14903–14908.

Leaman, D.W., Chawla-Sarkar, M., Jacobs, B., Vyas, K., Sun, Y., Ozdemir, A.,

Yi, T., Williams, B.R., and Borden, E.C. (2003). Novel growth and death related

interferon-stimulated genes (ISGs) in melanoma: greater potency of IFN-beta

compared with IFN-alpha2. J. Interferon Cytokine Res. 23, 745–756.

Levy, C., Khaled, M., and Fisher, D.E. (2006). MITF: master regulator of mela-

nocyte development and melanoma oncogene. Trends Mol. Med. 12,

406–414.

Lito, P., Pratilas, C.A., Joseph, E.W., Tadi, M., Halilovic, E., Zubrowski, M.,

Huang, A., Wong, W.L., Callahan, M.K., Merghoub, T., et al. (2012). Relief of

profound feedback inhibition of mitogenic signaling by RAF inhibitors attenu-

ates their activity in BRAFV600E melanomas. Cancer Cell 22, 668–682.

Majewski, N., Nogueira, V., Bhaskar, P., Coy, P.E., Skeen, J.E., Gottlob, K.,

Chandel, N.S., Thompson, C.B., Robey, R.B., and Hay, N. (2004).

Hexokinase-mitochondria interaction mediated by Akt is required to inhibit

apoptosis in the presence or absence of Bax and Bak. Mol. Cell 16, 819–830.

Naylor, M.F., Brown, S., Quinlan, C., Pitha, J.V., and Evertt, M.A. (1997). 9p21

deletions in primary melanoma. Dermatol. Online J. 3, 1.

Niepel, M., Hafner, M., Pace, E.A., Chung, M., Chai, D.H., Zhou, L., Schoeberl,

B., and Sorger, P.K. (2013). Profiles of Basal and stimulated receptor signaling

networks predict drug response in breast cancer lines. Sci. Signal. 6, ra84.

Niepel, M., Hafner, M., Pace, E.A., Chung, M., Chai, D.H., Zhou, L., Muhlich,

J.L., Schoeberl, B., and Sorger, P.K. (2014). Analysis of growth factor signaling

in genetically diverse breast cancer lines. BMC Biol. 12, 20.

Paraiso, K.H., Xiang, Y., Rebecca, V.W., Abel, E.V., Chen, Y.A., Munko, A.C.,

Wood, E., Fedorenko, I.V., Sondak, V.K., Anderson, A.R., et al. (2011). PTEN

loss confers BRAF inhibitor resistance tomelanoma cells through the suppres-

sion of BIM expression. Cancer Res. 71, 2750–2760.

Platanias, L.C. (2005). Mechanisms of type-I- and type-II-interferon-mediated

signalling. Nat. Rev. Immunol. 5, 375–386.

Poulikakos, P.I., Zhang, C., Bollag, G., Shokat, K.M., and Rosen, N. (2010).

RAF inhibitors transactivate RAF dimers and ERK signalling in cells with

wild-type BRAF. Nature 464, 427–430.

Pratilas, C.A., Taylor, B.S., Ye, Q., Viale, A., Sander, C., Solit, D.B., and Rosen,

N. (2009). (V600E)BRAF is associated with disabled feedback inhibition of

RAF-MEK signaling and elevated transcriptional output of the pathway.

Proc. Natl. Acad. Sci. USA 106, 4519–4524.

Reed, J.A., Loganzo, F., Jr., Shea, C.R., Walker, G.J., Flores, J.F., Glendening,

J.M., Bogdany, J.K., Shiel, M.J., Haluska, F.G., Fountain, J.W., et al. (1995).

Loss of expression of the p16/cyclin-dependent kinase inhibitor 2 tumor sup-

pressor gene in melanocytic lesions correlates with invasive stage of tumor

progression. Cancer Res. 55, 2713–2718.

Riedl, S.J., and Shi, Y. (2004). Molecular mechanisms of caspase regulation

during apoptosis. Nat. Rev. Mol. Cell Biol. 5, 897–907.

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., and Nolan, G.P. (2005).

