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and local cell crowding8 are combined in a multivariate feature  
vector (Fig. 1a and Supplementary Fig. 1a). Given the nonlinear 
nature of the feature space (Fig. 1a and Supplementary Fig. 1b), 
Cycler, a new version of Wanderlust9, performs a k-nearest neigh-
bor graph–based embedding of the multivariate feature space into 
a single dimension, the cell-cycle trajectory (CCT) (Fig. 1a and 
Online Methods). By taking advantage of changes in cell-cycle 
features (Supplementary Fig. 1c,e), the algorithm recovers the 
temporal order of progression, revealing the expected behavior of 
changes along the cell cycle (Fig. 1b and Supplementary Fig. 1c). 
A support vector machine (SVM)-based classification of single 
cells is used to subdivide the CCT into regions belonging to each 
of the discrete cell-cycle phases. (Fig. 1a, Supplementary Fig. 1d  
and Online Methods). This allows identifying the cell-cycle phase 
transition points along the CCT, as well as the ‘starting cells’, a 
subset of G1 cells close to M cells in multivariate space (Online 
Methods and Supplementary Fig. 2a). Cycler’s accuracy in  
inferring the CCT is highly robust to variations in starting cell 
selection (Online Methods and Supplementary Fig. 2b).

To validate the CCT, we first quantified single-cell levels of 
proliferating cell nuclear antigen (PCNA) and cyclin A in five cell 
lines using immunofluorescence. As expected, PCNA and cyclin A  
levels showed variation over the cell cycle, peaking in S and G2, 
respectively (Fig. 1c and Supplementary Fig. 2c). Additionally, 
we synchronized cells using mitotic arrest and examined how they 
moved along the CCT at different time points following release 
(Online Methods). Two hours after release, single cells were pri-
marily positioned early in the CCT, and over time the bulk of 
cells progressed along the CCT as expected (Fig. 1d). Finally, 
we tracked 100 single cells for 72 h to quantify growth dynamics 
along the cell cycle. The nuclear area growth curve along the CCT 
derived from a fixed cell population was nearly identical to the 
average nuclear area growth curve of the tracked cells7 (median  
r = 0.91 ± 0.013, s.e.m.) (Fig. 1e). Moreover, single-cell tracks show 
that individual cells temporally transitioned through the CCT  
(Fig. 1e). Thus, Cycler achieves highly accurate trajectories that 
reflect order in cell-cycle progression and reveals dynamic details 
that correspond to high temporal resolution.

We found that taking local cell crowding into account was 
essential for Cycler’s high performance. Although the nuclear 
area of adherent mammalian cells is influenced by cell-cycle 
progression, it is also determined by microenvironmental influ-
ences such as local cell crowding (Fig. 2a,b) that act independ-
ently of the cell cycle, as shown in the partial correlation network 
(Supplementary Fig. 3a). For example, a particular nuclear size 
(Fig. 2b, dashed line) can belong to G1 phase cells growing in 
areas of low crowding, as well as to S cells growing in areas of high 
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An accurate dissection of sources of cell-to-cell variability 
is crucial for quantitative biology at the single-cell level but 
has been challenging for the cell cycle. We present Cycler, 
a robust method that constructs a continuous trajectory 
of cell-cycle progression from images of fixed cells. Cycler 
handles heterogeneous microenvironments and does not 
require perturbations or genetic markers, making it generally 
applicable to quantifying multiple sources of cell-to-cell 
variability in mammalian cells.

The cell cycle controls fundamental activities of eukaryotic cells 
and is a major source of cell-to-cell variability in unsynchronized 
cell populations. Despite a deep understanding of the molecular 
machinery regulating cell-cycle progression, study of the vari-
ability of cellular activities determined by the cell cycle remains 
experimentally challenging. Time-lapse imaging allows tracking 
of the full cell cycle in individual cells, but doing this in parallel 
with measurements of a protein’s abundance—and specifically its 
activated form—relies on fluorescent live-cell reporters whose 
development is often difficult and time-consuming1,2. Other 
established methods that infer cell-cycle state are more easily 
combined with additional single-cell measurements, but these 
focus on specific sub-steps (typically mitosis or M phase)1,3, lack 
temporal accuracy4 or require perturbations5,6. A recent approach 
that allows the inference of cell-cycle progression rates has  
the disadvantage that it requires genetic modifications and 
homogenous growth conditions7. Thus, we found a need for  
a versatile approach to infer cell-cycle state in additional  
experimental scenarios.

Here we describe Cycler, a method that constructs a trajectory 
of cell-cycle progression from fixed images of unperturbed cells 
growing in heterogeneous microenvironments. Cycler achieves this 
by inferring a trajectory within a multivariate feature space, which 
orders single cells according to their relative position in the cell 
cycle and quantifies single-cell activities along this trajectory. First, 
nuclei are imaged and segmented. Then, single-cell measurements  
of DNA content, DNA replication and pattern, nuclear area 
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crowding. Cycler’s ability to take microenvironmental effects into 
account allows accurate CCT retrieval from five cell lines with 
different population characteristics (Supplementary Fig. 2d).  
It was also important for Cycler’s robustness and reproducibility  
between CCTs inferred from two independent populations of 
the same cell line. Improvement was primarily seen for cells  
in G1 (Fig. 2c,d and Online Methods), as nuclear size is the  
dominant feature used to infer progression in this part of the  
CCT (Supplementary Fig. 3b).

