
Single-CellMassCytometry of Differential
Immune and Drug Responses Across
a Human Hematopoietic Continuum
Sean C. Bendall,1* Erin F. Simonds,1* Peng Qiu,2 El-ad D. Amir,3 Peter O. Krutzik,1 Rachel Finck,1

Robert V. Bruggner,1,7 Rachel Melamed,3 Angelica Trejo,1 Olga I. Ornatsky,4,5 Robert S. Balderas,6

Sylvia K. Plevritis,2 Karen Sachs,1 Dana Pe’er,3 Scott D. Tanner,4,5 Garry P. Nolan1†

Flow cytometry is an essential tool for dissecting the functional complexity of hematopoiesis. We used
single-cell “mass cytometry” to examine healthy human bone marrow, measuring 34 parameters
simultaneously in single cells (binding of 31 antibodies, viability, DNA content, and relative cell size). The
signaling behavior of cell subsets spanning a defined hematopoietic hierarchy was monitored with 18
simultaneous markers of functional signaling states perturbed by a set of ex vivo stimuli and inhibitors.
The data set allowed for an algorithmically driven assembly of related cell types defined by surface
antigen expression, providing a superimposable map of cell signaling responses in combination with drug
inhibition. Visualized in this manner, the analysis revealed previously unappreciated instances of both
precise signaling responses that were bounded within conventionally defined cell subsets and
more continuous phosphorylation responses that crossed cell population boundaries in unexpected
manners yet tracked closely with cellular phenotype. Collectively, such single-cell analyses provide
system-wide views of immune signaling in healthy human hematopoiesis, against which drug action
and disease can be compared for mechanistic studies and pharmacologic intervention.

Fluorescence-based flow cytometry has
been fundamental to the discovery and
definition of major and minor cell subsets

of the immune system. Although the outline of
hematopoiesis is generally understood (1), a com-
prehensive framework of its system-wide proper-
ties remains to be determined (2). Technological
developments in flow cytometry and cell sorting
[the introduction of new fluorophores, such as
quantum dots (3)] have paralleled appreciation
of the compartmentalization of function in the
hematopoietic system and contributed to diverse
fields, including immunology, stem cells (4, 5),
HIV (6 ), cancer (7 ), transcription (8, 9), intra-
cellular signaling (10, 11), apoptosis, cell cycle
(12), and development of cytometry-based clin-
ical diagnostics (13, 14 ). However, use of flow
cytometry remains practically confined to the
measurement of 6 to 10 simultaneous param-
eters (15). Analysis at the 11- to 15-parameter
range is possible but limited by compensation
needed to correct for spectral overlap that can
create a source of confounding variability (16 ).

We used transition element isotopes not nor-
mally found in biological systems as chelated anti-
body tags in atomic mass spectrometric analysis of

single cells to create a detailed response profile
of the healthy primary human hematopoietic sys-
tem with 34 simultaneously measured cellular
parameters. This allowed us to take full advantage
of the measurement resolution of mass spectrom-
etry and apply it to single-cell analysis. Because
the method is largely unhampered by interference
from spectral overlap, it allows for the detection
of considerably more simultaneous parameters
than does traditional flow cytometry (17, 18).
Combined with its quantitative nature, atomic mass
spectrometry measurement creates a platform with
which to conduct multiplexed measurement of
single-cell biological parameters that can exhibit
vastly different dynamic ranges during signaling
or over time (such as signaling changes indicated
by shifts in protein phosphorylation).

We simultaneously measured 34 parameters
in each single cell in human bone marrow (BM)
samples to provide an in-depth analysis of normal
human hematopoietic and immunological signal-
ing overlaid onto a detailed template of cell phe-
notype. Cell subset–specific signaling phenotypes
of drug action in the face of clinically meaningful
physiologic stimuli were localized to pathway and
cell-specific boundaries, with examples in B cell
signaling shown. These provide a system-wide
view of signaling behaviors, expanding our view
of drug action while allowing us to limit the func-
tions that certain drugs might have on complex
tissues. Given that this technology can reason-
ably be expected to allow for as many as 100 pa-
rameters per cell (18, 19), it affords an opportunity
to increase our understanding of cell type–specific
signaling responses in complex, distributed or-
gans such as the immune system.

Performance assessment of mass cytometry.
The workflow for mass cytometry is comparable
with that of fluorescence flow cytometry (Fig. 1A).
Antibodies coupled to distinct, stable, transition
element isotopes were used to bind target epitopes
on and within cells. Cells, with bound antibody-
isotope conjugates, were sprayed as single-cell
droplets into an inductively coupled argon plasma
(created by passing argon gas through an induc-
tion coil with a high radio-frequency electric cur-
rent) at approximately 5500 K. This vaporizes
each cell and induces ionization of its atomic con-
stituents. The resulting elemental ions were then
sampled by a time-of-flight (TOF) mass spectrom-
eter and quantified. The signal for each transi-
tion element isotope reporter was integrated as
each cell’s constituent ions reached the detector.
Currently, TOF sampling resolution enables the
measurement of up to 1000 cells per second.
We compared mass cytometry with conventional
nine-parameter fluorescence flow cytometry in
analysis of cytokine signaling through responses
in human peripheral blood mononuclear cells
(PBMCs) from two healthy donors (Fig. 1, B to E,
and fig. S1). Seven surface antigens (CD3, CD4,
CD8, CD45RA, CD56, CD20, and CD33) and
two intracellular phosphoprotein epitopes [phos-
phorylated signal transducer and activator of
transcription 3 and 5 (pSTAT3 and pSTAT5)] were
measured by means of fluorescence cytometry on
two human PBMC samples treated with interleukin-2
(IL-2), IL-6, IL-10, granulocyte-monocyte colony
stimulating factor (GM-CSF), or interferon-a
(IFNa) to measure cytokine-mediated signaling
responses in specific cell subsets. In traditional
flow cytometry, forward scatter (FSC) and side
scatter (SSC) measurements of laser light are used
to detect the presence of a cell and to “trigger” the
electronics in order to collate information as a
cell “event” (the window of time during which a
cell is measured). Because FSC and SSC are not
currently implemented on the CyTOF platform,
alternative parameters providing analogous utility
were included to assist with the discrimination of
single-cell events: (i) an antibody to the surface
epitope CD45 (expressed on most cells measured
in this study), (ii) a metal-encoded DNA inter-
calator to identify nucleated cells (20), and (iii) a
derived parameter (“cell length”) indicating the
duration of each cell’s measurement window (18).

Fluorescence (Fig. 1B and fig. S1A) and mass
(Fig. 1C and fig. S1B) cytometry analysis pro-
vided comparable results when analyzed via tra-
ditional dot plots (fig. S2). Pertinent qualities,
such as reduced CD45RA expression on CD4+

T cells relative to that on CD8+ cells, were re-
produced between platforms (Fig. 1, B and C).
Despite use of different metrics for identifying
cell events, both platforms yielded quantitatively
similar frequencies (P < 0.000001) for 12 man-
ually gated cell populations in the parallel anal-
ysis of two separate door samples (fig. S1C and
table S1). Patterns of specific induction of STAT
protein phosphorylation within the CD4+CD45RA+

RESEARCHARTICLE

1Baxter Laboratory in Stem Cell Biology, Department of Micro-
biology and Immunology, StanfordUniversity, Stanford, CA94305,
USA. 2Department of Radiology, Stanford University, Stanford, CA
94305, USA. 3Department of Biological Sciences, Columbia Uni-
versity, New York, NY 10027, USA. 4University of Toronto, Toronto,
ON M5S 3H6, Canada. 5DVS Sciences, Markham, ON L3R 6E7,
Canada. 6BD Biosciences, San Diego, CA 95131, USA. 7Biomedical
Informatics Program, StanfordUniversity, Stanford, CA94305,USA.