Causal protein-signaling networks derived from multiparameter single-cell

data. Science 308, 523–529.
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Supplementary figures  
 

 

Figure S1 – Related to Figure 1 – Response to MAPK inhibition A. pERK levels in all 

cell lines, 2, 4 and 8 hours following treatment with PD901. pERK stays low throughput 

the 8 hours and therefore does not explain the heterogeneity observed between cell 

lines. B. Comparison of MEK and BRAF inhibitors in a BRAF-V600E cell line shows an 

almost identical transcriptional response. Scatter plot shows fold change of all genes 



with a 50nM of PD325901, a MEK inhibitor (x-axis), compared with a 2uM of PLX4720, a 

BRAF inhibitor (y-axis). Almost all genes fall directly on the diagonal. Colo829 doesn’t 

grow in the conditions used to generate these growth curves. C-D. Scatter plots 

representation of the data in figure 1B. Each dot represents the difference of percentage 

of TUNEL+ cells between PD901 and DMSO, dividing MITF+ and MITF- cell lines (B), 

and PTEN-WT and PTEN-null (C). These mutations do not fully explain the phenotypic 

differences between cell lines. 

 

  



 

Figure S2 – Related to figure 2 – Correlation between known genetic variants and gene 

expression -  A. Histograms of p-values comparing expression levels of BRAF-mut with 

NRAS-mut cell lines using t-test, before and after pathway inhibition. No gene passes 

FDR correction with q-value<0.05. See number of targeted genes in figure 2. B. 

Histograms of p-values comparing expression levels of PTEN-null/mut with PTEN-WT in 

BRAF-mut cell lines using t-test, before and after pathway inhibition. No gene passes 

FDR correction with qvalue<0.05. 

 

 

  



 

Figure S3 – Related to figure 4 – COSPER links pathway activity with gene expression 

levels -  A. Full cluster, including all genes, of the cluster presented in figure 3A. B. MITF 

mRNA expression levels before (x-axis) and after (y-axis) MEK inhibition. Steady state 

and fold change levels are negatively correlated. C. Levels of MITF protein isoforms in 

12 cell lines, before and 8 hours after MEK inhibition. Each isoform is regulated to 

different degrees in the different cell lines, supporting a context-specific control of MITF 

by the MAPK pathway.. Strong (S) and Weak (W) film exposures are shown. D. 

COSPER clusters together genes with the same context-specific regulation but with 

different regulation patterns. For example, the cluster here is associated with the STAT3 



context, but contains 3 regulation patterns. The cluster in figure 4C shows one such 

pattern out of the 3 identified by COSPER. E. Levels of STAT3 and pSTAT3-S727 are 

similar in all cell lines and do not explain the differential activation of pSTAT3-Y705. 

 

  



 

Figure S4 – Related to figure 5 – Response to IFN/ treatment - A. Dose-dependent 

response to IFN and . The cytotoxicity of IFN was assessed in high pSTAT1 cell line, 

48 hours after treatment using SubG1 percentage. IFN has a weaker cytotoxic effect 

than IFN, and both show dose-dependent effects. 1000Units/mL of IFN was used for 

all experiments in this manuscript. Cells plated in 6 well plates, 200K cells/well, in 2mL of 

growth media. B. Growth curves of 2 low- (top) and 2 high- (bottom) pSTAT1 cell lines 

with MEK inhibition, IFN or both. 50K cells per well were plated in 6-well plates with 

2mL of media and treated 24 hours later. Cells were counted every 24 hours up to 72 

hours. Cytotoxic levels in figure 5E. C. Comparison of MEK inhibition and BRAF 

inhibition, with and without combination with IFN. Cells were plated in 6 well plates, 

200K cells/well with 2mL media. 24 hours after plating cells were treated with DMSO, 

50nM PD901 with or without IFN, 2uL of PLX4720 with or without IFN. 



 

 

Figure S5 – Related to figure 6 – Identifying the mechanisms underlying response to 

treatment - A. Time course protein levels following treatment with IFN of one high 



pSTAT1 cell line (SkMel39) and one low (A375). Response amplitude and dynamics is 

almost identical in the two cell lines. B. 22 genes with the highest fold change following 

IFN treatment. The transcriptional response is similar in all cell lines, both with low- and 

high- basal activation of the pathway. Notably, the fold change of several genes reaches 

100 fold, just 8 hours after treatment. C. Lack of synergistic and additive effects of MEK 

inhibition and IFN. Scatter plots show the fold change of all genes with a combination of 

MEK inhibition and IFN (x-axis) and the sum of fold changes with each treatment alone. 

