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High-throughput proteomic data can be used to
reveal the connectivity of signaling networks and
the influences between signaling molecules. We
present a primer on the use of Bayesian networks
for this task. Bayesian networks have been success-
fully used to derive causal influences among biolog-
ical signaling molecules (for example, in the analysis
of intracellular multicolor flow cytometry). We discuss
ways to automatically derive a Bayesian network
model from proteomic data and to interpret the
resulting model.

With the advent of high-throughput proteomic technologies,
molecular signaling biology is experiencing an explosion of
new experimental results. For example, intracellular multicolor
flow cytometry (1, 2) allows for quantitative, simultaneous
observation of multiple signaling molecules in many thousands
of individual cells. A major challenge is to reveal a coherent
systems-level view of the signaling network from such data.

We proffer Bayesian networks (3) as suitable models for
signaling pathways. We believe that it is essential for such
pathway models to be of a probabilistic nature to accommodate
the noise inherent in biologically derived data. Additionally,
Bayesian networks are relatively robust to the existence of
unobserved variables and can explicitly handle the uncertainty
in such unobserved events (for example, current proteomic
technology simultaneously measures only 12 molecules in
individual cells, although there are many more molecules
involved in a typical signaling response). Bayesian networks
have been used for automatic reconstruction of causal signaling
network models from data derived from individual primary
human immune cells (1). The purpose of this primer is to
provide a better mathematical understanding of Bayesian
networks and how they can be used to derive causal influences
between biological signaling molecules.

Bayesian networks provide a compact graphical representa-
tion of the joint probability distribution over the random
variables X 0 X

1
, I, X

n
(each such random variable represents

the protein expression or activity level of a signaling molecule).
Even for binary-valued variables (on or off), the joint
distribution requires specification of the probabilities for the
2n different assignments to X

1
, I, X

n
. The key property of

Bayesian networks is that they use simplifying structure in the
joint distribution (by explicit encoding of conditional indepen-
dencies; see below) to represent such high-dimensional data in
a compact manner. Furthermore, the structural aspects of the
joint distribution (modeled as a graph) might correspond to the
graph structure of the signaling network itself.

Consider a finite set X 0 X
1
, I, X

n
of random variables,

where each variable X
i
may take on a value x

i
from the domain

Val(X
i
). We use italic capital letters such as X, Y, Z for variable

names; specific values taken by these variables are denoted x,
y, z. Sets of variables are denoted by boldface capital letters X,
Y, Z; assignments of values to the variables in these sets are
denoted x, y, z.

At the core of Bayesian networks is the notion of
conditional independence. This concept can be explained with
an example from classical genetics. Assume that we are
studying a certain mutation that appears in the Springfield
population at a frequency of 0.001. If we sample a random
resident of the city, the probability (Pr) that Bart has the
mutation is 0.001. Now, assume that we know that Bart_s
Grandpa has the mutation. In this case, Pr(Bart has mutation
given Grandpa has mutation) 0 0.25. Grandpa_s genotype was
informative toward Bart_s genotype; the two genotypes are
clearly dependent. Next we learn that Homer (Bart_s father) has
the mutation too. In this case, Grandpa_s genotype is irrelevant,
so Pr(Bart has mutation given Homer and Grandpa have
mutation) 0 Pr(Bart has mutation given Homer has mutation
but Grandpa does not) 0 0.5. Likewise, if Homer does not have
the mutation, the probability that Bart has it is 0.001 whether
Grandpa has the mutation or not. Conditioned on Homer_s
genotype, Grandpa_s genotype does not affect the probability of
Bart_s genotype. Thus, we say that Bart_s genotype is
conditionally independent of Grandpa_s genotype, given
Homer_s genotype.

Definition 1: X is conditionally independent of Z given Y if
the probability distribution of X conditioned on both Y and Z is
the same as the probability distribution of X conditioned only
on Y:

PðX kY;ZÞ 0 PðX kYÞ ðEq: 1Þ

We represent this statement as (X ± ZkY).
Bayesian networks encode these conditional independencies

with a graph structure.
Definition 2: A graph G 0 (X,E) consists of a set of nodes

X, depicted as dots, and a set of edges E that connect the nodes,
drawn as lines between pairs of nodes. Each edge X–Y
represents a pair of nodes from X. In a directed graph, each
edge is ordered and XYY denotes an edge from X into Y.