*These authors contributed equally to this work.
†To whom correspondence can be addressed. E-mail:
gnolan@stanford.edu

www.sciencemag.org SCIENCE VOL 332 6 MAY 2011 687

 o
n 

M
ay

 1
2,

 2
01

1
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/


pSTAT3 pSTAT5

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9Population:

B C

E

-5.1 0 1.5

F
luorescence
C

ytom
etry

M
ass

C
ytom

etry

pS
TA

T
5

Unstimulated

pSTAT3

IL-2 IL-10D

F
luorescence
C

ytom
etry

M
ass

C
ytom

etry

αIFN

Unstim
IL-2
IL-6

IL-10
GM-CSF

αIFN

Unstim
IL-2
IL-6

IL-10
GM-CSF

αIFN

A

ICP-MS
Elemental Analysis

Nebulize Single-Cell Droplets

Integrate
Signal

Antibodies
Labeled with 

Elemental Isotopes

Upload
.FCS
Files

Cytobank.org

Isotope A

Is
ot

op
e 

B

2D Plots Expression &
Fold-Change

SPADE Analysis

Mass Cytometer

Mass

Cell 1

Cell 2

Cell 3

**-102 102 103 104 1050

-10 10 103102 1040

-10

10

103

102

104

0

-102

102

103

104

105

0

FSC

105

104

0

CD8

C
D

45
R

A

CD4

C
D

45
R

A

CD33

S
S

C

CD3

C
D

20

CD56

C
D

3

1.CD33
Myeloid

2.CD20
B Cells

7.NKT 
Cells

NK 
Cells

CD8
T Cells

CD4
T Cells

Fluorescence Cytometry

98

3

46

5

S
S

C

0

50K

100K

150K

200K

250K

0

50K

100K

150K

200K

250K

0 50K 100K 150K 200K 250K

-102 102 103 104 1050 -102 102 103 104 1050 -102 102 103 104 1050

-102

102

103

104

105

0

-102

102

103

104

105

0

-102

102

103

104

105

0

-102

102

103

104

105

0

-102 102 103 104 1050 -102 102 103 104 1050 0 25 50 75 100 125

Cell Length

D
N

A

CD8

C
D

45
R

A

CD4

C
D

45
R

A

CD33 CD3 CD56

CD8
T Cells

CD4
T Cells

Mass Cytometry

C
D

45

C
D

20

C
D

3

1.CD33
Myeloid 2.CD20

B Cells

7.NKT 
Cells

NK 
Cells

98

3

46

5

-10 10 103102 1040-10 10 103102 1040

-10 10 103102 1040

-10 10 103102 1040

-10 10 103102 1040

-10

10

102

103

104

0

-10

10

102

103

104

0

-10

10

102

103

104

0

-10

10

102

103

104

0

-10

10

102

103

104

0

-10

10

102

103

104

0

*

Fig. 1. Mass cytometry profiling of immune cell response patterns. (A) Work-
flow summary of mass cytometry analysis. Cells are stained with epitope-specific
antibodies conjugated to transition element isotope reporters, each with a dif-
ferent mass. Cells are nebulized into single-cell droplets, and an elemental mass
spectrum is acquired for each. The integrated elemental reporter signals for each
cell can then be analyzed by using traditional flow cytometry methods as well as
more advanced approaches such as heat maps of induced phosphorylation and
tree plots. (B and C) Representative antibody surface-staining results and cell
population definitions (“gating”) for (B) fluorescence and (C) mass cytometry
analysis of fixed PBMCs from the same donor. Replicate analysis of a second
donor is provided in (21) (Fig. S1A and S1B). *Pearson correlation between
frequencies measured by fluorescence or mass cytometry, including both donors
(r = 0.99, P < 0.000001, two-tailed t test) (table S1 and fig. S1C). (D) Induction

of STAT3 and 5 phosphorylation by various ex vivo stimuli in naive CD4+CD45RA+

T cells [(B) and (C), red boxes] as measured by (top) fluorescence and (bottom)
mass cytometry. Red arrows indicate the expected shift along the STAT
phosphorylation axes. (E) Heatmap summary of induced STAT phosphorylation
in immune populations from the PBMC donor defined in (B) and (C) [column
headers refer to blue polygons in (B) and (C)]. Responses to the indicated stimuli
in each row were measured by (top) fluorescence and (bottom) mass cytometry.
Color scale indicates the difference in log2 mean intensity of the stimulated
condition compared with the unstimulated control. Signaling responses of a
second donor are provided in (21) (fig. S1D). **Pearson correlation between
signaling induction measured by fluorescence or mass cytometry, including
both donors [pSTAT3: r = 0.92; P < 0.000001, two-tailed t test (fig. S1E);
pSTAT5: r = 0.89, P < 0.000001, two-tailed t test] (figs. S1E and S1F).
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T cell population demonstrated that both plat-
forms could equivalently detect pSTAT3, pSTAT5,
and dual pSTAT3-pSTAT5 responses to IL-10,
IL-2, and IFNa, respectively (Fig. 1D). One qual-
itative difference between the two platforms was
the mathematical correction required to address
spectral overlap in the fluorescence data (termed
“compensation”), a procedure not required with
the atomic mass spectrometer. A second major
distinction is the absence of cell-dependent back-
ground signal in the mass cytometry data. Thus,
although laser-based flow cytometry detects sig-
nals from cellular autofluorescence, nonactivated
cells had mass cytometric phosphoprotein inten-
sities near zero, indicating very little background
antibody binding. This manifests in atomic mass
spectrometry as a narrow grouping of cell events
at the low end of the dot plot axes. Qualitatively
and quantitatively (P < 0.000001) similar patterns
were revealed by means of fluorescence-based flow
cytometry or mass cytometry in terms of magnitude
of the pSTAT3 and pSTAT5 responses in cell pop-
ulations across two healthy peripheral blood sam-
ples (Fig. 1E and fig. S1, D to F). An overview of
the antibody quality control with testing on cell
lines, human PBMCs, and bone marrow is shown
in fig. S11. Taken together, mass cytometry and
traditional fluorescence based approaches can pro-
duce results with equivalent informational value.