Significant deviations from the diagonal represent synergism between drugs. Only one 

gene, CCL4, deviates from the diagonal in all 6 cell lines. D. Same as figure 6C, with 

DAPI staining to confirm nucleus positioning. E. Cleaved caspases 9 and 3 following 

MEK inhibition, IFN treatment, or their combination. This figure includes 4 cell lines that 

were not part of the original caspase analysis, and were included here to support the 

association between pSTAT1 levels and activation of the caspase pathway. F. Caspase 

9 and APAF1 levels (arrow marks APAF1 band) are not correlated with pSTAT1 levels 

or with cytotoxic response to MEK inhibition. G. Levels of known caspase inhibitors are 

not correlated with the cytotoxic phenotype or pSTAT1 levels. 

 

 

 
 

 

  



 

Figure S6 – Related to figure 7 – IFN levels regulated by an autocrine loop and deletion 

of IFN locus  - A. Protein levels following MEK inhibition of 6 known inhibitors of the JAK-

STAT pathway in two cell lines (SkMel105 - high pSTAT1, A375 – low pSTAT1). Most 

proteins don’t change, although pSTAT1 goes up prior to 8h. Change of PIAS1 is similar 

in both cell lines. B. IFN genes with a significant differential expression between low- 

and high- pSTAT1 cell lines. IFNA6, IFNA8 and IFNB1 are located in the interferon locus 

(see figure 7). C. Conditioned media experiment shows that SkMel105, a high-pSTAT1 

cell line, releases cytokines to the media that lead to the upregulation of pSTAT1. In this 

experiment, SkMel105 was cultured for 24h, and then the media was transferred to 

A375, a low-pSTAT1 cell line. Cells were collected 30m and 1h following media transfer. 

Lanes for MEK inhibition 8h and self-conditioned media (CM-A375) are shown as 

controls. 

  



Supplementary tables 
 
CTBP2 LDLRAP1 
C14orf104 GSK3B 
SLC20A2 HERC1 
ZNF275 C5orf22 
ADSS TTC15 
C8orf55 CREBL2 
WDR75 DNAJC3 
TRIM65 UBAC1 
BAG5 SETD4 
SSBP4 BTBD10 
LYSMD2 CHD2 
TMEM206 ANKRD54 
SRXN1 GOT1 
ZFAND1 IL16 
RCC1 PPM1A 
WDR74 CBFA2T2 
JMJD4 C19orf12 
MTHFD2 KDM4A 
WDR89 RCBTB1 
NOB1 HOMER3 
ANKRD37 SNX30 
ZBTB42 WDHD1 
ACTR3B FEM1B 
PSMG4 MTMR10 
LENG9 AKAP11 
NR6A1  
BCORL1  
PAX3  
ABTB1  
ABR  
FNBP1L  
CNPPD1  
ZZZ3  
GNA13  
PEAK1  
Table S1 – List of genes from figure 2A 
 
Gene symbols of the genes from figure 2A. The correlation of these genes with MITF 
levels is reveled only upon MEK inhibition.  
 
 
 
 
  



Table S2 – In a separate excel file – List of COSPER modules (Materials and Methods) 
 
Table S2 lists all modules identified by COSPER. Number of genes, and cell lines 
assigned to each of the contexts are listed for each module. 
 
  



Antibody Company Catalog number

APAF-1 Abcam Ab32372 

Casp 7 (cleaved) cell signaling 9492 

Casp 9 (cleaved) cell signaling 7237 

Caspase 7 cell signaling 9492 

Caspase 9 cell signaling 9508 

cIAP1 cell signaling 7065 

cIAP2 cell signaling 3130 

Cytochrome C abcam ab110325 

GAPDH cell signaling 5174 

IRF1 cell signaling 8478 

IRF7 cell signaling 4920 

Livin cell signaling 5471 

MITF abcam ab12039 

pERK1/2 cell signaling 9101 

PIAS1 cell signaling 3550 

PIAS3 cell signaling 9042 

PIASy cell signaling 4392 

pSTAT1 Y701 cell signaling 9167 

pSTAT2  cell signaling 4441 

pSTAT3 Y705 cell signaling 9138 

SOCS1 cell signaling 3950 

SOCS2 cell signaling 2779 

SOCS3 cell signaling 2932 

STAT1 cell signaling 9175 

STAT2 cell signaling 4594 

STAT3 cell signaling 9139 

XIAP cell signaling 2045 

Table S3 – Related to Materials and Methods 
 
List of antibodies used in this study.  
 