To delineate the minimal information necessary to build an 
accurate CCT, we compared trajectories using combinations of 
the features measured in each single cell. We found that three 
features—nuclear area, DNA content and local cell crowding—
were sufficient to infer a good-quality CCT (Supplementary 
Fig. 3c). However, to obtain sharp transition boundaries 
between G1/S and S/G2, features of DNA replication must be 
included (Supplementary Fig. 3c). To further evaluate robust-
ness, we quantified the minimal number of cells necessary to 
construct reliable CCTs. A CCT constructed from 1,200 ran-
domly picked cells is already highly reproducible (rALL = 0.98; 
rG1 = 0.85; rS = 0.99; rG2 = 0.76) (Supplementary Fig. 3d,e). 
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image-based data sets. (a) Outline of experimental and computational 
workflow. Cell and nuclei are segmented, and features are extracted for 
the construction of CCT (1); Cycler uses the single-cell multivariate feature 
space to generate the CCT. The 3D scatter plot represents the nonlinear 
relations between nuclear area, DNA content and DNA replication and is 
color-coded for CCT progression (2). Cells are ordered along the CCT and 
fractions of cells in the cell-cycle stage phases (SVM-based) are overlaid 
(3). (b) Selected single-cell features used to build the CCT are plotted  
along the CCT. Lines, weighted local mean; shading, weighted local s.d. 
(Online Methods). Fraction of cells in G1, S and G2 are indicated.  
(c) Behavior of cell-cycle markers along the CCT. Lines, weighted local 
mean; shading, weighted local s.d. (Online Methods). Cell-cycle marker data 
was not used for CCT construction. (d) Cells arrested in M phase are released 
for various amounts of time and fixed. The violin plots show the distribution 
of cells along the CCT at increasing release intervals. Colors show the 
discrete classification into G1, S and G2. (e) Nuclear area corrected for local 
cell crowding along the CCT (black curve), nuclear area corrected for local 
cell crowding of 100 single cells tracked between two mitotic events (blue 
curve) and single-cell traces on tracked nuclear area (green). Solid lines, 
median; shading, interquartile range LCC, local cell crowding.
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environment. Left, nuclei color-coded for nuclear area. Middle, cells color-
coded for local cell crowding; right, nuclei color-coded for cell-cycle phases. 
Region 1 marks G1 cells that grow at low local cell crowding and have the 
same nuclear area as S phase cells, which grow at high local cell crowding 
(region 2). (b) Nuclear area of G1, S and G2 phase decreases as local cell 
crowding increases. G1 cells growing at low crowding (box 1) have the same 
nuclear area (dashed line) as S cells growing at high local cell crowding  
(box 2). Points represent the median value in each of 12 bins based on 
degree of cell crowding; dark gray, 40th to 60th percentile; light gray, 
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Furthermore, we built a CCT with features of DNA replication  
obtained with PCNA immunostaining (Supplementary  
Fig. 4a–c), yielding identical results. This demonstrates 
that Cycler is robust to various markers of DNA replication.  
We could further improve the cellular staining protocol by 
combining the stains for cell segmentation and DNA replica-
tion in the same channel (Supplementary Fig. 4d,e and Online 
Methods). Finally, we compared Cycler with a previous approach 
to infer a CCT from images of fixed cells7 and found that Cycler 
has higher accuracy, particularly in populations of cells with 
heterogeneous microenvironments (Supplementary Fig. 5a and 
Online Methods).

Cycler was designed to distinguish the contribution of the  
cell cycle to cell-to-cell variability. This variability, which may 
result in bimodal distributions of cellular activities, is often 
attributed to random fluctuations and noise in gene expression10  
and is therefore considered unpredictable at the single-cell  

level. Unsynchronized cell culture results in patterns of 
cell-to-cell variability in cell-cycle progression (Fig. 2e and 
Supplementary Fig. 6a). For instance, comparing the levels of 
PCNA and cyclin A protein abundance relative to their position 
along the CCT reveals specific correlations (Fig. 2e). Moreover, 
correcting these single-cell intensity distributions for cell-cycle 
progression (Online Methods) turns the bimodal distributions 
into narrow, unimodal distributions (56% and 86.1% inter-
quartile range reduction for PCNA and cyclin A, respectively).  
As expected for cell cycle–related markers, the CCT explains  
the majority (~72%) of the observed cell-to-cell variability, 
whereas microenvironment explains only ~12% (Fig. 2f).

We next expanded this analysis to additional markers, includ-
ing cytoskeleton components, markers of intracellular organelles 
and the phosphorylated state of kinases central to different signal 
transduction pathways (Fig. 3a). Collectively, the cell cycle and 
microenvironment explain 65–85% of cell-to-cell variability in 
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fixed cell populations. Notably, by correcting for cell cycle and 
microenvironment, we reduce the often complex, broad and 
bimodal single-cell distributions to simple unimodal distribu-
tions (Supplementary Fig. 6b).

Specifically, we found that actin and α-tubulin abundance 
increase similarly as cells progress through the cell cycle (Fig. 3b),  
reflecting a scaling with cell size (Fig. 3a). However, α-tubulin 
abundance also showed a strong adaptation to local cell crowding  
(Fig. 3a,b), whereas actin showed such adaptation mainly 
at the level of subcellular distribution and not abundance  
(Fig. 3b,c). Early endosome abundance increased linearly along 
the CCT, probably to accommodate an increase in cell–surface 
area turnover as cell size increases (Supplementary Fig. 6c).  
In contrast, lysosome abundance stayed stationary for almost 70% 
of the CCT and specifically peaked in G2 (Fig. 3d,e).

