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Camelot Algorithm 
 
Camelot algorithm aims to provide a causative model for quantitative traits. There are 
two parts, development and testing of the predictive model and post-linkage analysis. The 
predictive model provides a final regression model containing predictive and likely 
causative features to explain a trait. More precisely, Camelot takes a set of training data 
consisting of phenotype, genotype and gene expression data as input, and selects a small 
set of features to build a linear regression model. Let L be the markers representing 
genotype data, E the expression of transcripts and D the response of segregants to a drug. 
Camelot obtains a predictive model by selecting a subset of features from L and E (Box 
1B): 
 

 
 
where L* and E* are subsets of markers and transcripts, respectively; and  and  are 
associated coefficients. A regression model such as this has two distinct merits: it 
provides a “program” to reveal the causal factors behind the drug response and it offers a 
quantitative model for predicting the drug response of unseen segregants or new strains. 
After Camelot establishes a predictive model, the zoom-in post-linkage analysis is 
applied to prioritize genes within a linked region (markers in L*) responsible for a trait.  
 
We describe Camelot’s procedure to build a predictive model for a drug response. 
Camelot progresses in three steps to build a model:  initial feature selection, causality 
testing and model revision. Procedures in each step are described. 
 
 
Feature Selection 
Our goal is to identify marker and/or transcript features that predict quantitative 
phenotypes (in our case growth in the presence of drugs) using a linear regression model: 
 

D = X*ß*, 
 
where D is the response of each of segregants to the presence of a drug, X* is a matrix 
containing a set of selected features (L* and/or E*) for each segregant and ß* is the vector 
of coefficients associated with markers or transcripts in X*.   
 
Camelot attempts to identify features (X*) that are not only predictive, but are causative 
for the phenotype.  We consider a gene to be causal if perturbing it  (e.g. allele swap, 
deletion or over-expression) actively results in a change to the phenotype. Our 
assumption is that predictive features are more likely to be the causal factors underlying 
phenotypic variation.  While correlation does not necessarily imply causation, Camelot 
has a number of procedures that reduce the pool of candidate features towards those more 
likely to be causal.  
 
A biologically plausible model should have a small number of causal factors with a non-
zero weight.  To achieve this goal, we used the elastic net regression method (Zou and 
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Hastie, 2005) to select only the most significant features X*. In brief, elastic net 
regression solves the following optimization problem: 
 

 

 
where y represents response (D), X is the feature matrix (containing marker L and/or 
transcript E). Both y and X are standardized to mean of 0 and variance of 1.  β (from here 
we use β to denote  for simplicity) is the vector of regression coefficients and α and t 
are regularization parameters. The regularization terms reduce over-fitting of the data.  
The constraint enforced by the l1 norm controls sparseness of selected features and l2-
norm prevents an arbitrary choice of only one out of several highly correlated features.  
The latter is especially important in the gene expression domain in which large groups of 
highly correlated features are abundant.  To compute the coefficients β, we used least 
angle regression (LARS) (Efron et al, 2004), an efficient algorithm for solving this type 
of regularized regression problem. All implementation is in MATLAB, including a 
modified implementation (Sjöstrand, 2005) of elastic net. Parameters of elastic net were 
chosen using standard cross-validation techniques. 
 
The elastic net target function optimizes for fitting error, which is only a proxy for 
identifying the correct underlying causal features.  Not all predictive features are 
necessarily causal and elastic net regression alone yields models with too many features 
(Supplementary Figure 5).  We further reduce the number of selected features using non-
parametric bootstrap (Efron, 1979). We randomly sampled the segregants with 
replacement, including all genotype, expression and growth data associated with each 
strain, to obtain 200 bootstrap datasets. We applied the described elastic net regression to 
each bootstrap dataset to obtain a set of regression coefficients βB, B =1...200, where B 
indicates the index of the bootstrap set.  Those features with a non-zero coefficient in βB, 
define a sparse set of regression solutions for the bootstrap set B. In order to obtain 
statistically robust features, we define the selection-frequency, γi, for each feature i:  

 
, 

 
where  is the coefficient of feature i in bootstrap model B, and δ is an indicator 
function. We obtain set X* according to γi: 
 

 
 
That is, for each condition, we choose the set X* to include features that have non-zero 
coefficients for at least 50% of the bootstrap runs. Indeed, our performance on synthetic 
data demonstrates that wrapping elastic net with bootstrapping enhances the precision 
with which Camelot identifies causal factors (See section on Statistical Evaluation). 
 