Model Semantics
A Bayesian network is a structured directed graph representa-
tion of relationships between variables. The nodes represent the
random variables in our domain, and the edges represent the
influence of one variable on another.

Definition 3: A Bayesian network (3) is a representation of
a joint probability distribution consisting of two components.
The first component, G, is a directed acyclic graph (DAG)
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whose nodes correspond to the random variables X
1
, I, X

n
. Let

Pa
i

denote the parents of X
i

in G (all nodes coming into X
i
).

The second component, q, describes a conditional probability
distribution P(X

i
kPa

i
) for each variable X

i
in X.

An important property of the graph G is that it represents
conditional independencies between variables. In the genetics
example above, Bart is independent of his ancestors
conditioned on his parents. The Markov assumptions generalize
this concept to any directed graph.

Definition 4: In a Bayesian network, the graph G encodes
the Markov assumptions: Each variable X

i
is independent of its

nondescendants, given its parents in G.
As an example, a Bayesian network can represent the

relations among five different proteins (Fig. 1). Assume that A
is a kinase that phosphorylates protein B. If A activates B, we
expect that in most cases when A is active, so is B. The
Bayesian network indicates this dependency in activity levels
by drawing a directed edge from A into B. The protein
activities of A and B are statistically dependent; thus, knowing
the value of A provides information that can help predict the
value of B.

In addition, B is a kinase that phosphorylates C; thus, the
network model has an edge from B into C. On the basis of
pairwise correlations alone, we expect the activity of C to be
correlated not only with its direct regulator (B), but also by its
indirect regulator (A). In our example, if we know the value of
B, A does not provide additional information that can improve
our predictions for C, and so we say ‘‘The effect of A on C is
mediated through B,’’ that is, A and C are conditionally
independent given B. Such a relation can be inferred from
interventional data; for example, A and C are correlated under
normal conditions, but when B’s activity is inhibited, this
correlation disappears.

Furthermore, kinase A also activates kinase D, creating a
correlation between the activities of B and D. If B is active, we
can reason that its activity might be a result of A’s activity, and
therefore D is more likely to be active as well. This is another
example of conditional independence
encoded in the graph structure: The ac-
tivities of B and D are conditionally
independent given their common reg-
ulator A. Such a relation can be in-
ferred from the data if, for example, D
is activated by another (unmeasured)
kinase. In this case, A would be a more
reliable predictor for B’s activity than
would D.

Finally, kinase E inhibits kinase
B, providing B with two proteins that
control its activity. A and E are B’s
parents in the Bayesian network. This
leads into the second component of the
Bayesian network, q: Each node has a
conditional probability q that describes
the probability of its levels conditioned
on the levels of its parents.

The two components G and q spec-
ify a unique distribution on X

1
, I, X

n
.

The chain rule of probabilities claims
that any joint distribution can be ex-
pressed as a product of conditional

probabilities, so that each variable X
i

is conditioned on all the
variables that precede it, X

1
, I, X

i–1
:

PðX1;I; XnÞ 0
Yn

i01

PðXikX1;I; Xij1Þ ðEq: 2Þ

With the use of the conditional independencies derived from
the Markov assumptions of Definition 4, the product form can
be further simplified so that each variable X

i
is only

conditioned on its parents Pa
i
:

PðX1;I;XnÞ 0
Yn

i01

PðXikPaiÞ ðEq: 3Þ

This is called the chain rule for Bayesian networks. This
product economizes on the number of parameters, thus making
the Bayesian network representation of a joint probability
compact. As an example, consider the joint probability
distribution P(A,E,B,C,D) represented in Fig. 1. By the chain
rule of probability, without any independence assumptions,

P ðA;E;B;C;DÞ0P ðAÞP ðEkAÞP ðBkA;EÞP ðCkA;E;BÞ
P ðDkA;E;B;CÞ

ðEq: 4Þ

Assuming that all variables are binary, this representation re-
quires 1 þ 2 þ 4 þ 8 þ 16 0 31 parameters. Taking the
conditional independencies into account,

P ðA;E;B;C;DÞ 0 P ðAÞP ðEÞP ðBkA;EÞP ðCkBÞP ðDkAÞ
ðEq: 5Þ

which only requires 1 þ 1 þ 4 þ 2 þ 2 0 10 parameters. More
generally, given n binary variables and G whose indegree (that
is, maximal number of parents) is bounded by k, then, instead of
representing the joint distribution with 2n – 1 independent
parameters, we can represent it with at most 2kn independent
parameters. This reduction in parameters is critical when
estimating a model from empirical data. Robust estimation of a
model with many parameters requires many more data points
than does estimation of a model comprising fewer parameters.
Fortunately, flow cytometry can measure protein expression/
activity levels in thousands of individual cells, providing enough
data for the estimation of Bayesian network models.