Organization and analysis of high-dimensional
single-cell data. Taking advantage of the in-
creased dimensionality of mass cytometry, we
prepared a set of reagents to capture a system-
wide view of immune cell types from a replicate
analysis of bone marrow mononuclear cells from
two healthy human donors. Thirty-one distinct
transition element isotopes were used to label
two antibody-staining panels for the study of
healthy human bone marrow mononuclear cells.
[Data are publicly available at Cytobank (www.
cytobank.org/nolanlab). An “immunophenotyping”
panel was designed that monitored 13 “core”
surface markers and 18 subset-specific cell-surface
markers to allow identification of human hema-
tologic cell types. A “functional” panel contained
the 13 core surface markers and also 18 intra-
cellular epitopes that reflect intracellular signaling
states, such as phosphorylation status of kinase
substrates (21). These complementary panels al-
lowed simultaneous biochemical analysis of intra-
cellular signaling in rare and diverse cell subsets
that were identified through in silico merging
of the data. Intracellular signaling responses were
determined by treating cells ex vivo with modu-
lators such as cytokines, small molecules, or com-
binations thereof. Perturbation analysis has proven
useful in causality determinations for signaling
at the single-cell level (11, 22–25) and was ap-
plied here to enable cell subset–specific response
profiles. An additional three parameters—a DNA
intercalator, cell length, and a cell viability dye
(21)—were included in the analysis panels, creating
a total of 34 parameters in each. With an overlap
of 13 core surface antibodies between the two anal-
ysis panels and the three shared additional cell

features, a combined total of 52 unique single-cell
parameters were measured. The resulting single-
cell data set of bone marrow cells captured a
snapshot of the cell types present and their cor-
responding regulatory signaling responses through-
out development from early human hematopoietic
progenitors to lineage-committed cells.

A central dogma of immunology is that cells
at different stages of maturation can be char-
acterized by the expression of unique sets of
proteins on the cell surface. Such “cluster of dif-
ferentiation” (CD) markers are routinely used
for flow cytometric identification of cell popula-
tions. Although it is convenient to think of cells
in different stages of development as having dis-
tinct, regimented profiles, hematopoiesis fre-
quently manifests as a continuum of CD marker
expression connecting the cellular lineage stages
(26). Although cells might pause at recognized
stages of development to which we ascribe cer-
tain phenotypes, cells also pass through transient
intermediate states that connect parent popula-
tions to their progeny. As they proceed from one
stage of development to the next, CD marker
sets rise and fall in accordance with programmed
differentiation and environmental contexts. A con-
ventional display of the relationships between
the 31 cell surface markers measured here on
human bone marrow would require greater than
450 biaxial dot plots (fig. S3), making a com-
prehensive interpretation of the underlying cel-
lular progression unwieldy, if not impossible.

We hypothesized that the inherent similarity
of cell stages and continuity of the transitions
between cell differentiation states could be used
to organize high-dimensional data into ordered,
continuous clusters of similar cell phenotypes
that, when projected on a two-dimensional (2D)
plane, would convey the relatedness of these cells
in a higher dimensional space. We leveraged pro-
gressive changes in CD marker expression to
organize bone marrow cells in an unsupervised
manner, creating a tree-like scaffold for visual-
ization of high-dimensional intracellular sig-
naling behaviors in various cell types present
during hematopoietic development in the bone
marrow (27, 28). To accomplish this, we used
SPADE (spanning-tree progression analysis of
density-normalized events), a density normalization,
agglomerative clustering, and minimum-spanning
tree algorithm to distill multidimensional single-
cell data down to interconnected clusters of rare,
transitional, and abundant cell populations, which
were organized and displayed as a 2D tree plot
(Fig. 2A). Such a tree plot from healthy bone
marrow represented the clustered expression of
the cell-surface antigens that were used to build
the tree in 13-dimensional space on the basis of
the core surface markers conserved between our
two 34-parameter analysis panels (CD3, -4, -8,
-11b, -19, -20, -33, -34, -38, -45, -45RA, -90,
and -123) (Fig. 2B). Each node of the plot en-
compasses a cluster of cells that were pheno-
typically similar in the 13-dimensional space
defined by the core surface markers. The ap-

proach uses a minimum-spanning tree algorithm,
in which each node of cells is connected to its
“most related” node of cells as a means to con-
vey the relationships between the cell clusters.
The number of nodes and ultimately their bound-
aries is driven by a user-definable value (21).
Each node describes an n-dimensional boundary
encompassing a population of phenotypically
similar cells. When connected via the minimum
spanning tree, this provides a convenient ap-
proach to map complex n-dimensional relation-
ships into a representative 2D structure.

As such, related nodes could be mapped into
traditionally described immunological cell pop-
ulations as determined by the localized expression
patterns of 13 directly measured surface markers
(Fig. 2, B to E, and fig. S4A). A summary of evi-
dence supporting these annotations and bounda-
ries can be found in table S2. For instance, T cell
populations were annotated on the far right branch
of the tree plot based on the high expression of
CD3 (Fig. 2C, bright red). The Tcell markers CD4
and CD8 were expressed in mutually exclusive
clusters but overlappedwith CD3 expression. Den-
sity normalization enabled the display of rare cell
types, such as CD34+ progenitor cells, in the same
space as themore abundant differentiated cell types
(Fig. 2E). The unsupervised organization of pheno-
typically related cell types into adjacent branches,
such as CD4 andCD8Tcells (Fig. 2C),mature and
immature B cells (Fig. 2D), and different clusters
of myeloid cells (Fig. 2E) collectively illustrates
that the algorithmic ordering of surface marker
similarity can objectively organize cell types into
physiologically relevant compartments.

Although theywere not used in the tree-building
step, the 18 additional surface markers from the
“immunophenotype”-staining panel were used to
confirm and refine cell subset annotations (Fig.
2F and fig. S4B). These markers were overlaid in
an unsupervised fashion onto the existing tree by
assigning each cell from the immunophenotyp-
ing experiment to whichever node contained
analogous cells from the functional data set ac-
cording to the expression of the shared 13 core
surface markers in the registration space. The ac-
curacy of this automated overlaying approach is
supported by the agreement of multiple natural
killer (NK), monocyte, and B cell markers that
localized to the appropriate cell populations (Fig.
2F), even though they were not used to direct the
tree’s original organization. Although the tree
structure derived from bone marrow data reca-
pitulates many features of hematopoietic organi-
zation and relatedness, it is interpreted here as a
map of the phenotypic relationships between
diverse cell types and is not meant to imply a
developmental hierarchy. Indeed, even measur-
ing a large number of cells in a single tissue
will fail to capture some developmental tran-
sitions, including (i) rapid activation (release of
cytoplasmically sequestered receptors) (29); (ii)
uneven surface marker partitioning during asym-
metric cell division (30); and (iii) organ-specific
development outside the assayed organ (matura-
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tion of T cells in the thymus). In this bone mar-
row data set, several well-defined cell types (such
as T, NK, B, and monocyte) provide landmarks
for the organization of the tree and give context to
the nodes encompassing transitional and less-
understood cell types. Ultimately, this approach
enabled visualization of 34-dimensional bone mar-
row data in an intuitive graphical format. Al-
though the algorithm over-segregated some cell
types into redundant contiguous clusters, this ap-
proach has several advantages that complemented
the complexity of this data set: (i) increased resolu-
tion captured unexpected and transitional cell
types that escape standard classification strategies;
(ii) Unsupervised analysis helped overcome the
bias of subjective gating; and (iii) n-dimensional
algorithms leveraged the multi-parameter mass
cytometry data to define cell types on the basis of
previously unappreciated, subtle differences in sur-
face expression. Although we used stochastically

selected “seed” cells to initiate the tree genera-
tion along with local similarity clustering and
minimum-spanning trees, the approach is ame-
nable to incorporation of other more determi-
nistic partitioning approaches that might allow
for other standardized tree structure formation.