Since we have two types of features (markers L and transcripts E), we consider including 
them in X in two ways: (1) X contains both L and E (denoted as LE model), and (2) X 
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contains L only (denoted as L model). The causality testing phase will consider features 
chosen by both LE and L models and select from these a subset of features that most 
likely have causal influence on the phenotype D (see Triangle Test and Model Revision).  
 
Here, we use 526 processed markers (Lee et al, 2006) for L and 854 candidate transcripts 
selected using GO categories (see main text) for E. More precisely, LE and L models are 
formalized as follows: 
 
 LE model: 

 

 
where Lm represents the genotype of marker m, Eg the expression of transcript g,  the 
coefficient for marker m in LE model for bootstrap B,  the coefficient for transcript 
g in LE model for bootstrap B, and NB the number of bootstrap runs (200). 
 
L model (termed elastic net L model in the main text): 

 

 
where  is the coefficient for marker m in L model for bootstrap B.  Note that the 
solution LLE may be different from LL because transcript features are often chosen instead 
of markers when expression data are considered.   
 
LE and L models now provide small sets of makers and/or transcripts that are highly 
predictive, but not necessarily causative. To further test whether the selected features are 
causal for the trait, we administer the triangle test on the selected transcripts. 
 
Triangle Test 
When the feature correlated with growth is based on linkage to a DNA marker, the issue 
of causality is straightforward: the observed phenotype is likely influenced by genetic 
polymorphism within the linked region.  However, when the feature is based on 
correlation between the abundance of a transcript and the phenotype, three possibilities 
exist: (1) the transcript and phenotype correlate due to a common cause resulting from 
DNA variation (Figure 2C), (2) DNA variation exerts its effect on the phenotype through 
the transcript, and hence the expression level serves as a mediator of the causal effect 
from genetic variation on the phenotype (Figure 2D), or (3) growth rate influences the 
abundance of the transcript. The last case is not considered in this experimental design, as 
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gene expression was measured in absence of drug.  Therefore, we developed the triangle 
test to distinguish between the first two cases.  

The triangle test is applied to a triplet of marker, transcript and phenotype (Lm, Eg, D) and 
is used to evaluate whether Eg is significantly predictive of D, beyond the contribution of 
Lm. We use permutation testing to evaluate the significance of association between Eg and 
D by permuting Eg fixed under the marker Lm. If the transcript Eg remains significantly 
predictive (even when permuted while keeping the allele at Lm constant), we determine 
that Eg holds additional information beyond that encoded by the marker Lm and is 
therefore more likely to be a causal factor, rather than chosen simply due to its correlation 
to Lm. The association is tested with linear regression; 106 permutations are performed to 
obtain empirical null distributions to assess the significance. We use p-value < 0.002 
(corresponding to FDR = 0.004) as a threshold to determine if Eg is significantly more 
predictive to D than L and therefore Eg is likely a causal factor for D.  
 
We apply the triangle test to each transcript feature Eg selected for the quantitative 
phenotype D (that is, ). In order to collect triplets (Lm, Eg, D), we search for 
markers Lm that link to transcript Eg, using the same feature selection procedure 
(bootstrapped elastic net) but with Eg as the response variable (y) and markers (L) as 
features (X). More precisely, , which is obtained from ‘eL model’ defined as 
 

 

 
where is the coefficient for marker m in eL model for bootstrap B. This model can 
be viewed as an eQTL model, in which multiple linkages are detected through 
bootstrapped elastic net regression. We only consider (Lm, Eg, D) as a triplet when the 
two associations (Lm, Eg) and (Lm, D) are significant (p-value < 0.05; such pairs are not of 
high number, since the number of Lm and Eg have been controlled by bootstrapped elastic 
net). The significance of associations (Lm, Eg) and (Lm, D) is determined by 106 
permutations with least square fitting linear regression, in which Lm is used as an 
independent variable and Eg or D is used as a dependent variable. 
 