For glycogen synthase kinase-3β (GSK3B), we found that the 
concentration of its phosphorylated state, which reflects its inhi-
bition, was lowest at the beginning of S, coinciding with its known 
peak activity in the degradation of cyclin D1 (Fig. 3f). After that 
point, phosphorylation of GSK3B increased toward the end of 
the cell cycle, suggesting the existence of a mechanism to inhibit 
GSK3B-induced protein degradation11 as cells progress through 
S and G2. For phosphorylated AKT (pAKT), we found that its 
concentration along the CCT remained low throughout G1 and 
S, but strongly increased at 75% of cell-cycle progression with a 
phosphorylation peak in G2 (Fig. 3f)12. This may reflect AKT’s 
role in stimulating cell growth during G2. Finally, Cycler revealed 
three peaks in the concentration of pERK—one at the beginning 
of G1, one early in S and one in G2 (ref. 13). This may reflect 
ERK’s roles during early G1 progression and in activating the 
expression of cyclin D1 (ref. 14) (early G1), in cell proliferation  
(starting S phase)15 and in cell division13,15,16. To validate this, 
we performed western blot analysis of a time course after mitotic 
release, as well as time-lapse imaging of individual cells using 
a fluorescence resonance energy transfer (FRET)-based sen-
sor for ERK activity17. The western blots confirmed two of the 
three peaks (early S and end of G2) but did not reveal the first 
peak (early G1) (Fig. 3g). The FRET-based approach revealed all 
three peaks (Fig. 3h). However, because single cells progress with 
different rates through G1, they reach the position where ERK 
phosphorylation increases at different time-points, resulting in 
a relatively broad and unpronounced G1 peak in a cell-averaged 
time trace. This suggests another advantage of Cycler: because it 
uses single-cell ordering and not timing to infer a trajectory, it is 
less hampered by temporal heterogeneity in cell-cycle progression 
to detect transiently occurring events.

Cycler is a versatile method to infer accurate CCTs from fixed 
cell populations without transgenic markers and is generally 
applicable to different cell lines grown in heterogeneous micro-
environments, outperforming previous methods7. Cycler creates 
a trajectory that reflects high-resolution order in cell-cycle pro-
gression. It can be used with a simple cellular staining protocol, 
allowing the simultaneous quantification of single cells’ cell-cycle 
position with multiple cellular activities. In combination with fea-
tures of the microenvironment18, Cycler enables a comprehensive 
deconvolution of the dominant sources of cell-to-cell variability in 

a population of mammalian cells. Furthermore, Cycler allows a fast, 
robust and scalable analysis of a wide variety of single-cell activi-
ties along the cell cycle, which can be extended to the analysis of 
tissues and other single-cell methods. Finally, given its insensitivity 
to heterogeneous microenvironments8,19, Cycler may be applied in 
large-scale genetic perturbation screens in human cells, allowing 
the identification of direct cell cycle–dependent perturbations of 
cellular activities. In summary, Cycler provides a powerful, acces-
sible and versatile tool for the analysis of cellular heterogeneity.

Methods
Methods and any associated references are available in the online 
version of the paper. 

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Cell culture. HeLa Kyoto was used as main cell line for this study. 
The cells were tested for identity by karyotyping20 and tested for 
the absence of mycoplasma before use. Further cell lines used 
were A431, RPEI, Hek293 and COS-7. All cell lines were cultured 
in DMEM (Gibco) supplemented with 10% FCS and glutamine 
(complete medium) at 37 °C, 95% humidity and 5% CO2. For 
experiments cells were seeded at a density of 700 cells per well in 
384-well plates and 1,500 in 96-well plates (Greiner) and grown 
for 3 d at 37 °C, 95% humidity and 5% CO2.

Microscopy. Imaging was performed with an automated spin-
ning disk microscope from Yokogawa (CellVoyager 7000) with 
an enhanced CSU-W1 spinning disk (Microlens-enhanced dual 
Nipkow disk confocal scanner, wide view type), a 40× Olympus 
objective of 0.95 NA, and Neo sCMOS cameras (Andor, 2,560 × 
2,160 pixels), acquiring 20 z planes per site spanning 10 µm. The 
20 z planes were then maximum intensity projected. Image analy-
sis was performed on the resulting image. UV (406 nm) and far-
red (647 nm) signals were acquired in dual camera mode; green 
(488 nm) signal and red (546 nm) signal were acquired separately. 
Cycler is also able to infer accurate CCTs from a wide-field micro-
scope at 40× magnification (using an ImageXpress microscope 
from Molecular Devices), but also here, multiple z sections and 
maximum intensity projection are recommended to avoid prob-
lems due to non-flat bottoms of multiwell plates.

Immunofluorescence. All steps were performed at room tempera-
ture unless stated otherwise. Cells were fixed in 4% paraformalde-
hyde (Electron Microscopy Sciences) for 15 min. Cells were then 
permeabilized with 0.5% Triton X-100 (Roth) for 15 min, then 
washed once with wash solution (3% BSA from Sigma Aldrich in 
PBS). Click chemistry reaction for fluorescent labeling of incor-
porated 5-ethynyl-2′-deoxyuridine (EdU, Life Technologies) was 
then performed as described below. Subsequently to click chem-
istry, cells were incubated with blocking solution (5% FCS in PBS) 
for 1 h. Cells were subsequently incubated with primary antibod-
ies (1:300 in blocking solution) overnight at 4 °C. Cells were then 
washed with PBS and incubated for 2 h with secondary antibodies 
(1:500 in blocking solution). Nuclei of cells were then stained with 
DAPI (Life Technologies), for 10 min at a concentration of 0.4 µl/
ml. As a last step, cell outlines were stained with Alexa Fluor 647 
NHS Ester (SE-af647, Life Technologies). The following primary 
antibodies were used: cyclin A (Abcam, ab7956), phospho-GSK-
3β (Ser9)(Cell Signaling, #9323), α-tubulin (BioConcept,11H10), 
pan-actin (Cell Signaling, #8456), EEA1 (BD Biosciences), LAMP1 
(BD Biosciences), phospho-S6 ribosomal protein (Ser235/236) 
(Cell Signaling, #4858), pEIF4EBP1 (Thr37/46) (Cell Signaling, 
#2855), phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (Cell 
Signaling, #9101) and phospho-Akt (Thr308) (Cell Signaling, 
#13038), PCNA (Cell Signaling, #13110). Secondary antibod-
ies used were as follows: anti-mouse Alexa Fluor 488 (Life 
Technologies), anti-mouse Alexa Fluor 546 (Life Technologies), 
anti-rabbit Alexa Fluor 488 (Life Technologies) and anti-rabbit 
Alexa Fluor 546 (Life Technologies).