Ex vivo analysis of healthy human bone mar-
row signaling. Historically, by detailing im-
mune functions in vivo and in vitro a model of
specialized cell types in immunology and hema-
topoiesis were mapped primarily on the basis of
expressed cell surface antigens—many of which
were codified by using single-cell analysis and
fluorescence-based cytometry (31–34). Because
cell-surface proteins represent only a small pro-
portion of the repertoire of gene products gov-
erning cell behavior, intracellular proteins (33)
are also critical in defining cell types. Because
surface and intracellular molecules work to-
gether in concert to support different cellular

roles, it might be expected that proteins govern-
ing specialized immunological cell functions
(T cell receptor, B cell receptor, or cytokine re-
ceptors) are modulated in a coordinated manner
as cells transit developmental pathways from
stem cell precursors to differentiated endpoints.

We monitored 13 surface markers to iden-
tify immune cell types and 18 intracellular epi-
topes in order to interrogate intracellular signaling
biology in healthy human bone marrow. We
examined the signaling dynamics of these 18 in-
tracellular markers in response to 13 ex vivo stim-
ulation conditions (such as IL-7 or GM-CSF),
including those shown to have prognostic value
in leukemia, lymphoma, and myeloproliferative
disorders [such as granulocyte colony stimulat-
ing factor (G-CSF)] (10, 35–37). Cell populations
were first defined on the basis of conventional sur-
face expression gates, ultimately identifying 24 im-
munological populations in human bone marrow

Fig. 2. SPADE links re-
lated immune cell types
in a multidimensional con-
tinuum of marker expres-
sion. (A) Summary of
SPADE analysis. Single-
cell data are sampled in
a density-dependent fash-
ion so as to reduce the
total cell countwhilemain-
taining representation
of all cell phenotypes.
Neighboring cells are then
grouped by unsupervised
hierarchical clustering.Re-
sulting nodes (defined as
those cells within abound-
ary of an n-dimensional
hull) are then linked by
aminimum-spanning tree,
which is flattened for 2D
display. (B) Immunopheno-
typicprogression inhealthy
human bone marrow. A
tree plot was constructed
by using 13 cell-surface
antigens in healthy hu-
man bone marrow. 18
additional intracellular
parameters were acquired
concurrently but excluded
from tree construction.
The size of each circle in
the tree indicates rela-
tive frequency of cells
that fall within the 13-
dimensional confines of
the node boundaries. Node color is scaled to the median intensity of marker
expression of the cells within each node, expressed as a percentage of themaximum
value in the data set (CD45RA is shown). Putative cell populations were annotated
manually (table S2) and are represented by colored lines encircling sets of nodes
that have CD marker expression emblematic of the indicated subset designations.
(C) Overlaid expression patterns of CD3, CD8, and CD4. Three markers, along with
CD45RA (B), were used in clustering that helped define T cell lineages. Color scale is
as described in (B). (D) Overlaid expression patterns of CD19, CD20, and CD38.
Threemarkers were used in clustering that helped define B cell lineages. Color scale

is as described in (B). (E) Overlaid expression patterns of CD34, CD123, and CD33.
Three markers were used in clustering that helped define myeloid and progenitor
cell lineages. Color scale is as described in (B). (F) Overlaid expression of com-
plementary surface markers from a staining panel with 18 additional surface
markers (fig. S4) by using the 13 core surface markers as landmarks (21). Overlaid
expression patterns are shown for eight complementary surfacemarkers that helped
to further define themyeloid (CD13, CD14, and CD15), B cell (CD10), and NK/T cell
(CD7, CD56, CD161, and CD16) portions of the SPADE representation. These
markers were not used for tree construction. Color scale is as described in (B).
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(fig. S5). The induced intracellular signaling re-
sponses (changes in phosphorylation state) in
these populations, as compared with those of
an untreated control, were summarized as a heat-
map (Fig. 3A). Unsupervised, hierarchical clustering
of the phosphorylation responses allowed distinc-
tion of biologically related cell types (T cell subsets)
by their signaling behavior alone, demonstrating
that signaling capacities are closely tied to cel-
lular lineage (fig. S6). Several canonical signaling
responses that mapped to manually determined cell
types are shown in Fig. 3B. These extremely spe-
cialized responses, such as the tight restriction of
IL-7–mediated pSTAT5 responsiveness in T cells
(Fig. 3B, arrow 4) (38) or lipopolysaccharide (LPS)–
stimulated phosphorylation of the mitogen-activated
protein kinase (MAPK) p38 (p-p38) responsiveness
in monocytes (Fig. 3B, arrow 5) (39), suggest the
existence of correlations between signaling events
and surface marker–defined boundaries, thus pre-
senting an opportunity to establish a unified view
of immune signaling during hematopoiesis.

With ~104 signaling observations (Fig. 3A
and fig. S10A) for each replicate bone marrow,
it was necessary to filter the data set in order to
arrive at the most significant and potentially novel
observations. Using a one-sample t-test, over 500
observations were observed with a Bonferroni-
adjusted significance of P < 0.05 in each replicate
bone marrow for a total of 860 unique responses
(fig. S7 and table S3). Of the 248 observations
overlapping between patient marrows, 28 be-
longed exclusively to cells residing in the hu-
man hematopoietic progenitor cell compartment
[hematopoietic stem cells (HSCs), multipotent
progenitors (MPPs), granulocyte/macrophage pro-
genitors (GMPs), and megakaryocyte-erythroid
progenitors (MEPs)], including G-CSF induc-
tion of pSTAT3 in the most primitive cell types,
HSC and MPP (40). This same signaling behav-
ior correlated with negative prognosis in acute
myeloid leukemia (10), suggesting that, as in the
case of other malignancies, there may be a selec-
tive advantage for cells to mimic the properties of
their most primitive counterparts.

For a more objective and fine-grained view of
these cell type–specific responses, free of the
biases of conventional 1D and 2D surface marker
categorization, we overlaid the signaling behav-
ior of the 18 functional epitopes on the tree structure
using a similar approach as described for the im-
munophenotype staining panel (Fig. 2), allowing
the intracellular signaling status to be visualized
on the previously annotated tree structure (Fig. 3C).
Nodes were colored according to the magnitude of
the difference in their median responses relative to
the untreated control. This effectively eliminated
the subjectivity of manual classification and im-
proved the resolution of the heatmap (Fig. 3A),
separating the 24 manually assigned cell types
into 282 logically connected nodes of phenotyp-
ically distinct, but locally similar, cell clusters.

The stimuli that corresponded closely with cell
types identified manually in the heatmap also ex-
hibited appropriately specific responseswhen over-

laid on the tree structure—specifically, IL-7/pSTAT5
in T cells, B cell receptor (BCR)/phosphorylated
B cell linker protein (pBLNK) exclusively in im-
mature and mature B cells, and LPS/p-p38 re-
stricted to the monocyte compartments (Fig. 3C),
with the latter corresponding to the expression
of the LPS co-receptor (CD14) (Fig. 2F). A com-
plete set of the effects of 13 stimuli on 18 dif-
ferent functional markers is presented as tree
plots (fig. S8) along with a confirmatory analysis
of a second bone marrow (fig. S9).