Moreover, when a transcript feature is tested against multiple markers, we need to test 
whether the transcript is more predictive than the markers in regions near to those under 
consideration. Because genotypes of markers in neighbouring regions are highly 
correlated, neighbouring markers are often chosen as linkages. If we do not correct for 
these linkages, we might conclude, incorrectly, that the transcript feature is causal.  For 
example, assuming we test two triplets (L1, Eg, D) and (L2, Eg, D) where L1 and L2 are 
neighbouring markers, it is possible that Eg shows stronger association to D than L1, but 
not L2. In this case, L2 is more likely to be the causal factor than Eg. In order to determine 
whether Eg passes the triangle test, we require Eg to be more predictive of the phenotype 
than any of the linked neighbouring markers. 
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Based on the test results, we can define the following sets: 
 

 

 
where ECause is the set of transcripts that pass the triangle test, that is, those that are likely 
to have a causal effect on the phenotype; and LIndirect is the set of genotype markers that 
link these transcripts. The latter likely have indirect effects on D that are mediated by Eg.  
 
In contrast, ECor is defined as the set of transcripts that fail the test, and LCause as the set 
of markers that link to transcripts in ECor:  
 

 

 
This definition implies transcripts in ECor are associated with D due to co-regulation that 
results from upstream sequence variation, and LCause  is likely the sequence variation that 
influences both D and Eg . 
 
We further classify transcripts that pass the triangle test into two categories: weak and 
strong factors.  We classify as strong those transcripts that pass the triangle test for all 
linked markers.  We classify as weak those transcripts that only pass the triangle test for 
some of their linked markers.   In addition, we use all different combinations of features 
(for example, regulators only or regulators with genotype as the feature pool) to broadly 
access genes related to drug response with the triangle test. All transcripts that pass the 
triangle test are listed in Supplementary Table III. 
 
While our triangle test evaluates the significance of the association between Eg and D 
conditioned on Lm (i.e. the causal relationship Eg -> D | Lm), we compared our test to 
another test, which assesses the significance of the association between Lm and D 
conditioned on Eg (i.e. the causal relationship Lm -> D | Eg) (see Supplementary Table III).  
Out of the 317 triplets that passed the triangle test, only 12 are significant (same FDR as 
the triangle test) for the test Lm -> D | Eg.  The remaining 305 triplets are in accordance 
with the triangle test, Eg explains away the relationship between Lm and D and the 
influence from Lm to D is no longer significant conditioned on Eg.  These 305 triplets 
include all cases specifically discussed in the main text. The 12 triplets could either be 
false positives, or more interestingly, suggest true complex cases, in which both Lm and 
Eg have a direct causal effect on D.  In fact, two-third of these 12 triplets involve a region 
on chromosome XIV (MKT1 locus), the response to rapamycin, and ERG4 or MLP1 
transcripts. Previous work has shown the complex influence of MKT1 (personal 
communication), ERG4 (Xie et al, 2005) and MLP1 (Hillenmeyer et al, 2008) on the 
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resistance to rapamycin, supporting the complex causal relationship that Lm exerts an 
influence on D both through Eg and an additional factor.  
 
Model Revision 
Using the results of our triangle test, we revise our final feature set. For a phenotype D, 
our goal is to obtain the following model 
 

 
 
where LCamelot and ECamelot are sets of genotype from selected marker features and the 
expression of selected transcript features, respectively; and  and  are the 
associated coefficients.  
 
Considering all the feature sets we have obtained (LL, LLE, LCause, LIndirect, ECause, and 
ECor), we derive LCamelot and ECamelot according to the following criteria: 
 

 

 
These criteria are aimed at enriching the final feature set for those that are more likely to 
be causative. Transcripts that pass the triangle test are more likely to act directly, while 
the linked upstream sequence variation (LIndirect) is likely to be indirect and act through 
ECause. For transcripts (ECor) that fail the triangle test, it is more likely that LCause are the 
common factors responsible for both D and ECor, and the correlation between them. 
 
Including the subset of LCause might introduce markers that are not significantly 
associated with D, so we only include those markers that have selection-frequency  
larger than 0.3. In addition, neighbouring regions in the final LCamelot are corrected by 
only choosing the one with the highest selection-frequency. Once the final set of features 
have been selected, the regression coefficients were re-optimized using robust regression 
(robustfit function in Matlab).  
 