A graph G specifies a product form as in Eq. 3. To fully
specify a joint distribution, we need to specify the conditional
probability distributions P(X

i
kPa

i
) for each variable X

i
. q

represents the parameters that specify these distributions.
P(X

i
kPa

i
) can be viewed as a probabilistic function of X

i
whose

inputs are X
i
’s parents in G. Any distribution P satisfying the

conditional independencies in Definition 4 can be encoded as a
Bayesian network with structure G and associated conditional
probability distributions.

In this primer, we focus on discrete variables and describe
the conditional probability distributions used by Sachs et al.
(1). In the more general case, these conditional distributions
can be almost any computable representation. For instance,
many continuous conditional probability distributions have
been used with Bayesian networks (4–6).

Fig. 1. An example
of a simple Bayesian
network structure.
This network struc-
ture implies several
conditional indepen-
dence statements:
(A ± E), (B ± DkA,E),
(C ± A,D,EkB), (D ±

B,C,EkA), and (E ±

A,D). The joint distri-
bution has the product
form P(A,B,C,D,E) 0
P (A)P (E)P (B kA,E)
P(CkB)P(DkA).
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We use a conditional probability table that specifies a
probability distribution over X

i
for each possible combination

of value assignments to its parents Pa
i
. Each joint value

assignment pa
i

to Pa
i

corresponds to a row in the table. This
row specifies the probability vector for X

i
conditioned on Pa

i
0

pa
i
. For example, if Pa

i
consists of k binary valued variables,

the table will specify 2k distributions. This representation can
describe any discrete conditional distribution. But this flexibil-
ity comes at a price: The number of free parameters is
exponential in the number of parents.

As an example, assume that A and E each weakly activate
protein B, and together they strongly activate protein B. Table 1
is a conditional probability table that represents such a relation.

The Graph Structure:
Independence, Dependence, and Causality
We now discuss the properties of the Bayesian network
structure G. We describe the relationship between the graph
structure and the conditional independencies it implies.

d-separation. If we assume that molecular interactions can
be modeled by probabilistic dependencies, then we can use
independence queries on the distribution P(X

1
, I, X

n
) to infer

these interactions. The Bayesian network structure G greatly
facilitates efficient multivariate independence queries. For in-
stance, the structure XYYYZ implies that although X and Z are
dependent, the variable Y renders them conditionally indepen-
dent, (X ± ZkY). The variable Y dismisses the dependence be-
tween X and Z, indicating that the interaction between X and Z
is indirect. Thus, a Bayesian network can be used to distinguish
between direct and indirect relationships. For example, consider
the RafYMekYErk cascade of protein kinases (1). The activity
of Raf is informative toward the activity of Erk, but Mek activ-
ity renders the Raf and Erk activities independent. We infer that
Raf influence on Erk proceeds though the intermediate Mek.

Although this independence statement was easy to infer from
the simple substructure (XYYYZ), it is natural to ask about
queries that relate to variables that are further apart in G. It is
possible to automatically derive such conditional independence
relations between variables from the graph structure itself.
Before continuing, we present a graph substructure that plays a
key role both for the notion of d-separation and for the notion
of equivalence described in this section.

Definition 5: A v-structure (3) is an induced subgraph (a
subset of nodes and all the edges between these nodes in G) of
the form XYY@Z so that no edge exists between X and Z.

The v-structure implies an interesting set of dependencies.
In the previous cases, X and Z were dependent only when Y was
unobserved; in a v-structure, given the value of Y, two possibly
independent variables become dependent. Following is a
classic example of such a dependency from genetics: Consider
a random variable Y representing the existence of a rare
mutation in some child, where Y 0 0 indicates that Y does not
have the mutation and Y 0 1 indicates that Y has the mutation.