Costaining of DNA replication and cell outlines. The fluo-
rescence signals from DNA replication (Click-iT EdU Alexa 
Fluor 647 Imaging Kit, Life Technologies) and the cell outline 

staining (Alexa Fluor 647 NHS Ester, Life Technologies) were 
both measured in the same acquisition channel (far red). In 
order to ensure robust cell segmentation and a trustworthy 
CCT, both staining protocols have been optimized: 15 min 
before fixation cell were incubated in a 100 µM EdU solution 
at 37 °C and 5% CO2. The manufacturer’s protocol for fluo-
rescence labeling of incorporated EdU via click chemistry was 
adapted to perform the click reaction with residual volume in 
a multiwell plate by adding the reaction components at double 
the concentration suggested by the manufacturer’s protocol.  
Cell outlines were stained with SE-af647 at a concentration of  
0.3 µg/ml for 5 min in carbonate buffer.

Image analysis. All images were analyzed with the image analy-
sis software CellProfiler21 (http://www.cellcycler.org provides a 
full pipeline for image analysis). Nuclei were segmented using 
images from the DAPI staining. The cell outlines were detected 
using the watershed algorithm of the SE-af647 signal. Standard 
CellProfiler features for intensity, size, and texture of objects 
were then extracted for nuclei and cells. Data cleanup was per-
formed using supervised machine learning with CellClassifier3, 
by training an SVM to classify wrongly segmented objects and 
cells with immunofluorescence artifacts. These cells are then dis-
carded from further analysis. Segmentation of cells and nuclei as 
well as measurement of single cell features were performed by 
standard modules of CellProfiler using the image analysis plat-
form called IBRAIN19. We then provided Cycler with a multi-
variate feature vector consisting of five features obtained from 
CellProfiler modules (MeasureObjectIntensity, MeasureTexture, 
and MeasureObjectAreashape): nuclei area (corrected for local 
cell crowding, see below), nuclear DAPI content (integrated inten-
sity), nuclear EdU content (integrated intensity), nuclear EdU tex-
ture feature 5 and 12 (InverseDifferenceMoment and InfoMeas1), 
which it uses to construct a cell-cycle trajectory (CCT).

Correction of nuclear area for local cell crowding. Nuclear area 
of cells was corrected for effects of local cell crowding by first 
sorting cells according to their nuclear area and then by applying 
a moving average filter with a size of 15 over the sorted cells. The 
resulting locally averaged nuclear area was then subtracted from 
the original nuclear area. These methods have been extensively 
used previously8,18,19. Nuclear area of cells was corrected for local 
cell crowding in order to use it as a feature in Cycler to construct 
CCT in population of cells growing in heterogeneous microen-
vironment, as local cell crowding has an effect on nuclear area  
(Fig. 2a–c and Supplementary Fig. 3a). Nuclear area was not cor-
rected for local cell crowding to compensate for errors in nuclear 
segmentation in regions of high crowding, as nuclei with high local 
cell crowding were segmented with high accuracy (Fig. 2a).

Cycler. Cycler receives as input multivariate vectors of single-
cell features extracted from microscopy images and uses a graph-
based approach to embed these into one dimension representing 
the CCT, which is an assignment of a temporal position along 
cell-cycle progression for each cell. The earliest point has a score 
of 0, which corresponds to cells at the beginning of G1, and the 
last has a score of 1, corresponding to cells at the end of G2; the 
rest of the points fall between these two. Cycler is based on a pre-
viously published algorithm, Wanderlust9, developed to recover 

http://www.cellcycler.org
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the developmental timeline from high-dimensional single-cell 
mass cytometry data of cells progressing through a cell lineage. 
Cycler is an implementation that changes the Wanderlust code in 
a number of ways to recover cell-cycle progression from features 
extracted from microscopy images.

Cycler constructs the CCT by taking advantage of gradual 
changes in cells’ features, such as nuclear area and DNA content, 
as they transition from one cell-cycle phase to another. These 
gradual changes are captured in a k-nearest-neighbor graph, 
where each cell is represented as a node and is connected to its 
k neighbors, the cells most similar to it. Embedding the cells in 
such a graph structure introduces a new metric of graph geodesic 
distances between the cells: a cell’s distance to another cell is the 
shortest-path distance between them in terms of ‘walks’, that is, 
transitions through neighbors, where each transition constitutes 
a gradual ‘step’ between similar cells. Cells that are near each 
other in their order along the cycle will have similar features and 
thus will be separated by a small number of close neighbors and 
the shortest-path distance between them will be low. This metric 
frees us from considering direct cell-to-cell distances, as those can 
be misleading in the setting of nonlinear relationships between 
features. Moreover, this metric is resilient to the technical noise 
that is ubiquitous in biological measurements.

The algorithm starts by constructing an ensemble l-out-of-
k–nearest neighbor graphs (L-NNGs). First, a k-nearest-neighbor 
graph (K-NNG) is constructed by connecting each cell to its k > l 
nearest cells by Euclidean distance. Edges connecting cells to their 
nearest neighbors are weighted by the Euclidean distance between 
them. Next, an ensemble of ng L-NNG graphs is constructed by 
iterating over each node in the K-NNG, randomly keeping only l of 
its k-nearest neighbors to produce an l-out-of-k–nearest-neighbor 
graph. A proposed positioning of the cells is computed from each 
graph, and the final CCT averages the positions for each cell from 
each of these graphs.