With multiple matching canonical signaling
pathways to validate the approach, we examined
the data set for previously unidentified or unex-
pected signaling behaviors. For example, although
pSTAT5 activation by IL-3 (Fig. 3D) was com-
mensuratewith IL-3Ra (CD123) expression levels
(Fig. 3D) inmyeloid cells, IL-3–mediated pSTAT3
activation was unexpectedly absent in mature B
cells in spite of abundant presence of the receptor
(Fig. 3D, blue arrow). This suggests that mature
B cells share some, but not all, IL-3 signaling
mechanisms with myeloid cell types.

Other responses, such as phosphorylation of
the protein tyrosine kinases Btk and Itk mediated
by IFNa or ribosomal protein S6 by G-CSF, were
less tightly confined, exhibiting a range of activity
that spannedmultiple cell types (Fig. 3E). Yet other
responses showed a signaling “gradient,” as exem-
plified by pervanadate (PVO4)–mediated disruption
of the kinase/phosphatase balance upstream of
the adenosine 3´,5´-monophosphate (cAMP) re-
sponse element–binding protein (CREB) transcrip-
tion factor. A gradient of responses, highest in
HSCs, decreased gradually along the path of B
cell maturation (Fig. 3E). A range of NFkB sig-
naling responses, as measured bymonitoring total
IkBa levels, were observed across monocyte, NK
and T cell subsets following TNFa stimulation
(Fig. 3E, light bluenodes).As in theCREBresponse
to PVO4 described above (Fig. 3E), the consistency
of responses within the different T cell subsets
suggests tightly regulated differences in signaling
molecules that underlie the discrete functional
roles of these related cell types. Together, these
varied signaling responses across algorithmically
defined partitions dictated solely by surfacemarker
immunophenotype imply the existence of different
classes of developmental transition points: (i) precise
transitions, which are characterized by coordinated
changes in cell signaling, such as the IL-7/pSTAT5
response in T cells and the LPS/p-p38 response
in monocytes (Fig. 3C), and (ii) continuous de-
velopmental progressions, which are character-
ized by gradual gain or loss of expression of
certain kinases or phosphatases, as highlighted
by PVO4/pCREB (Fig. 3E) in B cells (28). The
latter is indicative of fine-grained changes in
regulatory architecture that track with immuno-
phenotype within conventionally defined hema-
topoietic compartments and provides an opportunity
to explore the mechanisms that define these dis-
tinctive regulatory phenomena.

Confirmation of progression-specific signaling
in hematopoietic development. To investigate

more closely the signaling transitions and the ob-
served signaling heterogeneity inside seemingly
homogeneous cell compartments, we mapped
changes in B cell signaling as they coincided
with the progression of B cell maturation. Using
the cell events comprising the Pre-B II through
IL-3Ra+ mature B cell subsets defined in the
SPADE plot (Fig. 4A) (see table S2 for surface
marker definitions of B lineage stages), we used
an independent statistical method—principal
component analysis (PCA)—to distill the dimen-
sionality of 13-parameter surface marker data
to a single linear “progression axis.” Principal
component analysis found that the first principal
component—the axis of greatest variation in
the data (explaining 23% of the variation)—
followed known markers of B cell maturation.
This progression axis was primarily defined by
increasing CD20 expression and decreasing CD38
expression, with smaller contributions from in-
creasing CD45RA (Fig. 4B). The match between
the first principal component and the established
sequence of B cell development (26, 41) is fur-
ther supported by additional markers, such as
the increase in CD19 and CD123 along this axis
of progression. Projecting cells onto this progres-
sion trajectory defines a continuum of cells, rather
than distinct subsets (Fig. 4A, gray line).

Although no intracellular parameters were used
in defining the PCA progression, many intracel-
lular markers demonstrated a smooth and gradual
change along this axis of progression, providing
the opportunity to explore how signaling changes
during B cell development. Abundance of the
cell cycle–associated nuclear protein Ki67 at
basal state revealed a transition point character-
ized by a peak in the amount of Ki67 (cycling
cells) followed by a concomitant increase in
CD20 expression (Fig. 4B). The inverse relation-
ship between these parameters suggests that the
continuous production of B cells in bone marrow
is paused when CD20 is gained, thus coinciding
with the exit of immature B cells from the marrow
(42). The dramatic increase in the abundance of
CD20+ B cells shortly after this transition point
(Fig. 4, A and B) may indicate the presence of a
reservoir of dormant CD20+ mature B cells in
bone marrow awaiting antigen activation (43).

Overlaying the basal (untreated) intensities of
phosphorylated extracellular signal–regulated ki-
nase 1 and 2 (pERK1/2), Src homology protein
tyrosine phosphatase 2 (SHP2), SLP-76/BLNK
(SLP-65), pPLCg2, and CREB onto the PCA
axis revealed that basal phosphorylation of these
molecules at the measured sites was relatively con-
stant across differentiating B cell types (Fig. 4C).
However, induced phosphorylation of these sites
by PVO4 and BCR (Fig. 4C) clarified the hetero-
geneity of PLCg2 phosphorylation observed after
PVO4 treatment in the tree plots (Fig. 5B), reveal-
ing instead a gradual decline that tracked with mat-
uration. An opposing trendwas observed in pPLCg2
responsiveness to BCR activation, which exhib-
ited an increase that closely tracked with CD20 ex-
pression (Fig. 4C). The same trend was observed
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Fig. 3. Signaling functions mark developmental transitions in hematopoietic
progression. (A) A heatmap summary, ordered developmentally by cell type
and stimulation condition, of the status of 18 intracellular functional markers
in cells treated with 1 of 13 biological and chemical stimuli. (Left) Abbre-
viations refer to recombinant human proteins, except BCR, B cell receptor cross-
linking; LPS, lipopolysaccharide; PMA/Iono, phorbol-12-myristate-13-acetate with
ionomycin; and PVO4, pervanadate. Single-cell data from healthy human bone
marrow were manually divided (“gated”) into 24 conventional cell populations
(fig. S5) according to 13 surface markers and DNA content. Signaling induction
was calculated as the difference of inverse hyperbolic sine (arcsinh) medians of
the indicated ex vivo stimulus compared with the untreated control for each
manually assigned cell type (21). Each row within a given stimulus group (gray
bars) indicates the signaling induction of 1 of 18 intracellular functional markers
(bottom). A subset of conditions (red numbers) was highlighted for further dis-
cussion in (B). (B) Magnified view of the conditions marked in (A). A subset of
these signaling responses (blue boxes) are shown as SPADE plots [(C) to (E)] to