Let X and Z represent the existence of the same mutation in
each of that child’s two biological parents. The genotypes of
each of the parents X and Z are independent of one another. But
if we know that Y 0 1 (that is, the child has the rare mutation),
this means that one of the two parents must have the mutation.
Now, if we are also given that X 0 0, we can infer that P(Z 0
1kY 0 1, X 0 0) 0 1, and given X 0 1 we can infer that P(Z 0
1kY 0 1, X 0 1) is very low. Therefore, given the value of Y, the
independent variables X and Z become dependent.

Intuitively, one can view dependence as a property that can
‘‘flow’’ between the nodes representing X and Z through paths
that connect them in G. For instance, in XYYYZ, dependence
can ‘‘flow’’ from X to Z through Y, unless Y ‘‘blocks’’ this
flow. Because (X ± ZkY), the path is ‘‘blocked’’ only when Y is
given. In an opposite case, XYY@Z, dependence can ‘‘flow’’
from X to Z only if Y is given. To generalize these notions to
longer paths, we say that the graph has a trail from X

1
to X

n
,

denoted X
1
–...–X

n
, if for every i 0 1 I n – 1, G contains either

X
i
YX

iþ1
or X

i
@X

iþ1
.

Definition 6: Let G be a Bayesian network structure and
X

1
–...–X

n
be a trail in G. Let E be a subset of nodes from X.

There is an active trail between X
1

and X
n

given evidence E if:

& Whenever we have a v-structure X
i–1
YX

i
@X

iþ1
, then X

i
or

one of its descendants are in E.
& No other node along the trail is in E.

Intuitively, this means that the dependence can ‘‘flow’’ through
every triplet X

i–1
–X

i
–X

iþ1
.

Definition 7: Let X, Y, Z be three sets of nodes in G. We
say that X and Z are d-separated given evidence Y, denoted
d-sep

G
(X;ZkY), if there is no active trail between any node X in

X and Z in Z given evidence Y (7).
d-sep

G
is a property of the graph structure G that corresponds

to the notion of conditional independence in the correspond-
ing probability distribution P. Ind(G) is defined as the set of
independence statements (of the form ‘‘X is independent of Z
given Y’’) that are implied by G. Using this formulation of
d-separation, we can use an efficient graph algorithm whose
running time scales linearly with the number of nodes in G (3)
to check whether any such conditional independence statement
holds.

Equivalence classes. More than one graph can imply
exactly the same set of independencies. For example, consider
the graphs XYY and X@Y; both imply the same set of
independencies (that is, X and Y are dependent).

Definition 8: Two graphs G
1

and G
2

are equivalent if
Ind(G

1
) 0 Ind(G

2
). That is, both graphs are alternative ways of

describing the same set of independencies.
This notion of equivalence is crucial, because when we

examine observations from a distribution, we cannot distin-
guish between equivalent graphs. Following the example
above, given a statistical dependence between the activities of
proteins X and Y, we cannot determine whether X activates Y or
whether Y activates X. We can characterize equivalence classes
of graphs with the use of a simple representation (8).
Equivalent graphs have the same underlying undirected graph
but might disagree on the direction of some of the arcs.

Theorem 1: Two Bayesian network structures are equiva-
lent if and only if they have the same underlying undirected
graph (termed ‘‘skeleton’’) and the same v-structures (8).Table 1. Example of a conditional probability table.
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For example, the skeleton X–Y–Z can be partitioned into two
equivalence classes, one containing three graphs representing
[(X ± ZkY), K(X ± Zk;)] and the other containing the v-
structure representing [K(X ± ZkY), (X ± Zk;)], where K
denotes the logical operator NOT (Fig. 2).

Moreover, an equivalence class of network structures can be
uniquely represented by a partially directed acyclic graph
(PDAG) P, where a directed edge XYY denotes that all
members of the equivalence class contain the directed edge
XYY; an undirected edge X–Y denotes that some members of
the class contain the directed edge XYY, whereas others
contain the directed edge X@Y. (In the final section, we discuss
the relation between directed edges in the PDAG and causality.)

Assume that we are given some Bayesian network structure
G and wish to derive the PDAG P representing G’s equivalence
class. Because Theorem 1 states that all equivalent graphs must
agree on their v-structures, it is obvious that we need to orient
any edge that participates in a v-structure. What is less obvious
is that there are other edges in the graph that need to be
oriented. These are the edges that form new v-structures when
reversed. They can be derived through one of the following
three propagation rules for compelled edges in P (Fig. 3):

& Consider the subgraph XYY–Z, where no edge exists
between X and Z. Each edge direction between Y and Z
defines a different equivalence class. The edge Y@Z forms
a v-structure, whereas YYZ does not. Therefore, the edge
in the corresponding PDAG P is compelled to be directed
as YYZ.

