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Supplementary figures 

 

Supplementary Fig. 1: Short-circuits in nearest neighbor graphs 

(A) tSNE maps showing the expression of CD3, CD4 and CD8 

(B) Plot highlighting the short circuits in the data between developmentally distal 

cells and in between cells of the two SP branches. The waypoints are shown in 

red and black lines represent shortest paths between all pairs of waypoints. 
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Supplementary Fig. 2: Thymus T cell populations and Wishbone results 

(A) tSNE map of mouse thymus replicate 1 showing the DN, DP and two SP 

populations based on expression of CD3, CD4 and CD8.  

(B) tSNE map colored by the inferred Wishbone trajectory (left panel) and the 

branch associations (middle panel). The branch association scores as a function 

of Wishbone trajectory are shown in the right panel. 

(C) Trajectory and branch associations shown on the CD8-CD4  
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Supplementary Fig. 3: Variance of markers along trajectory 

Variance of the markers along Wishbone trajectory is very tight irrespective of 

whether the marker is used for learning. This is a companion plot to Figure 2D 

and shows the variance of markers not shown in Figure 2D. 
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Supplementary Fig. 4: Wishbone results are reproducible across replicates 

The marker trends and their derivatives are reproducible across three 

independent mouse thymus replicates. 
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Supplementary Fig. 5: Wishbone results are robust to parameter choice 

(A) tSNE map showing the probability of most confident branch association for 

each cell. This probability as expected is low close to the branch point and high 

elsewhere. 

(B) Comparison of Wishbone results for two independent samples of waypoints. 

Cells with disagreement in branch associations in the two runs are shown in 

darker shade. The trajectories are highly correlated (Pearson correlation of 0.99) 
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and the branch associations are also consistent between the two runs (Fuzzy 

rand index of 0.97). 

(C) Heatmaps showing the robustness of Wishbone trajectory and branches for 

different waypoint samples in replicate 1, with the correlation never falling below 

0.99 and fuzzy rand-index never below 0.95 (Two left panels). (Right panels) 

Similar plots showing robustness of trajectory and branches for different 

combinations of parameters:  , the number of neighbors for nearest neighbor 

graph construction and   , the number of waypoints. The trajectories are 

correlated across combinations of   and nW (Pearson correlation > 0.99). The 

branch associations are stable for    > 100 (Fuzzy rand-index > 0.87, with 

Fuzzy rand-index > 0.95 for    =250). 

(D-E) Same as in C, for replicates 2 and 3. 
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Supplementary Fig. 6: Diffusion components of the mouse thymus data 

and robustness of Wishbone results to number of components 

(A) Top 10 diffusion components of replicate 1 of the mouse thymus. The first 

component is associated with eigen value 1 and is the trivial component. 

(B) Wishbone trajectory and branch associations are robust to the number of 

non-trivial components used for learning 

(C) A large eigen gap between the 4th and 5th eigen values indicates that 

components 2, 3 and 4 are suitable for learning. 
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Supplementary Fig. 7: Wishbone results are robust to exclusion of 
individual markers 

Wishbone trajectory and branch associations are largely robust to exclusion of 

individual markers across the three replicates. The results are compared to 

baseline performance derived when all the surface markers were used for 

Wishbone. 
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Supplementary Fig. 8: Wishbone results to choice of starting branch 

(A) tSNE maps showing the trajectory and branches for replicate 1 using one of 

the DN cells (top panel), CD4 cells (middle panel) and CD8 cells (bottom panel) 

as the input early cell.  

(B) The branches across different choice of start cells are consistent except for 

an expected degree of uncertainty at the branch point (Fuzzy rand index > 0.85). 

(C-F) Same as in (A-B) for replicates 2 and 3. 
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Supplementary Fig. 9: Variance of markers in gated populations is in part 

explained by comparison of developmentally distinct cells 

(A) Top panel shows the marker trends for CD3, CD4 and CD8 along T cell 

differentiation trajectory. CD4 and CD8 SP populations were identified by gating 

(Figure 4A) and the marker variances within the gated populations were 

compared variance along the trajectory. Bottom left panel shows this comparison 

for the CD4 branch. Variance along trajectory is shown in solid lines whereas the 

population variance is shown in dotted lines. Bottom right panel shows 

corresponding results for the CD8 branch. 