Cycler proceeds by iteratively calculating the trajectory in each 
graph separately: the position of each cell or target is first set 
to the shortest-path distance from s, a user-defined ‘early-cell’.  
The farther away a cell is from the starting point, the farther it is 
along the trajectory. This initial positioning encapsulates the start 
point’s perspective of the other cells’ progression on the basis of 
their computed shortest-path distance from s. This initial estimate 
loses resolution and accuracy as the distances from the start point 
get larger. To increase the accuracy of the cell ordering along the 
entire trajectory, we randomly flagged a set of cells as waypoints 
to serve as reinforcements to the early cell: the position of each 
cell will now be calculated as the average of its distance from 
all of the waypoints. The target’s position was further refined by 
averaging that initial estimate derived from the starting cell alone, 
averaged along with the perspective of the nl – 1 additional way-
points. The distances were weighed (described below) so that 
waypoints closer to the target contributed more to the calculation 
(as they are less susceptible to the noise inherent in the short-
est-path distance). However, the waypoints are themselves cells. 
Therefore, their positions will change at each iteration after the 
refinement. Because all cell positions depend on waypoint posi-
tions, the refinement step was repeated with the new waypoint 
positions until the positions of all cells converge.

Tracing cell cycle from microscopy images presented new chal-
lenges, most notably the relatively high variance in the measured 

dimensions at each point along the cell-cycle progression. To 
overcome these challenges, we implemented into Cycler three 
key changes to the original Wanderlust implementation, focus-
ing on how waypoints are used to ensure an accurate trajectory; 
specifically, we changed how waypoints are selected and how they 
weigh in to determine cell positioning.

First we found a dense population of cells in the G1 phase,  
which can account for 60% of the cells. A uniform selection of 
waypoints based on the data results in a heavy bias of cells at earlier  
parts of the cell cycle, leaving later stages underrepresented. To 
ensure an even representation of waypoints along the entire cell 
cycle, cells were binned into ten bands on the basis of graph-
geodesic-distances from the start point, and an equal number of 
waypoints was evenly sampled from each band and pooled. A user-
specified number of waypoints was then sampled uniformly from 
this subset of points. An even representation of cells in S and G2 
recovered the separation of those phases to a greater resolution.

Second, trajectory detection is more sensitive to noise and outliers 
in the reduced dimensionality of microscopy images. To filter meas-
urement noise and reduce the risk of randomly selecting an outlier 
as a waypoint, the waypoints were refined using a median filter. For 
each waypoint, we selected its k nearest neighbors and computed 
their median; the waypoint was then replaced with the cell closest 
to this median. This procedure pseudo-code can be described as K 
nearest points = find-nearest-neighbors (data, waypoint, k); median 
of k nearest points = median(K-nearest-points); new waypoint = 
find nearest neighbor (data, median of k nearest points).

Median filter is known to de-noise data while preserving its 
structure and boundaries. A data point at the boundary can be 
thought of as a cell whose features are only marginally representa-
tive of our phenotypes (for example, G1 or S phase cell), and an 
outlier beyond this boundary is even more dissimilar. However, 
these outlier and borderline cells are few, and we therefore 
expected most of their neighbors to exhibit more typical behavior 
within the boundaries. The data or structure of the graph is not 
changed, but rather our waypoint is replaced with another data 
point, which better represents the data. If a randomly selected 
waypoint is an average representative cell, replacing it with one 
of its average neighbors will not have any effect. If an outlier or 
boundary cell is selected, it is replaced with one exhibiting a more 
typical behavior that is within the boundaries of the data. This 
method is often used in image and signal processing to remove 
signal spikes or salt-and-pepper noise while avoiding blur.

Last, we needed to determine the means and formula by which 
the waypoints refined the placement of all cells along the CCT. 
In Cycler, Gaussian weights are used to compute the weighted 
average. For a given target cell t, the weight for each waypoint is 
computed by the formula 
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In Cycler we used a Gaussian-weighting scheme, whereas in 
Wanderlust, the average is linearly weighted by the distance of the 
waypoint from the cell. In both cases, the farther away a waypoint 
is, the less weight it has on the positioning of the target cell t. This 
follows from the logic that distances computed on the basis of the 
shortest path are more accurate between cells in closer proximity. 
In Cycler, the contribution of each waypoint drops exponentially 
with its distance. This is to ensure that the positioning of each cell 
is most strongly influenced by cells in the same cell-cycle stage. 
For example points in G1 do not vote as strongly for the position-
ing of points in G2, and vice versa.

Supplementary Figure 5a demonstrates the impact of these 
changes and the improvement of Cycler trajectory detection 
over that of the original Wanderlust implementation. We saw 
improvement primarily for later stages of the cell cycle; for exam-
ple, Wanderlust typically misplaces cells on the higher end of 
EdU intensity, relative to their cell-cycle stage, much later in the 
CCT (Supplementary Fig. 5a). However, the best indication for 
Cycler’s improvement over Wanderlust was the former’s increased 
robustness and reproducibility to replicates and down-sampling 
(data not shown).

How Cycler builds a cell-cycle trajectory. Cycler uses five  
single-cell features: integrated nuclear DAPI intensity, integrated 
nuclear EdU intensity, nuclear EdU texture feature #5, nuclear 
EdU texture feature #12 and nuclear area corrected for local  
cell crowding. The features were normalized and standardized 
by subtracting the second percentile and dividing by ninety-
eigth percentile minus the second percentile. In Cycler, M-phase  
cells were excluded before the construction of the CCT, as they 
link early G1 cells to late G2 cells and decrease robustness in the 
building of the CCT. Cycler was run using the following param-
eters: nl = 100, dist = euclidean, ng = 5, l = 15, k = 8. The user- 
chosen early cell was randomly selected from the population 
below the one-halfth percentile of DAPI intensity and nuclear 
size. The output cell-cycle trajectory was first ranked, placing 
the cells in consecutive order, then normalized, giving each cell 
a position in the [0 1] range, by dividing the cell position by the 
total number of cells.

Robustness of Cycler to the selection of the start population.  
To test the influence of the start-cell parameter on the Cycler algo-
rithm output, we used Cycler output from Figure 1b as a baseline 
trajectory and re-ran Cycler ten times. Each time, the input start 
cell was shifted by 0.1 across the baseline trajectory. We plotted 
the output of each rerun against the baseline trajectory and com-
puted their correlations (Supplementary Fig. 2b). As long as the 
start cell remained in the first 50% of the baseline trajectory, the 
two trajectories coincide (Pearson’s ρ > 0.99). In the context of 
cell cycle, the first half of the cycle is typically all of G1 phase and 
beginning of S phase, implying that any G1 cell can be used to 
recover the cell-cycle trajectory with confidence. Moreover, when 
starting from a G2 cell, Cycler can recover an accurate reverse 
trajectory going from G2 toward G1 (Supplementary Fig. 2b, 
start = 0.9 CCT).