& Consider the subgraph XYY, YYZ, and X–Z. If we direct
the edge as ZYX, a cycle is formed. Therefore, to ensure
acyclicity, the edge is compelled to be directed as XYZ.

& Consider the subgraph X–Y, X–W, X–Z, YYZ, and WYZ.
The edge X–Z is compelled to be directed as XYZ. Assume
that the edge is directed as ZYX. Then, to avoid acyclicity,
the edges X@Y and X@W are compelled, thus forming a
new v-structure.

Given a DAG G, the PDAG representation of its equivalence
class can be constructed as follows. We begin from the under-
lying skeleton of G and orient all edges that participate in a
v-structure. Then we continue applying the propagation rules of
Fig. 3 until no more subgraphs corresponding to one of the rules
exist.

Proposition 1: If we apply the procedure described above
to G, the resulting PDAG represents the equivalence class of G.

An Algorithm for Inferring Bayesian Networks from
Experimental Data
Our goal is to automatically infer the structure of the molecular
signaling network from a large data set of phosphorylated
protein activity levels. For example, flow cytometry can
measure multiple protein expression levels simultaneously in
many thousands of individual cells. We assume that influences
between molecules in the signaling network enforce statistical
dependencies between protein expression/activity levels and
thus also impose a distribution P* underlying the measure-
ments. Recall that each Bayesian network represents a unique
distribution (as defined by Eq. 3) that assigns a probability to
each joint value assignment to variables (measured levels of
phosphorylated proteins). The process of ‘‘learning’’ a Bayesian
network is finding a Bayesian network that gives the samples in
our data a high probability.

Thus, given flow cytometry data D 0 {X[1], I, X[M]}, we
treat each individual cell as a sample and assume that these are
independently drawn from some unknown generating Bayesian
network G*, with an underlying distribution P*. Our goal is to
recover G*. Because D is only a noisy sample derived from P*,
we cannot detect with complete reliability which dependencies
are present in the underlying distribution. Instead, we search for a
relatively simple model, B 0 (G,q) (with few edges), that is likely

to have generated the data—that is, a model whose
underlying distribution is close to the empirical
distribution of the data D.

More precisely, we search for an equivalence class
of networks that best matches D. Recall that all
structures in an equivalence class represent the same
dependencies and are equally close to the empirical
distribution of D. We cannot distinguish between
them solely on the basis of D. Thus, the best we can
hope for is to recover a structure that is equivalent to
G*.

The theory of learning networks from data has
been examined extensively over the past decade. In
this primer, we take a score-based approach to
learning. We define a hypothesis space of potential

Fig. 2. The skeleton X–Y–Z is partitioned into two equivalence classes: class I,
representing [(X ± Z kY ), K(X ± Z k;)], and class II, the v-structure representing
[K(X ± Z kY), (X ± Z k;)]. The right panel illustrates the corresponding PDAGs.

Fig. 3. Propagation rules for compelled edges: After all v-
structures are oriented, a representation of the equivalence class
is constructed by iteratively applying these rules to the PDAG.
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network models, introduce a statistically motivated scoring
function that evaluates each network with respect to the
training data, and search for the highest scoring network.

To do so, we first assume that the graph structure G is given
and describe an appropriate score for the conditional probability
distribution parameters q and a closed-form solution for the
highest scoring parameters. Then we describe an appropriate
score for the graph structure itself. Finally, we describe a greedy
algorithmic approach that finds a high-scoring network structure.
(The reader unfamiliar with probability theory may skip ahead to
the section on model averaging.)

Maximum likelihood estimation of parameters. In this
section, we assume that the structure of the graph G is known.
Although this is not a reasonable assumption for our domain, the
theory of parameter estimation is a basic building block for the
structure learning to come. In the Bayesian network learning
task, we implicitly assume that there is some Bayesian network
B* that generated the data D, and our goal is to use these data to
try to reconstruct B*. A good Bayesian network B is one that is
likely to have generated D. If we assume that G is already
known, our task then is to find the conditional probabilities q
that maximize the likelihood that D was generated by the
Bayesian network B* 0 (G,q).