(B-C) Same as in A with CD4 and CD8 respectively excluded for learning. 
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Supplementary Fig. 10: Transcription factor dynamics in SP populations 

Companion to Figure 4A-D showing reproducibility of TF dynamics in an 

independent replicate. 
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Supplementary Fig. 11: Gating of cells using the ImmGen gating scheme 

The left panels show the gating scheme used by ImmGen to identify different 

populations along SP maturation. Right panels show the corresponding gating of 

the mass cytometry data. Note that we used Phenograph (Materials and 

methods) to remove debris and identify lymphoid cells. 
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Supplementary Fig. 12: Comparison of Wishbone trajectories to gated 
populations 

(A) Companion to Figure 4E-G showing that the Early and Late cells of CD4SP 

CD24int and CD4SP CD24- gates demonstrate landmarks of immature and 

mature cells respectively (p < 1e-6, Kolmogorov-Smirnov test). 

(B-E) Similar to Figure 4E-G with results for the CD8 branch instead of CD4 

branch.  

(G) Comparison of GATA3 marker dynamics in the CD4 branch.  
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Supplementary Fig. 13: Identification of cell types in the human myeloid 
dataset 

Phenograph was run on all the cells and the non-myeloid clusters were removed 

based on expression of the following markers (Top panel): CD19, CD22, CD20 

(Bcells), CD4, CD8, CD3 (T cells), CD7 (NK cells).  

Phenograph was then rerun on the remaining clusters using only the myeloid 

markers to identify the different myeloid populations (Bottom panel) based on 

expression of: CD34, CD38 (HSPC – hematopoietic stem and progenitor cells), 

CD64, CD11b, CD11c (Monocytes and their progenitors) and CD235ab 

(Erythroid lineage). 
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Supplementary Fig. 14: Myeloid datasets to evaluate Wishbone 
generalization 

(A) tSNE map showing the expression of characteristic markers used to build the 

monocyte-erythroid cell dataset. 

(B) Top 10 diffusion components of the monocyte-erythrocyte dataset. 

(C) Marker trends show the trajectory starting at HSPCs (high CD34). This is 

followed by a downregulation of CD34 and CD117.  The two mature populations: 

Monocytes and erythroid cells are correctly identified as the two branches with 

respective upregulation of CD11b and CD235ab. 

(D-F) Same as in (A-C) showing marker expression and trends for the classical 

monocyte-CD15 monocyte dataset. 
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Supplementary Fig. 15: Wishbone generalizes to single-cell RNA-seq data 

(A) tSNE maps showing the characteristic expression genes used to identify the 

cell type identities of single-cell RNA-seq profiles 

(B) Top 10 diffusion components of the single-cell RNA-seq dataset shown in A. 

(C) Gene ontology enrichments for the top 10 components derived using gene 

set enrichment of analysis. 

(D) Wishbone results are robust to the number of principal components, which 

are used as a preprocessing step to account for the drop-outs in single cell RNA-

seq data. 
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Supplementary Fig. 16: Comparison of Wishbone results to diffusion maps 

(A) tSNE maps showing the trajectory and branch associations of Wishbone for 

the mouse thymus data (left and middle panels). The right panel shows the 
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dynamics of markers used for learning such as CD4, CD8, CD25 and CD3 and 

markers not used for learning such as Notch1 and Notch3.  

(B) Diffusion map ordering of cells determined as a Euclidean distance of all cells 

from the start cell in the reduced dimensionality space. Diffusion maps correctly 

recover the known stages in T cell development but suffers from a loss of 

resolution particularly in DP and SP stages. The loss of resolution is also 

highlighted by the noisy fluctuations of Notch1 and Notch3 in the DN stage.  

(C) Diffusion maps accurately recover the ordering of cells in the single-cell RNA-

seq dataset. 