Zoom-in Score 
To pinpoint the causal variant responsible for the linkage signal, for each marker feature 
selected (LCamelot), we developed a Bayesian prioritization score that ranks genes within a 
linked region according the likelihood of their causal potential.  The method integrates 
three cues: “Is the gene expression a good predictor of drug resistance?” (i.e., if the gene 
expression correlates with the drug response), “Is the gene cis-linked?” (i.e, if the gene 
expression is linked to its own locus), and “how well is the gene sequence conserved?” 
which is consistent with our basic intuition that if nature conserved a residue across 
millions of evolutionary years, its change is more likely to have a causative influence on 
the associated phenotype.  
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Assume we have marker m linked to D (i.e. ). To calculate the causal 
potential of each gene g located within the region around marker m, we define a zoom-in 
score as follows: 
 

P(Lg, Eg, D) = P(D | Lg, Eg) P(Eg | Lg) P(Lg), 
 
where Eg and Lg are the expression and genotype of gene g, respectively. Note that Lm can 
be used as an approximation of Lg since gene g is in proximity to marker m. In this model, 
we assume that sequence variation in gene g affects both Eg and D, and the expression of 
transcript g (Eg ) also affects the phenotype D (Figure 4A in main text).  

 
The decomposed probability consists of three parts. The first term P(D | Lg, Eg) assesses 
how well D can be explained by both the genotype and expression profile of gene g; the 
second part P(Eg | Lg) scores the degree of cis-linkage, how well Eg is explained by Lg; 
and the last term is the prior probability of g having a causal effect. P(D | Lg, Eg) and 
P(Eg | Lg) are calculated using the probability density function with normal distribution, 
where the mean and variance are estimated using linear regression (D~ Lg+Eg and D~ Eg). 
P(Lg) was estimated based on the conservation of the coding sequence, as follows. 
 
We assume genes with polymorphisms between BY and RM are more likely to affect the 
phenotype, especially if the polymorphisms are in positions where amino-acid residues 
are conserved throughout evolution. Therefore, considering the fungal alignment of 
orthologs (Wapinski et al, 2007), we calculated a conservation score for each 
mismatched/gap in amino-acid sequence between BY and RM based on a quality score 
defined for multiple sequence alignment (Thompson et al, 1997). Let position j in the 
alignment has a mismatch/gap between BY and RM. We define a score sj as follows: 

 
sj = exponential (- similarity(Rj,BY, Rj,RM) - min(Dj,BY, Dj,RM) ), 

 
where Rj,BY (Rj,RM) is the residue at position j in BY (RM), Dj,BY (Dj,RM) is the distance 
(Thompson et al, 1997) defined for multiple sequence alignment between BY (RM) and 
other fungal species, and similarity is a similarity metric based on Gonnet PAM 250 
matrix (Benner et al, 1994). 
 
For each gene g, we then define  
 

, 
 

where sj is defined as above and θ is a parameter chosen to adjust the distribution of 
P(Lg).  
 
When neighbouring regions were linked to the phenotype, we merged them into a larger 
region and ranked all potential genes within the merged region based on the zoom-in 
score. We calculated the joint probability defined above for each gene residing within 
30,000 base pairs up-/down-stream of a linked region ( ). Genes without 
polymorphisms in coding and non-coding regions between BY and RM were disregarded. 
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Moreover, when calculating the probabilities, we used the original genotype data (Brem 
and Kruglyak, 2005) (missing values were imputed according to the distance between 
markers) to represent the locus more accurately. That is, instead of using the 526 merged 
markers, Lg was obtained from the nearest locus among the original 2957 markers, 
according the genomic location of g. The three components of decomposed probability 
were weighted so that P(D | Lg, Eg) has the strongest effect and prior P(Lg) the weakest. 
Finally, we ranked genes based on their zoom-in scores in the region. 
 
 
 
 
Statistical Evaluation  
 
The robustness and statistical significance of Camelot’s performance were systematically 
evaluated. In this section, we demonstrate that bootstrapping enhances the precision with 
which we can identify causal factors using synthetic data. Moreover, using cross-
validation we demonstrate superior performance of Camelot’s ability to predict the 
response to drug treatment compared to classical linkage analysis. 
 
Bootstrapping enhances accurate retrieval of causal factors 
Because elastic net aims to minimize the fitting error, it often results in models with too 
many features that are not necessarily causal of the phenotype. In order to select robust 
and causal features, we use non-parametric bootstrap with elastic net regression (see 
Feature Selection). Here we evaluate if bootstrapping helps elastic net to select correct 
features using synthetic datasets.  
 