 
  



Supplementary information 

Microarray preprocessing 

Samples for microarrays were harvested 8h post treatment. RNA was extracted using a 

Qiagen RNeasy kit, and labeled using Agilent’s one-color labeling protocol. Labeled 

cRNA was hybridized to Agilent’s 8x60 human gene expression arrays (expect for 

Colo829 and SkMel28 that were added to the panel after the first batch). MEK inhibition 

and basal state expression levels were measured in biological duplicates. Data 

normalization is described in supplementary material. Genatomy was used for data 

visualization and enrichment analysis (Litvin et al., 2009). 

Agilent’s software was used to assess raw signal intensity. Preprocessing of both the 

MEKi panel and the IFN experiment was similar. Each of the 3 batches were processed 

independently - MEKi panel 1, MEKi panel 2 and the IFN panel. 

Preprocessing consists of 3 steps – probe filtering, data normalization and probe 

averaging.  

 

Probe filtering 

Log2 values were used from this point on. Probes were filtered based on their values. 

Probes with low or high levels in more than 20% of samples were removed. This was 

done to remove noisy and saturated probes. The lower and upper thresholds were 

different in different batches, depending on labeling, hybridization and scan levels: 

 

 

 

Batch Lower threshold Upper threshold 

MEKi panel 1 6 16 

MEKi panel 2 7 18 

IFN panel 7 17.5 

 

Additionally, the Agilent probe flags were used to filter probes by a similar method: 

probes flagged in more than 20% of samples were removed. Flags that were used: 

will_above_bg, is_saturated, is_feat_non_uniform, is_feat_popn. 

 



A “rescue” step was used to return probes representing genes that no probe was left to 

represent them. Probes representing the same gene with a high correlation (Pearson 

>0.75) were rescued. Additionally, probes with high SD (>3) were also rescued. 

 

Data normalization 

The 75th percentile of all samples was set to the average 75% by multiplying the values 

by a constant.  

 

Probe averaging 

Probes that measure the level of the same gene were averaged or filtered out.  

If the average Pearson correlation between all probes is > .75, probes are averaged. If it 

is lower, the probe with the lowest correlation is removed. Process repeats till probes are 

averaged or only two probes are left. If only two probes left and the correlation is low, the 

probe with the higher raw intensity is chosen.   

 

Merging duplicates 

Baseline expression levels are mean-normalized at the gene level. Fold change is 

calculated against the control (baseline expression) of the cell line. Data from the two 

MEKi panels are combined at this point by averaging the baseline expression and fold 

change data.  

COSPER ‐ Context‐Specific Regulation 

COSPER – COntext  SPEcific Regulation – is designed to identify genes that are directly 

regulated by the MAPK pathway (or any other perturbed pathway) in only a subset of cell 

lines. It is based on the assumption that genes under the direct control of a pathway are 

correlated before pathway inhibition and show a correlated expression change after 

pathway inhibition. Since we are looking for genes under the control of the pathway in 

only a subset of cell lines, we expect expression changes in only these cell lines.  

 

COSPER uses pre-perturbation data to limit the search for genes under direct regulation 

of the perturbed pathway. After inhibition of a key signaling pathway such as MAPK, 

cellular events, such as metabolism, cell cycle and apoptosis, lead to expression 

changes of thousands of genes. Although the expression of those genes changes after 

MAPK inhibition, they are not directly regulated by MAPK. However, genes under the 



direct control of MAPK pathway depend on its activation levels both before and after 

inhibition of the pathway. For example, HEY1 (figure 3A) is under the control of MAPK in 

only a subset of cell lines. In HEY1 case, it is overexpressed by MAPK in cell lines with 

high MITF levels. Therefore, only in MITF-high cell lines, HEY1 expression levels 

decrease after MEK inhibition. Both pre- and post-inhibition expression levels are 

needed in order to determine this relationship.  