Code availability. Custom code used for this study is available at 
http://www.cellcycler.org.

Feature traces along the cell-cycle trajectory. First, 100 posi-
tions were marked and uniformly distributed along the CCT. 
For each point a Gaussian filter, centered at that point, was used 
to compute the weighted average of each feature. This resulted 
in smooth traces of the features along the cell-cycle trajectory.  
A weighted s.d. at each location along the trajectory was com-
puted using the same Gaussian weights and represents the error 
along the feature traces.

Classification of discrete cell-cycle phases: G1, S, G2 and M. 
Classification into the four cell-cycle phases was achieved through 
a combination of two SVM classifiers to identify S phase and M 
phase cells and a Gaussian mixture model to distinguish between 
G1 and G2 among the remaining cells. CellClassifier22 was used 
to train an SVM, which classified cells as S phase or non–S phase 
cells. The feature set used by the S phase SVM consisted of nuclear 
EdU intensity and nuclear EdU texture features. For the classifi-
cation of mitotic cells, a second SVM was trained using nuclear 
DAPI intensity and nuclear DAPI texture features. For the clas-
sification of G1 and G2, cells classified in S phase or M phase were 
excluded from the data set. The resulting histogram of integrated 
nuclear DAPI intensities consisted of two distinct and separated 
Gaussians, with the median of second Gaussian at the double of 
the intensity of the median of the first Gaussian. Cells were then 
sorted into two classes by k-means clustering. Cells comprised 
in the first, low-intensity Gaussian, were classified as G1 cells; 
cells that were part of the second, high-intensity Gaussian, were 
classified as G2 cells.

The Matlab-based graphical (http://www.cellcycler.org) user 
interface (Cycler GUI) accompanying this publication provides 
a different cell-cycle phase classification utility to simplify the 
usage of our method by encompassing more of the pipeline within 
a single tool. The alternative classification is done over five fea-
tures: integrated nuclear DAPI intensity, integrated nuclear EdU 
intensity, nuclear EdU texture feature #5 and #7 and nuclear EdU 
texture feature #12. First, the cells are clustered into four groups 
by expectation maximization algorithm for Gaussian mixtures 
(EMGM). S cells are identified by selecting the cluster with the 
highest mean of EdU. M cells are then identified as the cluster with 
the highest mean of EdU texture feature #5. G1 and G2 phases are 
delineated from the remaining two clusters over DAPI intensity 
The cluster with higher DAPI intensity is labeled G2. 2D kernel 
density estimation is computed for each cell over the DAPI and 
EdU intensities, and the lower fifth percentile of the cells are dis-
carded. This approach was tested against the SVM approach on 
12 wells that were classified using both methods and achieved an 
average rand index of 0.89.

Correction of cell activities for effects of cell-cycle progression 
or microenvironment. The average of each feature of interest (for 
example, nuclear area or integrated intensity) was calculated along 
the CCT or the local cell crowding for overlapping bins, each con-
sisting of 15 cells. For each single cell, the corrected measurement 
consists of the raw measurement minus the mean of all bins of 
which the cell is part.

Live cell imaging and tracking. Cells were seeded in a 384-well  
plate and grown for ~24 h. Then Hoechst was added at a  

http://www.cellcycler.org
http://www.cellcycler.org
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concentration of 800 nM and incubated for 1 h. No additional 
Hoechst was added during live imaging. The cells were then 
imaged at 37 °C and 5% CO2 for ~72 h every 20 min with a 405-nm  
laser, acquiring a single image per site using automated spinning  
disk microscope from Yokogawa (CellVoyager 7000) with an 
enhanced CSU-W1 spinning disk (Microlens-enhanced dual 
Nipkow disk confocal scanner, wide view type), a 40× Olympus 
objective of 0.95 NA, and Neo sCMOS cameras (Andor, 2,560 × 
2,160 pixels). Nuclei were segmented using the Hoechst signal and 
tracked by a custom Matlab function based on the nuclear segmen-
tation. Because single tracks can be different in length, interpola-
tion was applied to individual tracks to generate a set of equally 
long tracks using the interp1 function of Matlab. To compare how 
similar nuclear area growth computed by Cycler was to actual 
nuclear area growth of individual cells, both the tracked nuclear 
area along the cell cycle (dynamic data) and nuclear area along the 
CCT (static data) were binned into 50 equally spaced ‘pseudo–time 
points’. The median nuclear area of those bins was calculated, and 
the two resulting time series were scored for their correlation. Our 
comparison resulted in a correlation of 0.91 ± 0.013 (median ± 
s.e.m.), demonstrating congruency between the ordering imputed 
by Cycler and the dynamics of live cell imaging.

Building cell-cycle trajectories for multiple cell lines. A431, 
HEK293, RPEI and COS-7 cells  were seeded in 96-well plates 
and grown for ~72 h. EdU incorporation, immunofluorescence 
against cyclin A and PCNA as well as DAPI and SE-af647 staining 
were performed (see above). The four cell lines were imaged using 
an automated spinning-disk microscope (specifications described 
above). Classification of the discrete cell-cycle phases (SVM) and 
the construction of the cell-cycle trajectories were performed sep-
arately for each cell line and according to the descriptions above. 
Parameters to construct the CCTs were unchanged between HeLa 
(main cell line used in this study) and A431, HEK293, RPEI and 
COS-7 cells. The start population for each cell line was gated indi-
vidually, but each consisted of G1 cells with the smallest nuclear 
area and the lowest DNA content.