First, we generated several synthetic datasets as follows. We used the LARS 
implementation of elastic net (Efron et al, 2004; Zou et al, 2005) to generate the full path 
of solutions for 20 conditions of growth data (randomly chosen from the original data), 
using a feature pool X, containing both L and E. Then we randomly chose 10 of the first 
30 features that enter each solution path. Using these 10 features with their coefficients 
from elastic net, we generated the synthetic growth data for each condition. We added 
different levels of noise from Gaussian distribution N(0, σ2), with σ2 = 0.2, 0.4, 0.6, 0.8, 
or 1 to the data to mimic the noise found in real data. The advantage of the synthetic data 
is that we know the true features and can therefore get an accurate evaluation of 
Camelot’s ability to retrieve causal features. 
 
We applied elastic net to the synthetic growth data with and without bootstrapping. 
Feature selection with bootstrapping is as described in Feature selection. We compared 
the precision of feature retrieval between elastic net and bootstrapped elastic net. 
Precision is defined as the number of true features selected, divided by the number of 
total features selected in the procedure. Supplementary Figure 1 shows precision of 
bootstrapped elastic net verses elastic net and stepwise regression (used in (Chen et al, 
2008)). For almost all the models, bootstrapped elastic net shows dramatically higher 
precision. 
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Evaluating our results on the actual drug data (rather than the synthetic set), we compare 
the number of features selected in elastic net with and without bootstrapping. 
Supplementary Figure 5 shows the histograms of number of features selected. Elastic net 
models without bootstrapping include many features (mostly between 10 to 30 features 
per model). On the other hand, bootstrapping significantly reduces the number of features. 
Most models derived from bootstrapped elastic net contain fewer than eight features, 
which is more biologically plausible.  The final models and selected features are listed in 
Supplementary Table IV. 
 
  
Cross-Validation analysis demonstrates the robustness of Camelot 
We use ten-fold cross-validation to evaluate the performance of Camelot. We randomly 
split the data into ten equal parts. Each part contains growth, genotype and expression 
data for ~10 segregants. Holding out each part as test data, we took the rest of the data as 
training data (~94 segregants), and applied Camelot to obtain a linear regression model 
(Box 1B). This model was then used to generate predictions for the held-out segregants. 
Note that no data from the test segregants was used during model construction; therefore, 
ten-fold cross-validation provides a good way to evaluate the predictions of the models 
and their potential performance on additional new strains. 
 
For comparison, the same ten-fold cross-validation procedure was also applied to the 
elastic net L model (see Feature Selection) and linkage analysis. Linkage analysis was 
performed using the Wilcoxon rank-sum test, with FDR=2% (p<5.6×10-5) (Perlstein et al, 
2007) to determine significant linkages genome-wide. That is, during each fold of the 
cross-validation, significant linkages were obtained from the training data (n=93~94) 
with Wilcoxon rank-sum test and these linkages (markers) were treated as predictors in a 
linear regression model. Regression coefficients associated with these markers were 
obtained through robust regression (robustfit function in Matlab).  
 
First, we use accuracy of classification (Acc) to evaluate the prediction from these three 
different models (i.e. Camelot, elastic net L and linkage analysis). Three classes are 
defined by discretisation of the normalised drug response: resistant to the drug 
(standardised growth > 1), no significant response to the drug (-1≤ standardised growth ≤ 
1) and sensitive to the drug (standardised growth < -1). Similarly, prediction of class for a 
segregant in the test data is determined by the predicted value from the regression model. 
Accuracy (Acc) is defined as the number of correct predictions divided by the total 
number of segregants tested. Figure 1 (main text) shows Acc of models from Camelot, 
elastic net L and linkage analysis. As discussed in the main text, Camelot shows superior 
classification accuracy compared to the other two models.  
 
Because classification could be biased due to discretisation, we further seek to compare 
the performance of models in continuous-value space. We use correlation coefficients to 
evaluate the prediction as they can be used to assess whether the prediction accords with 
the original growth data. We use both Pearson (r) and Spearman (ρ) correlation 
coefficients between the predicted response to drug and original growth data to evaluate 
the prediction. In addition, the median of growth data in the training set was used in place 
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of the predicted growth if an algorithm failed to generate a model (i.e. failed to link or 
select any features). As shown in the figures (Supplementary Figure 6 and 7), Camelot’s 
prediction correlates better with the original growth data than prediction from linkage 
analysis or elastic net L. This shows that Camelot’s predictions are robust and correlate 
with the observed data. 
 