 

COSPER is therefore designed to find genes with context-specific regulation patterns 

(figure 3B). It is consists of 3 major steps: 

1. Gene level – identify binary splits with high scores for both baseline expression 

and fold change and construct clusters. 

2. Merge related clusters – allows removal of spurious correlations and averaging 

the noise caused due to the small sample size.  

3. Add high scoring genes to the remaining clusters  

 

A detailed description of each of the steps follows the section on the NormalGamma 

score.   

 

 

NormalGamma score 
 
The algorithm is based on the NormalGamma score (DeGroot, 2004; Segal et al., 2003). 

The NormalGamma is a Bayesian score that takes variance, mean and number of data 

points into account. It gives a higher score to a data matrix with low variance.  

We use this score since we are looking to reduce the variance of the samples. Our 

algorithm searches for genes that behave similarly in a subset of samples. For example, 

we are looking for a subset of samples where a predefined set of genes is up-regulated, 

compared with the rest of the samples where the genes are not under pathway control. 

Mathematically, this problem can be viewed as a subset of samples where the data have 

a lower variance compared with the variance of all samples combined. The 

NormalGamma score is driven mainly by data variance and is thus suitable for our 

needs.  

 

The score: 
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The score used to assess the quality of the split is: 

NormalGamma(right samples) + NormalGamma(left samples) - NormalGamma(all 

samples) 

 

Step 1: Creating clusters 

First, genes with low fold change and/or low variance in steady state are removed. 

Genes were considered only if they changed by more than 0.7 fold change (log2 scale) 

in at least 1 cell line, and at a steady-state expression value of 0.4 in at least 2 samples 

(to remove genes with extreme outliers in one sample that pass a standard-deviation 

based threshold). Additionally, all long non-coding RNA transcripts were removed. 5391 

genes remain for further analysis.  

 

Then, gene expression is normalized. Basal expression levels of each gene are set to 

have =0 and �=1. Fold change for each gene is standardized only (�=1). 

 

Next, clusters are built bottom-up – genes are assigned to “splits”, and a split with more 

than one gene assigned to it is considered a cluster. However, in order to filter out 

spurious associations we only consider clusters with 5 or more genes. All genes are 

tested across all valid binary splits. A valid split assigns at least 2 samples to each 

sample group. The test is based on permutations and the NormalGamma score.  

 

A gene is assigned to a split if its NormalGamma scores (as defined in the previous 

section) in both the baseline expression and fold change are better than 99% of the split 



permutations (pvalue<0.01). Additionally, in order to keep the best split-gene pairs only, 

an additional threshold is used: 

NormalGamma (right)+ NormalGamma (left)- NormalGamma(all samples)>1 

 

To determine whether clusters with more than 5 genes can be constructed by chance. 

We permuted the samples in the fold change expression data and performed this step 

on the permutated data. No clusters with 5 or more genes were constructed.  Hence we 

believe the resulting clusters represent biological phenomenon.  

 

Step 2: Merging clusters 

A gene assigned to a split is very likely to be assigned to similar splits. A similar split 

might have one or more samples switching “sides” (figure 4A). Each split has 13 similar 

splits with a distance=1, where one sample has switched sides, and 91 splits with 

distance=2.  

The NormalGamma score is not strong enough to discriminate between the “true” split 

and neighboring splits, since the distribution of scores is very tight. However, we can 

assume that a gene is more likely to be assigned to the real biological split, and less 

likely to be associated with a split with a distance>0 from the real split. We also work 

under the assumption that a true biological “context” is likely to influence many genes, 

and therefore larger clusters are more biologically relevant.  

We use these two assumptions in order to identify the real gene-split associations and 

remove irrelevant clusters.  

 

The cluster merging algorithm is a iterative process. Each cycle identifies the largest 

cluster, its genes are removed from all its neighboring clusters, and the process iterates 

till no more clusters can be identified.  