investigate correlations between signaling function and differences in immunophe-
notype as discussed in the text. (C) Canonical, cell type–specific signaling func-
tions. Stimulation by IL-7, BCR, or LPS each induced phosphorylation of STAT5 in
T cells, BLNK (SLP-65) [detected with an antibody raised against pSLP-76 (21)] in
B cells, and p38 MAPK in monocytes, respectively. Signaling induction for each
node in the SPADE diagram was calculated as the difference of arcsinh median
intensity of the indicated ex vivo stimulus compared with the untreated control.
(D) Correlation of IL-3–mediated induction of pSTAT3 and pSTAT5 with IL-3Ra
expression [(Left) color scale as described in Fig. 2B] in myeloid and B cells. The
B cell population that did not phosphorylate STAT3 in response to IL-3 stimula-
tion is indicated (blue arrow). All nucleated cell subsets, including IL-3Ra+ B cells,
exhibited pSTAT3 induction in response to IFNa stimulation. Signaling induction
calculated as in (C). (E) Examples of phosphorylation responses that paralleled
immunophenotypic progression identified by the SPADE algorithm. Changes in
Btk/Itk, S6, CREB phosphorylation, and total IkBa are shown in response to IFNa,
G-CSF, PVO4, and TNFa, respectively. Signaling induction is calculated as in (C).
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for pERK1/2, pSLP-76, and pSHP2, suggesting a
parallel and coordinated change in signaling path-
ways. In contrast, mature B cells lacked a PVO4-
sensitive mechanism, but the same set of signaling
mediators appeared to be repurposed in a coordi-
nated phosphorylation response to BCR activation
(Fig. 4C). These results suggest that in pre-B II

and immature B cells, but not mature B cells,
pPLCg2 activation is increased by an upstream
tyrosine kinase with tightly regulated activity. This
example supports the existence of parallel signaling
mechanisms affecting these nodes (SLP-76, SHP2,
PLCg2, and ERK1/2) that gradually switches along
with the expression continuums determined by ex-

ternal immunophenotypic markers. Together, these
parallel continuums could define each cell’s func-
tional role within the greater hematopoietic system.

Effect of pharmacologic kinase inhibition on
normal hematopoietic signaling. Having estab-
lished a baseline of healthy signaling responses
to a panel of stimuli, we examined cell type–
specific pharmacologic effects of some well-
characterized kinase inhibitors. These included the
Janus kinase (JAK) I inhibitor and MAPK kinase
(MEK) inhibitor U0126. Predictably, when com-
bined respectively with G-CSF and PMA/Ionomycin
treatments of human BM (figs. S8 and S9) re-
liable and specific inhibition, respectively, of
STAT3 and ERK1/2 phosphorylation are observed,
which is consistent with previously reported ob-
servations that used conventional single-cell anal-
ysis platforms (44). Although interesting results
were obtained with these inhibitors, we expanded
to focus on dasatinib, a clinically relevant small-
molecule kinase inhibitor. Dasatinib was originally
introduced as a second-line BCR-ABL kinase in-
hibitor for imatinib-resistant chronic myelogenous
leukemia (CML) (45). Unlike imatinib, dasatinib
is estimated to inhibit over 100 kinases besides
Abl—particularly, Src family kinases (SrcFKs)
(46). This promiscuity is credited for dasatinib’s
therapeutic efficacy in other malignancies (47).
However, both malignant and healthy cells must
integrate the effects of a drug with myriad other
environmental inputs. We postulated that as-
sessing drug activity in the presence of ex vivo
stimuli may reveal interactions that underlie side
effects for patients or expose new opportunities
for pathway intervention.

Using the same healthy human bone mar-
row, we selected a panel of ex vivo stimuli that
induced signaling in cell subsets either broadly
[phorbol 12-myristate 13-acetate (PMA)/ionomycin
and PVO4] or specifically (Flt3-L, IL-7, and BCR),
after 30 min of pretreatment with dasatinib. The
results showed several examples of pathway-
specific inhibition that fit with expected roles of
dasatinib (fig. S10). For instance, activation of
pERK1/2 in immature and mature B cells through
BCR cross-linking was completely suppressed
by dasatinib (Fig. 5A), most likely through inhibi-
tion of Lyn, a critical SrcFK downstream of the B
cell receptor (48). In contrast, PMA/ionomycin–
mediated activation of pERK1/2 was unaffected
by dasatinib, thus confirming the observation that
protein kinase C (PKC) signaling is mediated by
dasatinib-insensitive kinases (Fig. 5A) (49).

Phosphorylation patterns of PLCg2 after PVO4

induction (Fig. 5B) were similar to PMA/ionomycin
induction of pERK1/2 in the absence of dasatinib.
However, dasatinib had a uniformly suppressive
effect upon PVO4 induction of PLCg2 in all cell
types (Fig. 5B), whereas it minimally inhibited
induction of Erk1/2 upon PMA/ionomycin stimu-
lation (Fig. 5A). Thus, in contrast to the dasatinib-
insensitive PKC pathway described above (Fig.
5A) the PVO4-sensitive cascade upstream of PLCg2
was inhibited by dasatinib in all cell types, includ-
ing platelets. This result may reconcile a clinical

Fig. 4. PCA confirms that
cellular signaling potential-
ly tracks with the immu-
nophenotypic continuum
in B cell subsets. (A) Using
the SPADE representation
(right), cells assigned to
pre-B II, immature B, ma-
tureB, and IL-3Ra+mature
B cell populations were se-
lected for PCA in 13 di-
mensions defined by the
core immunophenotypic
markers used in both pan-
els. The relative frequencies
of the four B cell popula-
tions are shown as stacked
bars in 1% windows along
thephenotypicprogression
axis (colors correspond to
key at right); the number
of cells in each window is
expressed as a proportion
of the sample subjected
to PCA (gray line). (B) The
measured intensities of five
immunophenotypic mark-
ers (CD45RA, CD19, CD20,
CD38, and CD123) along
the phenotypic progres-
sion axis. These markers
captured the majority of
the phenotypic changes
observed here during B
cell maturation. Intracel-
lular Ki67 expression, an
indicator of cellular prolif-
eration, was not used in
defining the PCA axis but
was among the 18 func-
tional markers that were
measured concurrently at
thesingle-cell level. (C)Phos-
phorylation of ERK1/2, SLP-
76(BLNK/SLP-65), PLCg2,
CREB, and SHP2 overlaid
on the PCA progression
axis. These and other func-
tional epitopes were not
used in the PCA axis con-
struction. The top plot dis-
plays the basal levels
(untreated) of these phos-
phorylated epitopes in the
untreated sample. Subse-
quent plots display induced
changes in phosphoryl-
ation in response to PVO4
and B cell receptor cross-linking relative to the untreated control.
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observation of platelet dysfunction in CML pa-
tients treated with dasatinib (50), in which the in-
hibition of the SFKs upstream of PLCg2 (Lyn and
Fyn) is the proposed mechanism of dysregulation.

In B cells, dasatinib prevented phosphoryl-
ation of all measured components of the BCR
signaling cascade (Syk, SHP2, Btk, BLNK, and
PLCg2) regardless of whether activation was
through BCR crosslinking or PVO4 treatment
(Fig. 5B and fig. S8C). This off-target activity
may underlie the efficacy reported in a patient
with chronic lymphocytic leukemia, a B cell ma-
lignancy (51). However, these effects may also
have undesirable consequences. For example,
suppression of subtle pro-survival (“tonic”) B
cell signaling (52) may account for the decline

of circulating B cells observed in CML patients
undergoing high-dose dasatinib therapy (53).

Disruption of the tyrosine kinase/phosphatase
equilibrium with PVO4 also caused potent phos-
phorylation of STAT5 in nearly all cell types, but
this was completely abrogated by dasatinib in all
but the plasmacytoid dendritic cells (Fig. 5C).
This time, dasatinib had no effect on the exclusive
induction of STAT5 phosphorylation shown in T
cells by IL-7 (Fig. 5C). The suppression of pSTAT5
in PVO4-treated myeloid cells (Fig. 5C) supports
the alternative mechanism of SrcFK activation of
STAT5 activity and resembles the effect of dasatinib
in a BCR-ABL–positive CML cell line (54).