Taken together, cross-validation provides statistical evidence to support the robustness 
and superior performance of Camelot, compared to linkage analysis and elastic net L 
models, across a number of evaluation metrics. We show that Camelot’s performance is 
robust, and not due to over-fitting, using ten-fold cross-validation. This demonstrates the 
Camelot’s potential to predict the response of unseen strains, since only training data is 
used during cross-validation.  
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Supplementary Table I.  
 
Strains used  
Strain  Background Genotype      Reference/source 
FY1333  BY4724  Mat alpha leu2Δ0 ura3Δ0    (Kanta et al, 2006) 
HCY413   BY  Mat a leu2Δ0 ura3Δ0    This study* 
RM11-1a  RM  Mat a leu2Δ0 ura3Δ0 ho::KanMX   (Yvert et al, 2003) 
HCY503  RM  Mat alpha leu2Δ0 ura3Δ0 ho::KanMX    This study* 
HCY467  BY  Mat a leu2Δ0 ura3Δ0 GPB2RM   This study 
YAD350  BY  Mat alpha his3Δ0 leu2Δ0 lys2Δ0 ura3Δ0 MKT1(D30G) (Deutschbauer and Davis, 2005) 
BY4722 L259P BY  Mat alpha leu2Δ0 ura3Δ0 PHO84 (L259P)  (Perlstein et al, 2007) 
 
*Made by switching the mating types of FY1333 and RM11-1a respectively. 
 
Supplementary Table II.  
 
Primer 
Name  Sequence (5’ to 3’)         Use 
ERV25_F         ttcgtgttgcgtttactgct         RT-PCR 
ERV25_R         gtgtctcttaatctctcctctct         RT-PCR 
 
GPB2_F          ccgtcggcgttgccttatt         RT-PCR 
GPB2_R         agtctgtcgacttggagatctt         RT-PCR 
BY.GPB2_pGSKU_F  taaagattgtgattcattggcaggtccattgtcgcattactaaatcataggctagggataacagggtaatttggatggacgcaaagaagt PCR  
BY.GPB2_pGSKU_R  ttatattctactactaaacaaagtttacaaagtgaaagcattgaaaactgcctttttcgtacgctgcaggtcgac  PCR 
5'UTR.GPB2_F          cgataagacggaatagaatagtaaagattgtgattcattggc      PCR  
BY3'UTR.RMGPB2ORF_R ctactactaaacaaagtttacaaagtgaaagcattgaaaactgctttttatgcactaggatttacactag  PCR 
 
MKT1_F          ttggttgggcaagaaagatt         RT-PCR 
MKT1_R          tttcgcagcatttagctcct         RT-PCR 
 