 

The steps are: 

1. Each cluster is scored based on its overlap with its neighbors: 

௫ሻݎ݁ݐݏݑሺ݈ܿ݁ݎ݋ܿܵ ൌ ෍ #ሺݏ݁݊݁ܩ஼௟௨௦௧௘௥ೣ ∩ ஼௟௨௦௧௘௥೔ሻݏ݁݊݁ܩ
௜	௪௛௘௥௘	஽௜௦௧௔௡௖௘ሺௌ௣௟௜௧೉,ௌ௣௟௜௧೔ሻஸௗ

 

 we used d=2. 



2. We then choose the largest cluster, and remove its genes from all clusters with a 

distance<=d.  

 

To save computing time, only clusters that enter the algorithm with 5 or more genes are 

allowed to be selected.  

 

Step 3: Adding genes to remaining clusters 

In the last step, after filtering most clusters out, we relax the statistical thresholds and 

add genes to the clusters (see Litvin et al 2009). We found this step to be necessary due 

to the small sample size, and the relatively high noise of gene expression data. 

The thresholds used in this step are: 

 Permutation pvalue<0.05. 

 NormalGamma (right)+ NormalGamma (left)- NormalGamma(all samples)>0 

 

*Code available on Pe’er lab’s website 

(http://www.c2b2.columbia.edu/danapeerlab/html/).  

 

 

Perturbation reveals patterns hidden in pre‐perturbation data 
 

To identify genes that are correlated only post- but not pre- perturbation we used a 

method similar to step 1 in COSPER.  Specifically, we searched for clusters that show 

the behavior depicted in figure 2B, by associating genes to clusters only if they have a 

good score in post-perturbation data, but a bad score in steady state data.  

 

We used stringent thresholds to define “good” and “bad” scores. The good score was 

defined as a permutation-based NormalGamma score < 0.01, and a bad score was with 

a permutation p-value > 0.5. Additionally, we require that a gene will be associated only 

if the post-perturbation NormalGamma score will demonstrate: 

NormalGamma (right)+ NormalGamma (left)- NormalGamma(all samples)>0 

While the pre-perturbation score will be: 

NormalGamma (right)+ NormalGamma (left)- NormalGamma(all samples)<0 

 



To remove spurious associations, we only considered clusters with > 20 genes. Overall, 

3941 genes were associated with one or more clusters. As an example to this behavior, 

we show one such cluster in figure 2A. 

 

COSPER results on steady‐state or post‐inhibition data alone 

Combining pre- and post-inhibition data facilitates the identification of context-specific 

regulation and differential activation of pathways, while pre-inhibition data or steady state 

data alone fall short due to lower specificity and sensitivity.  

 

We ran COSPER on each data set alone (pre or post inhibition). The number of modules 

increases dramatically, to 2684 with steady state data, and 1524 with post-inhibition 

data, compared with only 70 when using both data sets. Specificity is lost and those 

numbers make it much harder to analyze and interpret the results, while also increase 

the statistical burden for any post-analysis statistical tests.  

 

Additionally, each cluster becomes much larger and less specific to MAPK targets.  For 

example, STAT3 module contains 740 genes, compared with 28 genes using both 

datasets.  While the later cluster is enriched for STAT3-related terms, the larger pre-

inhibition cluster is enriched for MITF related annotations, although the one group of 

samples contains both MITF-positive (3) and MITF-negative (8) cell lines.   The influence 

of MITF in melanoma is so strong (Principal component 1 is correlated with MITF and 

explain 30% of the variance), that by using only steady-state data all other signals 

become undetectable. Overall, the modules when running with steady state data alone 

are much larger, containing on average 194 genes compared with 33 when using the 

two datasets. This hampers power of many analysis tools, including LitVAn and gene set 

enrichment.  

 

COSPER results on post-inhibition data alone are even less informative, with 

enrichments and biological coherence for both the STAT3 and STAT1 modules 

completely missing and we no longer have tight modules that can narrow down 

individual pathways.  Instead we see general processes expected from inhibition of a 

key oncogenic pathway, such as cell cycle regulation, changes in metabolism, signal 

transduction, etc.  



 

The combination of pre- and post-inhibition data, therefore, provides specificity and limits 

the cluster genes to only genes directly regulated by MAPK, while also provides the 

context of regulation.  