M phase synchronization experiment. 800 cells per well were 
seeded in a 384-well plate and grown for 24 h at 37 °C. To synchro-
nize all cells of a well in M phase and minimize cytotoxic effects, 
we first incubated cells in 2 mM thymidine (Sigma-Aldrich) for 
24 h, blocking cells at the onset of S phase. Complete release of 
the population of cells from S phase block was achieved by exten-
sive washing with complete medium. 3 h after release, cells were 
incubated in 25 ng/ml nocodazole (Sigma-Aldrich) in complete 
medium and 1% penicillin-streptomycin for 12 h, blocking cells 
in M phase. Cells were then released for 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
11, 12, 13, 14, 15, 16, 17, 18 or 19 h and fixed.

Reproducibility analysis. For two independent sets (A and B) 
of 20,000 randomly selected cells, we constructed two cell-cycle 
trajectories using two different feature sets (X and Y). Both feature 
sets X and Y consisted of integrated nuclear DAPI intensity, inte-
grated nuclear EdU intensity, nuclear EdU texture feature #5 and 
nuclear EdU texture feature #12. Feature set X included nuclear 
area, whereas Y included nuclear area corrected for local cell 
crowding. This resulted in four cell-cycle trajectories: xa (CCT 
constructed with set A by feature set X); xb (CCT constructed  

with set B by feature set X) ya (CCT constructed with set A by  
feature set Y) and yb (CCT constructed with set B by feature set Y).  
For every cell in set A, the five most similar cells in B were found 
by proximity search using feature set X or Y and Euclidean dis-
tance as distance metric. The positions along their correspond-
ing CCTs (xb or yb) of the five found cells were averaged and 
saved in xm and ym. This was repeated for every cell in A,  
resulting in two vectors, xm and ym, with the same length as xa 
and ya. To quantify the reproducibility between two independent 
CCTs, Pearson’s correlations were computed between xm and xa 
and ym and ya.

Minimal number of cells required for robust CCTs. To quantify 
the minimal cell number required to construct a robust CCT over 
the whole interphase (G1, S and G2), we first constructed a CCT 
with 24,000 cells. Then we measured the correlation between the 
position of cells in the CCT constructed with 24,000 cells (full 
populations) and their position in CCTs constructed with lower 
cell numbers (20–20,000 cells, CN). At each CN (for example, 
400), we randomly subsampled the corresponding number of cells 
(for example, 400) from the full population of 24,000 cells and 
constructed a CCT. The CCT was constructed with the = input 
parameters l = 15, k = 8, #waypoints = 100 (if #waypoints < 1,000, 
#waypoints = cell number / 10). We then measured the correla-
tion between the CCT value for every cell in the generated CCT 
from low CN (for example, CCT of 400 cells) and the CCT value 
of the same cell in the CCT generated from the full population. 
This was repeated 50 times per CN.

To quantify correlations per cell-cycle phase, we followed  
the same procedure, as for the quantification of correlation over 
interphase (see above). However, instead of quantifying corre-
lation over G1, S and G2 combined, we calculated it for each  
cell-cycle phase separately. As we randomly subsampled cells for 
every CCT, the proportion of G1, S and G2 may vary between 
each subsampling. We calculated the mean cell number per 
phase at any CN and used it as the x-axis label for the representa-
tion of the correlation of a CCT in individual cell-cycle phases 
(Supplementary Fig. 3e).

Construction of the CCT with PCNA staining. To build the 
cell-cycle trajectory with the PCNA antibody staining instead 
of the fluorescently labeled EdU staining as S phase marker, we 
provided Cycler with the following features: integrated nuclear 
DAPI intensity, integrated nuclear PCNA intensity, nuclear PCNA 
texture feature #5, nuclear PCNA texture feature #12 and nuclear 
area corrected for local cell crowding.

Comparison between Cycler and density-based detection.  
A popular method to detect trajectories is based on tracking peak 
density. The approach requires two features that change smoothly 
over the course of the cell cycle. The 2D density plot of these two 
features creates an arc-shaped ridge (Supplementary Fig. 5a), 
where the cell cycle progresses through this ark. Density-based 
methods aim to estimate the peak density along this arc, under the 
assumption that this path of peak density represents the average 
cell behavior along the cell cycle. This method was successfully 
used previously in Kafri et al.7 to create a cell cycle-based ordering  
of the cells, which was needed as input for their ERA (ergodic 
rate analysis) procedure. In Kafri et al.7 a two-dimensional  
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density-based method is used to extract cell-cycle ordering of 
homogenously plated cells (for example, no cell crowding) using 
two features: nuclear integrated DAPI and Geminin (mAG- 
hGem) intensity measurements. The authors note7 that homog-
enous conditions are important for success of the method. We 
compared this density-based method to Cycler over two data sets 
for which we measured two features—integrated nuclear DAPI 
intensity and integrated nuclear EdU intensity—each containing 
approximately 30,000 cells with heterogeneous microenviron-
ments (densely and sparsely growing cells). We ran Cycler using 
the parameters described above (details for density-based trajec-
tory detection are described below). The ‘early point’ was selected 
to the lowest intensity over both features.

In our comparison, Cycler outperformed density-based methods 
in the conditions tested. As previously reported8, density-based  
methods cannot account for heterogeneous microenvironments 
(crowding of cells), whereas Cycler robustly dealt with such 
images (Fig. 2a). We note that in this comparison we limited 
Cycler to only two dimensions, whereas Cycler may aggregate 
as many features as desired, thus achieving higher and higher 
resolution (we used five features). As dimensionality increases, 
density-based methods become prohibitively computationally 
expensive. Additionally, as dimensionality increases, density 
detection’s sensitivity to noise and minor fluctuations in the 
data further intensifies. Cycler, on the other hand, is robust to 
increased dimensionality and microenvironment, making it a ver-
satile method that works well on imaging data of all sorts, such 
as images from tissue, 2D and 3D cultures both at high and low 
magnification. Finally, where density detection starts at the point 
of highest density, which is already in the middle of G1, Cycler 
can begin from the earliest cell, revealing greater detail during the 
start and end of the trajectory.