(D) Diffusion map trajectory of the monocyte dataset in human myeloid system 

places the mature classical monocytes earlier to their progenitors (Compare to 

Figure 5D). 

(E) Diffusion map trajectory derived as Euclidean distance in the reduced 

dimensionality space accurately recovers the ordering in the monocyte-erythroid 

cell dataset. 
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Supplementary Fig. 17: Comparison of Wishbone results to SCUBA 

(A-C) Repeated subsampling of cells from replicate 1 of mouse thymus results in 

inconsistent ordering and branching of cells by SCUBA. Some runs do however 

recover coherent branches (Figure 6C). 

(D) SCUBA accurately recovers the ordering of human myeloid cells and the 

marker dynamics are largely consistent with known biology. SCUBA however 

results in a large number of incoherent branches. 

(E) SCUBA fails to correctly order the cells and SCUBA branches do not 

correspond to the underlying populations. 
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Supplementary Fig. 18: Comparison of Wishbone results to Monocle 

(A-C) Plots showing Monocle results for different subsamples of cells. None of 

the runs yielded the right branching in Monocle with both SP branches invariably 

grouped together. 

(D) Monocle also accurately recovers the ordering in a random sample of human 

myeloid cells but the branches again do not correspond to the mature 

populations. 

(E) Monocle order a subset of the HSPC cells incorrectly and the same subset of 

HSPCs are assigned to erythrocyte and monocyte branches. 
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Supplementary Fig. 19: Principles of Wishbone and their role in achieving 
accurate, high-resolution trajectories. 

(A) tSNE map showing the trajectory determined by ordering of cells by 

Euclidean distance from the start cell without using graphs or waypoints. The 

right panel shows the dynamics of markers along the inferred trajectory. DN cells 

are placed closed to SP cells since the non-linear relationships are not 

adequately captured by Euclidean distance. 
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(B) Use of k-nearest neighbor graph without diffusion maps also leads to similar 

issues because of short circuits in the data. 

(C) Diffusion maps provide a non-linear clean up of the data. Ordering in diffusion 

space without use of graph correctly recovers the known stages of T cell 

development but leads to a loss of resolution beyond the SP stage. 

(D) Nearest neighbor graphs in diffusion maps help improve the resolution but 

key subtle expression changes are not inferred when waypoints are not used for 

local refinement of trajectories. 

(E) Wishbone results, derived with nearest neighbor graphs in the diffusion map 

space with use of waypoints for refinement, are accurate, robust and achieve 

high-resolution. 
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Supplementary Fig. 20: Gating scheme to identify viable cells in the data 

(A) Gating on event length and DNA channel was used to remove doublets and 

debris.  

(B) Bead channel is used to remove beads left over from the first gating.  

(C) Finally viable cells are selected using the Cisplatin viability and DNA 

channels. 
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Supplementary Fig. 21: Mouse thymus data clean up 

Phenograph [1] was used to identify the different phenotypic populations or 

clusters in the data. Heatmaps show the mean expression of markers in each 

cluster identified by Phenograph. Non T cell clusters were removed based on 

expression of following markers: CD19 (B cells), CD161 (NK cells), 

CD11b/CD11c (APCs). In addition, Tregs (CD4+CD25+) and TCR   cells were 

also removed before running Wishbone.  
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Supplementary Fig. 22: Short circuits in branching datasets.  

(A) k -nearest neighbor graph in the phenotypic marker space creates a large 

number of short circuits in branching datasets.  

(B) Ensemble of graphs is not sufficient to clean the data of all the short circuits.  

(C) De-noising using diffusion maps removes the short circuits and the graph 

now faithfully captures developmental relationships between cells. 
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Supplementary Fig. 23: Waypoints and perspectives.  

(A) Wishbone uses cells sampled throughout the trajectory called waypoints to 

overcome the additive noise of the shortest path distances. As with the distances 

from early cell, the distance of each cell from each waypoint is determined using 

the shortest path algorithm.  

(B) The waypoint distances are then aligned with the early cell distances to 

determine waypoint perspectives. A weighted average over all the perspectives 

is used for calculating the refined ordering of cells. 
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Supplementary Fig. 24: Branch point identification and branch 
assignments to cells.  