 

Comparison of BRAF and MEK inhibition ‐ PLX4720 vs. PD901 

We used PD901 to inhibit the MAPK pathway, and not the more clinically used PLX4720 

BRAF-V600E inhibitor to allow a direct comparison of BRAF and NRAS mutant cell lines. 

To ensure the short-term drug effects are similar, we compared the transcriptional 

response of MalMe3M, a BRAF-V600E cell line, following PD901 or PLX4720 treatment. 

We assessed expression fold change at 1 hour, 2, 4, and 8 hours following treatment 

using Illumina HumanHT-12 microarrays.  

 

Preprocessing 

Illumina’s probe pvalues were used to filter out probes. Probes with p-value>0.05 in 

more than half of the samples were removed. Then microarrays were normalized 

according to their 75% percentile values. The 2 control array were averaged, and treated 

samples were compared to the averaged control to assess fold change.  

 

Results 

MEKi and BRAFi are remarkably the same at all time points. Although some probes 

were noisy, resulting in minor difference between treatments, no gene had a difference 

greater than 0.5 fold (on a log2 scale) between treatments at all time points. Only 6 

probes, out of 16000, had a difference of more than 1 fold at 8 hour time point (figure 

S1B). None of them had such difference at 4 hours, suggesting that the difference arises 

from measurement noise.  

We conclude that there is no difference in the short-time transcriptional response 

between treatments in this cell lines. 

 

Comparison of the response to MEK inhibition between known genetic contexts 

Both inactivation of PTEN and the type of MAPK activation (BRAF or NRAS) have been 

previously associated with the response to MAPK pathway inhibition. We examined 



whether these mutations are correlated with the transcriptional response to MEK 

inhibition or the basal expression levels prior to MEK inhibition. 

We used t-test to compare the expression levels between BRAF- and NRAS mutant cell 

lines (figure S2A), and between PTEN-null and PTEN-wild type cell lines (figure S2B). In 

both cases we found that no genes are associated with those genetic contexts (FDR q-

value < 0.05), either before of after pathway inhibition. 

PD901 and IFN microarray results 

Data Preprocessing 

Six cell lines were chosen for analysis. 3 are low-pSTAT1 – A375, SkMel133 and 

SkMel2, and 3 high-pSTAT1 – SkMel105, SkMel39 and WM1361. They were treated 

with 50nM PD901, 1000U/mL IFN or their combination. Samples were collected 8 

hours after treatment, control samples were collected at 0h. RNA extraction, labeling and 

hybridization were conducted as described under methods. Agilent human 8x60 gene 

expression arrays were used.  

Raw data normalization and filtering were conducted as described above, with a low 

threshold of 7, and an upper threshold of 17.5.  

IFN response in high‐ vs. low‐ pSTAT1 cell lines 

The IFN response includes dozens of genes with a dramatic induction in gene 

expression, of up to 500 fold, in all 6 cell lines (figure S5B).  

There is, however, a difference in the extent of change in high- vs. low- pSTAT1 cell 

lines, that can be attributed to the different basal expression level of those genes (data 

not shown). The maximum level of expression seems to be similar in all cell lines, but 

high pSTAT1 cell lines have a higher basal activity and therefore the fold change is 

lower.  

 

In order to compare the activation of the pathway between the two cell line groups, it is 

better to use the final expression level, i.e. the basal expression+fold change. However, 

such comparison reveals the expression of no genes is statistically significant different 

between high- and low-pSTAT1 cell lines (using t-test and FDR correction).  

 

We therefore determine that there is no difference in the response to IFN between 

high- and low-pSTAT1 cell lines.  



Combinatorial treatment and synergy 

To test whether the MEK inhibition and IFN synergize at the level of gene expression, 

we compared the fold change of the dual treatment with that of MEKi+IFN as single 

agents. Over all, those responses are very similar (figure S5C). 

 

If no synergy exists, the values of Both-(MEKi+IFN) should be close to 0. Only one 

gene significantly deviates from 0 in all 6 cell lines. The gene is CCL4, and it is induced 

both by MEKi and IFN treatment as single agents, but a combinatorial treatment isn’t 

additive. 