That these pleiotropic downstream signal-
ing molecules (ERK, STAT5, and PLCg2) can

be potently activated via both dasatinib-sensitive
and -insensitive pathways highlights the drug’s
context and cell-type specificity for different
signaling mediators. Thus, the unchecked endog-
enous tyrosine kinase activity revealed by PVO4

may unveil differences in druggable signaling ar-
chitecture between cell types by mimicking the
dysregulated signaling of cells susceptible to dis-
ease or dysfunction. Additionally, as underlined
by these limited examples, the dasatinib data set
provided a mechanistic blueprint of regulatory
cell signaling events that could potentially be
exploited in later clinical applications.

Given the diverse cell type–specific effects of
dasatinib, we investigated whether drug sensitiv-
ity would follow immunophenotypic progressions

Fig. 5. Multiplexed mass cytometry analysis re-
veals diverse signaling dynamics in response to the
kinase inhibitor agent dasatinib. (A) SPADE plots
of exemplary cell type–specific inhibitory effects of
dasatinib. Phosphorylation of ERK1/2 was sensitive
to dasatinib when induced with BCR cross-linking
but not when induced with PMA/ionomycin. Signal-
ing induction for each node in the SPADE diagram
was calculated as the difference of arcsinh median
of the indicated ex vivo stimulus compared with the
untreated control. (B) T lymphocytes exhibited STAT5
phosphorylation in response to IL-7 in the presence
of dasatinib with similar magnitudes as the response
observed without drug. PVO4 induction of STAT5
phosphorylation was inhibited by dasatinib in all but
plasmacytoid dendritic cells. Calculated as in (A). (C)
B lymphocytes exhibited specific PLCg2 phosphoryl-
ation in response to receptor cross-linking that was
completely abolished in the presence of dasatinib.
PLCg2 phosphorylation was relatively large in all but
B lymphocyte lineages in the presence of PVO4 but
was inhibited completely by dasatinib treament in all
cells. Calculated as in (A). (D) Using the SPADE repre-
sentation, cells corresponding to HSC, MPP, pro-B,
and pre-B I cell populations were selected for PCA of
the 13 core immunophenotypic markers. The rela-
tive frequencies of the four progenitor cell popula-
tions are shown as stacked bars in 1% windows
along the phenotypic progression axis (colors corre-
spond to key at right); the number of cells in each
window is expressed as a proportion of the sample
subjected to PCA (gray line). (E) The measured inten-
sities of six immunophenotypic markers (CD34, CD33,
CD19, CD20, CD38, and CD123) along the progres-
sion axis. These markers captured the majority of the
phenotypic changes observed here during progenitor
cell maturation. (F) Basal (untreated) phosphorylation
levels of p38, SrcFK, CREB, and SHP2 overlaid on the
phenotypic progression axis. These and other function-
al epitopes were not used in the PCA axis construction.
(G) Induced changes in phosphorylation of p38, SrcFK,
CREB, and SHP2 in response to PVO4 compared with
untreated control. Signaling induction is calculated
as in (A). (H) Suppression of normal PVO4 response
by dasatinib. Suppression index is calculated as the
signaling induction by PVO4 with dasatinib pretreat-
ment, minus the signaling induction by PVO4 alone.
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as observed above (Fig. 4). Cells representing
HSC through pre-B I phenotypes were selected
from the SPADE plot and subjected to principal
component analysis (Fig. 5D). Unsupervised
PCA detected the phenotypic progression in early
B cell development as a single linear progression
axis defined primarily by CD19, CD34, and
CD33 intensities (Fig. 5E). This axis recapitu-
lated the expected developmental sequence and
independently verified the ordering identified
by the SPADE algorithm (Figs. 2 and 5D). The
basal intensities of four intracellular signaling me-
diators (pSHP2, pCREB, pSrcFK, and p-p38)
were unchanged throughout the PCA progres-
sion axis (Fig. 5F) and exhibited similar potential
for activation by PVO4 (Fig. 5G). In contrast,
these same signaling mediators exhibited a grad-
ual increase in sensitivity to dasatinib correlated
with maturation (Fig. 5H). This observation may
be attributable to high expression of drug efflux
pumps in the most immature cell types (HSCs
and MPPs) (55). Alternatively, because PVO4 re-
veals endogenous kinase activity by repressing
tyrosine phosphatases these observations may in-
dicate a gradual shift in the phosphatase/kinase
balance during early B cell maturation. Altogether,
this approach provides insight into how a high
dimensional analysis can call attention to poten-
tial off-target effects and new therapeutic opportu-
nities that can be leveraged at all stages of the
drug development pipeline.

Discussion. In this study of the immune sys-
tem, coupling classical phenotypic organization
to cellular functional responses was unrestricted
by the inherent limitations imposed by fluores-
cence. This merging provided a systems-level view
of human hematopoiesis and immunology from
the perspective of immunophenotype and coupled
it to underlying events as measured through re-
ceptor engagement and small-molecule drug ac-
tions. Although yielding both qualitatively and
quantitatively identical measurements when com-
pared (Fig. 1 and fig. S1), current mass cytometry
detection may not be as sensitive as fluorescent
detection of the most quantum-efficient dyes (Fig.
1, D to E). However, the differences in sensitivity
between mass cytometry isotopes used here are
within a twofold range (19), whereas quantum
yields of routinely used fluorescence dyes vary
across a 10-fold range and require compensation
for spectral overlap. This combined with the
lack of background signal (autofluorescence) and
the substantially greater number of parameters
that can be simultaneously analyzed makes mass
cytometry an attractive platform currently availa-
ble for highly multiplexed single-cell analysis.

The single-cell functional outcome data set
(free to explore and available online) both con-
firmed expected immunological phenomena
and yielded unexpected observations related
to the spectrum of cell type–specific signaling
faculties and drug responses that arise during
hematopoietic development. For instance, there
was a lack of IL-3 regulation of STAT3 in ma-
ture B cells, despite the presence of CD123 (IL-3

receptor–a chain) (Fig. 3). Additionally, both
precise and more gradual continuous signaling
transitions observed in the data set across de-
veloping cell subtypes (Fig. 3) represent some
of the most interesting biological insights. Many
of these precise transitions correlate well with
receptor expression measured here [IL3/CD123
and LPS/CD14 (Fig. 3 and figs. S4 and S8) and
known from previous work (IL7/pSTAT5 based
on IL7 receptor expression on T cells (56)]. As
for the continuous transitions, more broadly act-
ing conditions such as PVO4 treatment revealed
more subtle phosphorylation changes (Figs. 3
to 5) that probably reflect equally subtle changes
in the kinase/phosphatase expression levels up-
stream of each of these measured targets, par-
alleling the phenotypic transitions.

These observations not only offer an oppor-
tunity to investigate the mechanism underlying
the differences but may also provide a possibil-
ity to design drugs that might more precisely
modulate disease states. There were many ex-
amples of signaling that corresponded with
known distinct hematopoietic stages as well as
multiple examples of progressive signaling re-
sponses across continuums of related cell types.
We expect that a deeper mining of this and ad-
ditional data sets will reveal many unexpected,
system-wide correlations that could initiate new
forms of mechanistic inquiry beyond what is
currently possible with conventional techniques.