 (A) Wishbone uses second Eigen vector of   matrix to identify the 5 most 

mature waypoints on both branches. A path from such a waypoint on Branch B to 

another on Branch A traverses through Branch B, changes direction and then 

traverses through Branch A. The cell with minimum trajectory value on such a 

path i.e., cell that is closest to the start represents the region with phenotypic 

properties of both the branches.  

(B) Wishbone determines the set of cells with minimum trajectory values on 

paths between all pairs of waypoints on the two branches and identifies the 

branch point as the median of these minimum values.  

(C-D) Plot showing the     or branch association score for each cell calculated 

from the second Eigen value of the   matrix. The branch association scores are 

used to determine branch assignments for all cells. Any cell with        is 
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assigned to the trunk and cells with        are assigned to one of the two 

branches depending on the sign of     

 

 

Supplementary Fig. 25: Cross branch muting.  

 (A) Plots showing the weight or degree of influence in ordering of cells by the 

highlighted waypoints.  The left panel shows that a waypoint on Branch B can 

influence ordering of cells in Branch A. The weights are exponentially reduced for 

cells on the different branch using the     scores.  

(B) The muted weights are shown in the left panel with the waypoint in Branch B 

no longer influencing the cells in Branch A. The weights of waypoints on the trunk 

remained unaltered (middle panel) 
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Supplementary Note 1: Wishbone accurately recovers differentiation 

events with high resolution and expression trends of key TFs 

 

Runx1, Bcl11b and Notch1 provide a test for accuracy of Wishbone trajectory 

since these markers were not used for learning the trajectory. The abundance of 

all these markers is consistent with their known roles in DN stages of T cell 

development: (a) Runx1 is necessary for CD4 suppression in DN stages [2] and 

is high in the DN cells, (b) Bcll11b knockout leads to arrest of cells in DN2-4 

stages with seemingly no effect on DN1 cells [3] and consistent with these 

studies, Bcl11b is highly expressed starting from DN2 till DN4 and (c) Notch1 

mediated signaling is central in DN cells [4] and correspondingly Notch1 is 

specifically detected in DN cells 

 
Wishbone also accurately recovers known molecular events that punctuate T cell 

differentiation with high resolution. First, we observe that CD8 is upregulated 

before CD4 upregulation in the transition from DN to DP (Figure 2E(1)). This 

upregulation matches prior observations of immature CD8 single positive cells, a 

small fraction of CD8+ and CD4
-
 cells that occur between the DN to DP transition 

[5, 6]. Then the two lineage markers are significantly upregulated in transition to 

the DP stage (Figure 2E(2)) and subsequently remain relatively stable throughout 

the DP stage following their initial upregulation (Figure 2E(3)).  

 

We next observe the hallmarks of positive selection and transition from the DP to 

SP stage with a coordinated change in multiple markers: downregulation of the 

lineage markers, upregulation of TCRβ, TCR complex component CD3, co 

stimulatory molecule CD5 and activation marker CD69 (Figure 2E(4)). While 

individually, the role of each marker has been characterized in the DP to SP 

transition [7, 8], the coordinated and synchronized change in expression of these 

markers has not been characterized. 

 

The initial downregulation of the lineage markers is followed by a further 

downregulation of CD8 (Figure 2E(5)). This is consistent with the prevailing 
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model of lineage commitment which states that downregulation of CD8 leading to 

a loss of signaling through MHC Class I molecules, in turn leading to loss in TCR 

signal, is necessary for CD8 lineage commitment [9, 10]. CD4 selected cells 

continue along the CD4 lineage with a sustained TCR signal [10], resulting in 

bifurcation of the two lineages (Figure 2E(6)). The detection of branch point 

following downregulation of CD8 also indicates that the lineage commitment 

follows positive selection, consistent with previous studies. 

 

Further along the trajectory, hallmarks such as downregulation of CD69 & CD24 

and upregulation of the homing receptor CD62L indicate successful maturation of 

the two SP populations (Figures 2E(7)) [8]. Thus we demonstrate that Wishbone 

can recover precise temporal ordering and branching of cells along with the 

bifurcation point with high resolution and without use of genetic perturbations to 

study development by leveraging multiplexed, single-cell analysis of a complex 

primary tissue. 