PHO84_F         ctttgttctgtgtcatcggttt         RT-PCR 
PHO84_R         agttggttggcttaccgtct         RT-PCR 
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Supplementary Figure 1: Bootstrap improves precision in retrieving true factors. A: Bootstrapping 
improves the precision with which true genetic factors can be retrieved from a synthetic dataset. Precision 
obtained using elastic net with bootstrapping (y-axis) is compared with that from elastic net without bootstrap-
ping (x-axis). Each dot represents a synthetic growth condition. The diagonal line shows where the two models 
have the same precision. The plot shows that bootstrapping significantly improves the precision with which 
the true features can be retrieved. Different coloured dots represent different levels of noise added to the 
synthetic data. B: Bootstrapped elastic net retrieves true factors more precisely than stepwise regression. 
Similar to A, precision with which factors are retrieved using elastic net with bootstrapping (y-axis) is com-
pared with that from stepwise regression (x-axis). Bootstrapping is used to select robust features from elastic 
net whereas stepwise regression takes the top 10 significant features (the exact number of true factors used to 
generate the data). The plot demonstrates the superior precision of bootstrapped elastic net compared to that of 
stepwise regression. For example, when synthetic growth data contains noise generated from Gaussian distri-
bution N(0, 0.2), the precision of stepwise regression to retrieve the true factors is limited between 0 and 0.3, 
while the precision of bootstrapped elastic net ranges from 0.5 to 1.0 (with an average of precision 0.8).
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Supplementary Figure 2: Growth yield of BY and BY dhh1Δ strains in the presence of drugs. Validation 
of the causal effect of DHH1 on the growth yield in the presence of specific drugs. Averaged OD600 absor-
bance growth measurements of BY (red) and BY dhh1Δ mutant (blue) are plotted against a twofold dilution 
series for each drug. The causal effect of DHH1 was confirmed for our positive predictions, with the exception 
of benzethonium chloride. Negative controls show the specificity of the causal effect. Camelot predicted that 
the response to tamoxifen would be the same for BY and RM. Drugs written in green match Camelot’s predic-
tion, whereas drugs written in red do not. 
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Supplementary Figure 3: Validation of Camelot’s PHO84 predictions. Validation of the causal effect of 
PHO84 on the growth yield in the presence of specific drugs. Averaged OD600 absorbance growth measure-
ments of BY (red) and BY with an allele swap for PHO84-RM (blue) are plotted against a twofold dilution 
series for each drug. All positive predictions from Camelot were confirmed, showing PHO84 variant is the 
cause of the difference in response to these drugs between BY and RM. Negative controls show the ability of 
Camelot to distinguish drugs that are not affected by PHO84, even though they show significant linkage to the 
locus.
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Supplementary Figure 4: Validation of Camelot’s MKT1 predictions. Validation of the causal effect of 
MKT1 on the growth yield in the presence of specific drugs. Averaged OD600 absorbance growth measure-
ments of BY (red) and BY with an allele swap for MKT1-RM (blue) are plotted against a twofold dilution 
series for each drug. All positive predictions from Camelot were confirmed, showing that the MKT1 variant is 
the cause of the difference in response to these drugs between BY and RM. Negative predictions were also 
confirmed showing that Camelot can distinguish drugs that are not affected by MKT1, even though they show 
significant linkage to the locus.
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Supplementary Figure 5: Bootstrapping reduces the number of features.  Histograms of the number of 
features selected in elastic net without bootstrapping (EN) compared to elastic net with bootstrapping 
(EN+BT). A: Number of features selected when only genotype data (L) are used in the feature pool (X). B: As 
A, but for models using genotype (L) and expression data (E) in the feature pool.

19



−0.5 0 0.5 1
−0.5

0

0.5

1

Pearson r of linkage analysis

Pe
ar

so
n 

r o
f C

am
el

ot

Δr<0
Δr<0.20
Δr<0.40
Δr>=0.40

−0.5 0 0.5 1
−0.5

0

0.5

1

Pearson r of elastic net L

Pe
ar

so
n 

r o
f C

am
el

ot

Δr<0
Δr<0.20
Δr<0.40
Δr>=0.40

A B

Supplementary Figure 6: Comparison of prediction  – Pearson correlation. All predictions represented in 
this figure are based on held out test data. A:  Camelot compared with linkage analysis. Each dot represents a 
condition (growth yield in the presence of a drug), showing the Pearson correlation coefficient between the 
original growth data and the prediction from Camelot (y-axis) plotted as a function of the correlation coeffi-
cient between the original growth data and the prediction from linkage analysis (x-axis). Dots above the 
diagonal indicate the superior performance of Camelot and are color coded to indicate the degree of improve-
ment. B: As A, but the prediction by Camelot is compared with that of the elastic-net L model lacking tran-
script features.
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Supplementary Figure 7: Comparison of prediction – Spearman correlation. Same as Supplementary 
Figure 6, but using Spearman correlation coefficients.
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Supplementary Figure 8: Feedback regulation of PHO84 is stronger in RM than BY. Abundance of 
PHO84 for each strain in high and low phosphate media measured using RT-PCR (see Materials and Meth-
ods). PHO84 is expressed at similar level in all three strains under SC+low phosphate conditions. The addition 
of phosphate results in repression of PHO84 expression as expected; however, in the allele-swapped and RM 
strains, PHO84 is repressed to a greater extent than in the BY strain. The abundance of the control gene 
(ERV25) is similar for all three strains in high and low phosphate media (data not shown).
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2mM AsO4YPD

BY

RM

BY PHO84RM

Supplementary Figure 9: Growth in arsenate. Strains were grown overnight in YPD medium, diluted to 
OD600 ~0.2 and plated with 10-fold dilution on YPD (control) or YPD+2mM AsO4 media (see Materials and 
Methods). The RM and allele-swapped (BY PHO84RM) strains are more sensitive to arsenate, suggesting that 
the RM version of Pho84 transports phosphate more efficiently than the BY version of Pho84.
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