The extension of this analysis pipeline to pre-
clinical settings can provide new insights into the
mechanisms of diseases that perturb hematolog-
ical function and could help pinpoint the true
specificity and efficacy of drugs designed to re-
store the system to homeostasis. Expansion of
this technology to additional parameters per cell
(18, 19) can be enabled by the use of other iso-
topes and binding agents—such as with isotopical-
ly enriched nanocrystals and new metal chelators.
Combination of the increased availability of param-
eters in this platform with the high-throughput
methods previously demonstrated in fluorescence
flow cytometry [fluorescent cell barcoding (57 )
and drug screening (44)] opens avenues for mas-
sively multiplexed single-cell assays. Opportu-
nities exist to extend the repertoire of transition
element isotope reporter–enabled reagents to mim-
ic (and potentially improve on) many of the
assayable capabilities of fluorophores. Together,
these advances offer an opportunity to delve
deeper into signaling, studying entire pathways
in cellulo, and thus explore the developmental
functions of the immune system as a whole. Such
studies of normal immune function can act as a
backdrop to better understand how cancer, in-
flammatory, and autoimmune diseases affect or
disable system-wide immune functions. An im-
portant next step will be the unification of these
single-cell systems studies with other “-omic”
(such as genomic, epigenomic, metabolomic, and
proteomic) approaches to lead to an integrated
view of how disease manifests and the ways we
can precisely correct pathologic processes.
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Observation of Orbital
Currents in CuO
V. Scagnoli,1* U. Staub,1 Y. Bodenthin,1 R. A. de Souza,1 M. García-Fernández,1

M. Garganourakis,1 A. T. Boothroyd,2 D. Prabhakaran,2 S. W. Lovesey3,4

Orbital currents are proposed to be the order parameter of the pseudo-gap phase of cuprate
high-temperature superconductors. We used resonant x-ray diffraction to observe orbital
currents in a copper-oxygen plaquette, the basic building block of cuprate superconductors.
The confirmation of the existence of orbital currents is an important step toward the understanding
of the cuprates as well as materials lacking inversion symmetry, such as magnetically induced
multiferroics. Although observed in the antiferromagnetic state of cupric oxide, we show that
orbital currents can occur even in the absence of long-range magnetic moment ordering.

Although high-temperature (Tc) supercon-
ductivity was discovered 25 years ago,
there is still no consensus on its micro-

scopic origin. The peculiar properties of the
normal state are widely thought to hold the key
to understanding the electronic behavior of the
cuprates, including superconductivity, and for
this reason considerable attention has been paid
to the pseudo-gap region of the phase diagram
(1). One theoretical approach to describe the
pseudo-gap phase predicts the existence of time-
reversal symmetry breaking because of orbital
currents (2–4). An order parameter that can be
used to characterize this type of broken symmetry
is a polar vector (parity-odd) that is magnetic
(time-odd). Such a vector, also known as an
anapole or toroidal moment, is a familiar quan-
tity in particle physics (5, 6), where it arises
from parity violation inside the nucleus and man-
ifests itself through the magnetoelectric interac-
tion with atomic electrons. The concept has also
been extended to the solid state (7 ), where it can
be used to describe the antiferromagnetic order-
ing in crystal without space inversion center.More-
over, the presence of toroidal-moment ordering and
its relation to magnetically induced multiferroics
is the subject of current debate (8). In principle,
resonant x-ray diffraction (RXD) can detect or-
bital current symmetry breaking directly (9). RXD

takes advantage of resonance effects at an x-ray
absorption edge to single out the contribution of
the resonant atomic species and enhances weak
diffraction signals because of magnetic moments
providing information on electrons in the ground
state not available in conventional diffraction.
The RXD process is a second-order process of
electron-photon coupling perturbation. In the elec-
tric dipole approximation (E1), the scattering
amplitude from a single site is proportional to

f (E1 − E1) º ∑
m

〈gjRD′jm〉〈mjRDjg〉
E þ Eg − Em þ iGm=2

ð1Þ
In such a process, a photon with energy E is

scattered by being virtually absorbed and emitted
with polarization D′ and D, respectively. Em is the
energy of a virtual intermediate state m with
lifetime ħ/Gm, Eg is the energy of an equilibrium
state of the electron g belonging to the ground
state of the material, R is the position operator,
and RD = D · R. The sum is on the intermediate
states m.

When the E1 contribution to the resonant
event is small or forbidden, the matrix element
〈m|RD|g〉 must be replaced by (10, 11)

(Em − Eg)me 〈mjRDjg〉 þ i

2
〈mjRDq ⋅ Rjg〉

� �
þ

1

2
〈mjq� D ⋅ (Lþ 2S)jg〉 ð2Þ

where the first contribution is the familiar elec-
tric dipolar term, the second is due to the electric
quadrupole process (E2), and the last is the

magnetic dipole term (M1). q is the photon
wave vector, and L and S are the orbital and
spin angular momentum operators, respectively.
Mixed terms (e.g., E1-M1 and E1-E2) may ap-
pear in the second-order scattering amplitude,
and it is the presence of such terms that allows
contributions from orbital currents to be observed
(9). When mixed terms are present the scat-
tering amplitude is given by, for example, f =
h f (E1-E1) + f (E1-M1), where the complex
parameter h accounts for a possible energy and
lifetime difference between the two events.

Despite its simple chemical formula, cupric
oxide (CuO) is a material that displays a wealth
of interesting properties. It is the building block
of the cuprate high-Tc superconductors. Its crys-
tal structure belongs to the non-centrosymmetric
monoclinic space group Cc (12). CuO under-
goes two different magnetic transitions, at T1 =
213 K and T2 = 230 K (13–15), between which
multiferroic properties have recently been discovered
(16). Below T1, CuO is a commensurate anti-
ferromagnetic with ordering wave vector (1/2, 0,
–1/2). The low, inversion-lacking symmetry makes
it an ideal candidate to detect orbital currents.

We provide evidence of orbital currents
through the observation of E1-M1 RXD at the
Cu L2,3 edges in CuO and suggest the existence
of orbital currents in cuprates and multiferroics.
Figure 1A shows the resonance enhancement at
the copper L2,3 edges of the superlattice reflection
(1/2, 0, –1/2) associated with the antiferromag-
netic motif of the copper magnetic moments.
Energies correspond to the 2p → 3d electric
dipole excitations. At the L3 edge there are two
resonant features (EA = 929.5 eV and EB =
934.8 eV), whereas at the L2 (EC = 950 eV) edge
there is hardly any resonance. Such a difference
might reflect the presence of spin-orbit coupling,
leading to a substantial departure from the con-
ventional Mott insulating state.

To confirm the magnetic origin of an observed
resonant enhancement, it is standard practice to
perform polarization analysis of the diffracted
x-rays (fig. S1). Magnetic x-ray diffraction has the
property to rotate the polarization of the incident
photons by p/2. Therefore, when the incident
photon polarization is perpendicular to the dif-
fraction plane (an arrangement known as s) all
diffracted photons are polarized within the dif-
fraction plane (p). The absence of diffracted pho-
tons (and the associated Bragg peak) perpendicular
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