 

Supplementary Note 2: Robustness analysis 
 

We tested the robustness of Wishbone by varying the following free parameters: 

Parameter Description Default 

  Number of neighbors for k nearest neighbor graph 15 

   Number of waypoints 200 

   Random set of waypoints  

 

The robustness of Wishbone was tested on the same datasets used in Figures 2-

3. The trajectory from each run was scaled to be between 0 to 1 using: 

Nature Biotechnology: doi:10.1038/nbt.3569



 
      

         

              
 (1) 

Normalized trajectories from different runs were compared using Pearson 

correlation.  

 

The similarity of branch associations is measured using fuzzy rand index, a 

probabilistic analogue of the adjusted rand index, which is a statistical measure 

of similarity between two clustering solutions [11]. As a first step, we calculate the 

probability of each cell belonging to the trunk and the two branches using the 

same principle for calculating the branch association score.  The probability of a 

cell   belonging to a branch   is calculated as 

 
       

∑         

∑ ∑            
 (2) 

 

  is either the trunk or one of the two branches.     is the set of waypoints 

assigned to  .     is the affinity of cell   relative to waypoint   and is calculated 

using a Gaussian kernel on the distance (Equation 3). For each cell, the 

probability of the cell belonging to the associated branch is show in 

Supplementary Fig. 7A. This probability is lowest in the neighborhood of 

bifurcation point and increases exponentially away from this point indicating high 

confidence associations. 

 

Let   represent the calculated branch probabilities such that for a given cell  , 
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      (                 ) (3) 

represents the vector of probabilities.  

 

For a pair of cells   and  , define 

           ‖         ‖ (20) 

 

Then the fuzzy rand index for two branch probabilities for two different 

clusterings,    and   is calculated using 

 
             

∑ ∑ |   
         

     |          

        
 (21) 

 

We first investigated the sensitivity of Wishbone trajectory and branching to the 

sampling of waypoints. Supplementary Fig. 7B shows a comparison of two runs 

with different sampling of waypoints for the same   and   . These runs are 

highly correlated in both trajectory and branching (Pearson correlation: 0.99 & 

Fuzzy rand-index: 0.97). This also generalizes for multiple waypoint samplings 

(Supplementary Fig. 7C-E), with the correlation never falling below 0.99 and 

fuzzy rand-index never below 0.95. Furthermore, these results are reproduced 

across the replicates (Supplementary Fig. 7C-E), demonstrating that Wishbone 

results are robust for different sampling of waypoints. 

 

Next, we investigated the robustness of Wishbone to different choices of   and 

   (Supplementary Fig. 7F-H). The trajectory is again extremely stable across 

the different parameter settings (Pearson correlation > 0.99) and is consistent 
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with the observations of consistency in Wanderlust [12]. The branching results 

are consistently significant with nW at least 100 (Fuzzy rand-index > 0.87, with 

Fuzzy rand-index > 0.95 for    =250) and inconsistent at lower values.  The 

branch identification through the computation of the “Q” matrix relies on 

consistent observation of contradictions across groups of waypoints (Figure 1) 

and as such a significant number of waypoints is necessary to achieve a stable 

result. More over,     =100 is still <0.1% of all the cells in the data and as such 

is not computationally expensive. These results are again reproducible across 

the different replicates (Supplementary Fig. 7F-H) and demonstrate that 

Wishbone is robust to different parameter choices. 