In Supplementary Figure 5a are presented two cases where 
density detection computed a CCT. For HeLa cells, density detec-
tion failed to exit G1 and the computed ridge (black line) was an 
infinite loop within the peak density of G1, thus failing to find the 
cell-cycle position for the majority of cells. For A431 cells, density 
detection looped back in the middle of S phase (black line) failing 
to follow the cell cycle through S and G2.

Computing trajectory based on density based detection. We 
used Matlab code provided in the supplement of Kafri et al.7,  
which accepts as input a list of cells with their measured inte-
grated nuclear DAPI intensity and integrated nuclear EdU inten-
sity and outputs a one-dimensional vector of points, the ridge l 
that represents the path of an ‘average’ cell. The ridge attempts to 
trace the space following the path of highest density, but is suscep-
tible to being misled by local maxima in the population density. 
Following the application in Kafri et al.8, to order the input cells 
along the cell cycle, each cell is then associated with the point on l 
to which it is closest by based on Euclidean distance. We note that 
this is not the ERA method provided in that paper, but rather an 
earlier preprocessing step that provided a good implementation 
of density-based trajectory detection.

We made two changes to the code. First, we supplied a stand-
ard implementation of bin_raw, as this method was not sup-
plied in the previously published code7. Given the data and the 
requested bin indices, bin_raw counts the number of points 
per bin. Second, multiple places in the code called a function 

switchcoordinates(y, x,……), yet the function header was defined 
with switched parameter order switchcoordinates(x, y,……).  
The function header was reordered. To run the method we 
selected a start and end from the computed 2D density plot of 
the data, as directed by the accompanying GUI. The start area was 
selected at the point of low integrated nuclear DAPI intensity and 
low integrated nuclear EdU intensity—the start of G1—and the 
end area was selected as a point of high integrated nuclear DAPI 
intensity and low integrated nuclear EdU intensity (end of G2). 
The code does not require any further parameterization. At times 
the code would infinitely loop in G1 or would locate the center 
of G1 and trace to the beginning of G2, loop back and fail to con-
verge. We manually halted the algorithm after either a complete 
loop in G1 or when the results started looping back after S.

Variance explained by the cell-cycle trajectory and microen-
vironment. The variance of the uncorrected population of cells 
for a cellular activity of interest (var1) was measured. The cell 
activity was corrected for effects of the cell cycle or the micro-
environment (see above) and its variance was calculated (var2). 
Variance explained by the cell cycle or the microenvironment was 
then calculated as follows: 

1
2
1

− var
var

Western blots of synchronized HeLa cells. HeLa cells were syn-
chronized in M phase and released for 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
11, 12, 13, 14, 15, 16, 17 or 18 h 10-cm dishes. Sample preparation 
at every time point was performed as follows: cells were washed 
twice with PBS, then all liquid was aspirated from the dish and cell 
plates was shock frosted and at −20 °C. Lysates were prepared on 
ice by adding 100 µl of lysis buffer (150 mM NaCl, 50 mM HEPES, 
1% Triton X-100, 0.1% SDS (Sigma-Aldrich) in miliQ H2O. Just 
before use,10 ml lysis buffer was supplemented with 1 tab pro-
tease inhibitor cocktail (cOmplete Roche), 3 tabs phosphatase 
inhibitor cocktail (PhosSTOP Roche), 2 mM DTT and 5 mM 
EDTA and added to one 10-cm dish. All cells were scraped from 
the plate and incubated 30 min on ice (with 15 s sonication at  
15 min and 30 min of incubation). Lysates were then centrifuged 
at 21,000 RCF for 15 min at 1 °C and the supernatant transferred 
in to a new tube and stored at −80 °C. Proteins in lysate were 
denatured by the addition sample buffer and boiling for 10 min. 
Proteins in lysates were resolved by 10% SDS-PAGE and analyzed 
by immunoblotting. After wet transfer of the protein onto a PDVF 
membrane (Immobilon), membranes were incubated in 5% lowfat 
milk for 1 h at room temperature. Membranes were sequentially 
probed for ppERK1/2 (1/1,000, over night at 4 °C, Cell Signaling, 
#9101) or cyclinA2 (1/500 overnight at 4 °C, Abcam, ab7956) in 
5% lowfat milk. Secondary antibodies were incubated for 2 h at 
room temperature at 1/5,000 in 5% lowfat milk.

Long-term FRET imaging of the EKAR (YFP/CFP). EKAR 
Cerulean-Venus with nuclear localization was obtained from 
Addgene17 (Plasmid #18681). HeLa cells were reverse transected 
24 h before imaging with Lipofectamine 2000 (Life Technologies) 
in 8-well Lab-Tek chambers at 13,000 cells per well. Cells were 
imaged every 6 min for 21 h at 37 °C and 5% CO2 using an auto-
mated spinning-disk microscope from Nikon (Eclipse Ti) with 
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an enhanced CSU-W1 spinning disk (Microlens-enhanced dual 
Nipkow disk confocal scanner, wide view type), a 40× Nikon 
objective of 0.95 NA (CFI Plan Apochromat λ 40X), and pco.edge 
sCMOS cameras (pco.edge 5.5, 2,560 × 2,160 pixels), acquiring 
1 z plane per site. CFP (406 nm) and YFP (561 nm) signals were 
acquired in dual camera mode. The YFP image was then divided 
with the CFP image resulting in a ratio image, which was used 
to quantify FRET of EKAR. For each cell a circular region was 
selected in the nucleus, and its mean intensity of the ratio image 
(YFP/CFP) was quantified for every time point using ImageJ. 

Every single-cell trace was then normalized by dividing every 
intensity value of a trace by its maximal measured intensity value. 
Then single-cell traces were aligned so that mitosis is positioned 
at 0 min.
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