Definition 9: We define a likelihood function, L(q:D), that
measures the likelihood that the parameters q generated the data
D. Because the samples are independent, the likelihood
decomposes into a product of probabilities, one for each sample:

Lðq:DÞ 0
YM
m01

PðX Em^kqÞ ðEq: 6Þ

In maximum likelihood estimation, given a data set D, we wish
to choose parameters q̂ that maximize the likelihood of the data
(as above):

q̂ 0 argmax Lðq:DÞ ðEq: 7Þ

Optimizing Equation 7 could potentially be a computationally
hard problem (exponential in the number of parameters) because
of the high dimensionality of q and the large number of
parameters that need to be concurrently optimized. One of the
big advantages of the Bayesian network representation is that
this likelihood separates into local likelihood functions, one for
each variable. This simplifies the calculation of the likelihood;
more important, it renders finding its optimal parameters
tractable. Each local likelihood can be optimized in an
independent manner, thus decomposing a complex global
problem into smaller subproblems:

Lðq:DÞ 0
YM
m01

PðX Em^Þ

0
YM
m01

Yn

i01

PðXiEm^kPaiEm^;qÞ

0
Yn

i01

YM
m01

PðXiEm^kPaiEm^;qÞ
� �

0
Yn

i01

Liðqxi kPai
:DÞ

ðEq: 8Þ

where

LiðqXi kPai
:DÞ 0

YM
m01

PðXiEm^kPai;qÞ ðEq: 9Þ

is the local likelihood function for Xi.
If we have a variable X with its parents Pa

X
, the conditional

probabilities for each joint assignment of values to X and Pa
X

are associated with the Bayesian network. In the case of
conditional probability tables, for each combination of value
assignments x Z Val(X) and u Z Val(Pa

X
), a parameter q

xku

represents P(X 0 xkPa
X
0 u). In conditional probability tables,

these parameters are independent for each u Z Val(Pa
X
); there-

fore, the local likelihood can be further decomposed into a yet
simpler form. The idea behind the decomposition is to group
together all the instances in which X 0 x and Pa

X
0 u. We define

M[x,u] as the number of instances in which X 0 x, Pa
X
0 u, and

M[u] 0 ~
xZVal(X)

M[x,u]. Then, by rearranging the order of the
product, we can write

LiðqX kPax
:DÞ 0

Y
uZValðPaX Þ

Y
xZValðX Þ

qMEx;u^
xku ðEq: 10Þ

Proposition 2: The maximum likelihood estimate for a
Bayesian network with multinomial conditional probability
tables is given by

q̂xku 0
MEx;u^

MEu^
ðEq: 11Þ

We call the counts M[x,u] and M[u] sufficient statistics. Given
these counts, the actual data instances X[1], I, X[M] them-
selves are no longer needed. The sufficient statistics extract
from the data all the relevant information needed to calculate
the likelihood. Note that the optimal parameters are based on
the empirical counts observed in our data. Thus, optimizing the
likelihood is equivalent to finding the best approximation for
the empirical distribution constrained to the independencies
of G.

Bayesian approach to parameter estimation. Although the
maximum likelihood estimation approach would seem to be a
suitable way to measure the fit of a Bayesian network to the
data, it has a number of disadvantages. Its main drawback is
that it tends to overfit the model to the particular data instance
at hand. This problem is especially critical when studying
signaling in rare cellular subsets, for which we have a relatively
small number of samples. We illustrate this problem with an
example from the medical domain: Assume that we are
performing a study on the effect of smoking on lung cancer.
Our sample contains 30 nonsmokers, none of whom contracted
lung cancer. Maximum likelihood estimation would construct a
model that postulates P(lung cancer 0 YESksmoker 0 NO) 0 0.
However, we think that the correct answer is that there is a
small chance for a nonsmoker to develop lung cancer, but our
small sample did not contain such a case.

We therefore turn to the Bayesian approach, which
formulates this concept of prior belief in a principled manner.
The idea is that in addition to the observed data D, we have
some initial distribution P(q), termed ‘‘the prior,’’ which en-
codes our beliefs regarding the domain prior to our observations.
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When we have little prior knowledge of our domain, this
distribution is often flat and mostly ensures that every event has
some nonzero probability. On the other hand, if we do have
specific information about our domain, this distribution can be
more peaked over certain values.