 

We next compared the branching results of Wishbone derived using DN cell as 

the input early cell to results from using cells in the two SP populations as the 

input early cells (Supplementary Fig. 10). The input cell was randomly sampled 

from the CD3+CD4+(or CD8+) populations in each of the three replicates and 

Wishbone was run with the above-mentioned parameters. The branching results 

from the three start cells were compared using adjusted Rand index. The 

adjusted rand index across different comparisons and replicates is always > 0.92, 

again highlighting the robustness of Wishbone. Wishbone results are also stable 

to removal of individual markers from the analysis (Supplementary Fig. 9). 
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Supplementary Note 3: Cell type specific TF dynamics along trajectory 

 

ThPOK, Gata3 and Runx1 are key SP specific transcription factors. While 

ThPOK, Gata3 and Runx3 have been demonstrated to play a role in the SP 

lineage commitment, the dynamics of these markers along a continuous 

trajectory have not been previously characterized. Wishbone proposes distinct 

expression dynamics of these TFs along the differentiation trajectory.  

 

ThPOK levels are higher in CD4 SP cells compared with CD8 SP. Its level is high 

in the CD4+/CD8low stage, and drops in CD8 SP cells together with the increase 

in CD8 levels from intermediate to high, consistent with its role as suppressing 

CD8 expression (Figure 4C(1-2)). Gata3 is also high in CD4 SP compared to 

CD8 SP (Figure 4C(1-4)) but not the same extent as ThPOK.  Runx3 is higher in 

CD8 SP compared with CD4 SP (in which it is very low). In addition, Repression 

of ThPOK in CD8+ cells is at the same time (or maybe slightly after) the increase 

in Runx3 in these cells, consistent with a role for Runx3 as a suppressor of 

ThPOK transcription (Figure 4C, D(5)) [10]. The observed dynamics are 

consistent across replicates (Supplementary Fig. 12).  

 

Supplementary Note 4: Wishbone pseudocode 
 
Inputs 
 

       :  Dataset of   cells. 
 :                Number of neighbors of nearest-neighbor graph 

 :                 Early cell  
  :             Number of waypoints 
 
 
Algorithm 
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1. Determine low dimensional embedding         of dataset   using diffusion 
maps 
 

2. Construct the  -NN graph   using Euclidean distance in the embedded space 

 . Each cell is a node in the graph and a cell is connected by weighted edges to 
its   nearest neighbors 
 

    {
‖     ‖ 

                            

                                   
 

  
 

3. Sample      cells from the   cells and median filter to identify waypoints. 

             For each sampled cell  ,  
           {                             } 

Find cell  , nearest to median cell      

Add   to              
             Add early cell   to              
 
4. Determine shortest path distances from all waypoints to all cells to construct 

the distance matrix,          using Dijkstra’s algorithm 
 

       
 

∑      

   

 

5. Initialize the ordering,   
       ,     

 

6. Repeat until     (           )         

 

7.        Compute the perspective matrix,          
 

     {
  
                 

        
     

  
                     

 

8.        Compute the mutual disagreement matrix,           
 

    |      
     | 

9.        Determine the Eigen vector   , corresponding to the second highest Eigen   
value of  . 
 

10.       Determine the branch association score for each cell   
             
                       Calculate the weight matrix 
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       (
    

 

 
) ∑    (

    
 

 
)

     

⁄  

 

                       Normalize       
 

                   
        

   (                         )
 

 

                        Calculate     for each cell   
 

     ∑             

   

 

 
11.     Cross branch muting of weights to avoid waypoints of one branch 
influencing the ordering of cells on the other branch 
 

        (                                         )                    
 

       {
                             

                                    
 

 

12.           Calculate trajectory at iteration   
  

  
    ∑           

   

 

13.      , repeat from step 7. 
 
14.      Pick the five furthest waypoints on the positive and negative spectrum of 

  . Estimate the branch point,    as the median of the points with minimum        
along all pairwise shortest paths between the chosen waypoints. 
 

           Let     and     be the set of five furthest waypoints of the two branches.  

    {                   
                       } 

    {                   
                       } 

           These waypoints are then used to determined the branch point by 

         {  
          {  

               }}                  
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15. Determine branch assignments for all cells 
 

   { 

               
       

        
                   

        
                  

 

 
 
Outputs 
 

    :             Trajectory or ordering of cells 
  :               Branch point 

   :            Branch association scores 
 :                 Branch assignments 
 

 

Table legends 
 

Supplementary Table 1: Table listing the staining panel clones, suppliers, isotope 

reporter and staining concentration. 
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