We couldn’t identify any other genes that show a synergetic response in all 6 cell lines, 

or separately in low- or high-pSTAT1 lines (we defined synergy is the equation above >1 

or <-1). 

 

MITF binding site analysis 

To assess frequency of MITF binding site in gene promoters we used the motif 

CACATG, known to be a target sequence of MITF. Gene promoters were defined as 

5000bp upstream of their transcription start site, or up to the closest upstream gene, 

whichever is shorter. For each gene, number of binding motif in its promoter sequence 

was noted.  

To assess the significance of number of motif occurrences, we used the binomial 

distribution. Since the MITF-M and MITF-expression clusters are similar and share 

genes, for the purpose of this analysis genes were assigned to only one of the clusters 

based on their NormalGamma score. For each one of the two clusters, MITF-M and 

MITF-expression, we counted total number of motif occurrences in all the cluster genes. 

For simplicity, the expected probability of the motif to randomly appear in a DNA 

sequence is 2*1/46 (6 is the length of the motif, and 2 represent the two strands).  

The pvalue of X occurrences is the probability of randomly observing X or more 

occurrences in a random sequence, or 1-BINOMIAL_CDF(X, N, p), where N is total 

sequence length and p is 2/46.  

For MITF-M cluster, the total promoter sequence is 120735bp, with 83 motif occurrences 

(59 expected). For MITF-expression cluster, the total promoter sequence is 183399bp, 

with 86 occurrences (89 expected).  

 



Cytochrome C release 

Protocol for Cytochrome C release is taken, as is, from Majewski et al 2004. It is brought 

here for convenience: 

Lysis buffer: 20 mM Hepes-KOH, [pH 7.5], 210 mM sucrose, and 70 mM mannitol; 1.5 

mM MgCl2, 10 mM KCl2, protease inhibitor, and 1 mg digitonin/1mL lysis buffer. 

 

Cells are trypsinized, collected and spun down in 4C. They are then washed with PBS 

and spun down again. It is critical that cell pellets will be lysed immediately without 

freezing.  

Cells are gently suspended, without vortexing, in lysis buffer. Roughly double the cell 

pellet volume is used. They are incubated in 25C for 3-10min, depending all cell line. 

Spun down at 4C for 20 minutes at highest speed. Supernatant contains cytoplasmic 

fraction.  

Protein concentration was assessed using BCA.  

 

Fluorescent Microscopy  
Cells were plated onto Corning BioCoat Poly-D-Lysine glass 8-well culture slide (Corning 

354632) at a density of 15,000 to 40,000 cells/well and allowed to attach to the surface 

for 24 hours. Cells were then treated with 50 nM PD0325901, and the same volume of 

DMSO was added to controls at the time of treatment. 

CytoC released was measured 30 hours after treatment. Cells were washed 1X with 

PBS, fixed with 4% PFA in PBS for 10 min at room temperature, and washed 2X with 

PBS (5 min / wash). Cells were then blocked and permeabilized in 5% BSA/0.3% TX-

100 in PBS for 1 hr at room temperature. 

Cells were incubated with Anti-Cytochrome C antibody (Abcam ab110325) at 1 μg/mL in 

1% BSA/0.1% Tween-20 in PBS overnight at 4 °C, when washed 3X with 1% BSA/0.1% 

Tween-20 in PBS (5 min / wash), and then incubated with Alexa Fluor 488 Goat Anti-

Mouse IgG2a (γ2a) (Molecular Probes A-21131) at 1 μg/mL in 1% BSA/0.1% Tween-20 

in PBS for 45 min in the dark at room temperature. Cells were washed 3X with 1% 

BSA/0.1% Tween-20 in PBS  (5 min / wash). 

Cells then were counterstained with NucBlue Fixed Cell ReadyProbes Reagent 

(Molecular Probes R37606) for 10 min, and washed in 2X with PBS (5 min / wash). 



Slides were mounted with Fluoro-Gel with Tris Buffer (Electron Microscopy 

Sciences17985-10), and images were acquired using an inverted microscope (Nikon 

Eclipse TE2000-E) equiped with a 40X lens and illuminated with a mercury vapor short 

arc lamp (Olympus X-Ctie 120PC). 
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