After we observe some data D, we update the distribution
P(q) to reflect the combination of both our prior belief and our
observations. This updated distribution, P(qkD), is called the
posterior distribution:

PðqkDÞ 0 PðDkqÞPðqÞ
PðDÞ ðEq: 12Þ

The term P(D), termed ‘‘the marginal likelihood,’’ averages the
probability of the data over all possible parameter assignments.
Because it is a normalizing constant, which is independent of q,
we ignore it in our score calculations.

In this primer, we use the Dirichlet priors (9) for multinomial
distributions. A Dirichlet prior is specified by a set of
hyperparameters a

x1ku, I, a
xKku, with one such hyperparameter

corresponding to each xj Z Val(X). The Dirichlet distribution is
specified by

PðqÞ 0 Dirichletðax1 ku;I;axK kuÞÈ
Y

j

q
a

x j kuj1

x j ku ðEq: 13Þ

Dirichlet priors have a number of desirable properties; they
satisfy global parameter independence and local parameter
independence. This means that the prior decomposes into a
product of independent terms, in a manner similar to
decomposition in maximum likelihood estimation.

Definition 10: A parameter prior P(q) is said to satisfy
global parameter independence if it decomposes into the
following form:

PðqÞ 0
Yn

i01

PðqXi kPai
Þ ðEq: 14Þ

Definition 11: Let X be a variable with parents Pa
X
. Then

the prior P(q
XkPaX

) has local parameter independence if

PðqX kPaX
Þ 0

Y
uZValðPaX Þ

PðqX kuÞ ðEq: 15Þ

The prior P(q) satisfies parameter independence if it satisfies
both global and local parameter independence.

In addition, Dirichlet priors are conjugate priors; that is, the
posterior distribution has the same functional form as the prior.
This property provides an intuitive interpretation for the
hyperparameters. One can view a

xku as imaginary counts; that
is, before we observed D, on a

xku occasions we ‘‘observed’’ X 0
x and Pa

X
0 u.

Proposition 3: If P(q) is Dirichlet(a
x1ku, I, a

xKku), then the
posterior P(qkD) is Dirichlet(a

x1ku þ M[x1,u], I, a
xKku þ

M[xK,u]), where M[x,u] are the sufficient statistics derived
from D.

We say that a* 0 ~
j
a

xjku is our effective sample size,
meaning that we assume that our prior is based on a*
observations. This reflects how strongly we believe in our
prior. As we accumulate more samples in D, the effect of the
prior on the posterior grows weaker.

Even when our prior is flat, the full effect of the Bayesian
approach comes into play when predicting the probability of
future samples. In the Bayesian approach, the probability of a
future observation is calculated not on the basis of only one set
of parameters, but using the expectation over the entire
distribution of parameters. Thus, the probability of a new
sample X[M þ 1] is

PðX EM þ 1^kDÞ 0
Z

PðX EM þ 1^kD;qÞPðqkDÞPðDÞdD ðEq: 16Þ

When we use conditional probability tables and Dirichlet
priors, this integral has a closed-form solution:

PðXiEM þ 1^kDÞ 0 PðXiEM þ 1^ 0 xikPaiEM þ 1^ 0 u;DÞ

0
axi kuþMExi;u^X
j
ðax j ku þMEx j;u^Þ

ðEq: 17Þ

Structure learning: A score-based approach. Previously,
we showed how one can learn the Bayesian network parameters
given a known structure G, but in a real scenario we do not
know G. Our goal is to understand the structural relationships
between the variables in our domain. For instance, we would
like to be able to distinguish between direct and indirect
interactions between molecules. Therefore, it is exactly this
graph structure that we wish to reconstruct from the observed
data. We can then use this reconstructed graph structure to
answer queries regarding the interactions between the proteins
and other structural properties. On the basis of observational
data alone, it is not possible to distinguish between equivalent
structures. Thus, at best our reconstruction procedure can
reconstruct an equivalence class of networks.

We take a score-based approach to this problem. We define
a model space of candidate models that we are willing to
consider, along with a scoring function that measures how well
each model fits the observed data. Then we use an optimization
algorithm that searches for a high-scoring model.

Our scoring function is based on the same Bayesian
principles described above, following a basic principle:
Whenever we have uncertainty about something, we place a
probability distribution over it. We therefore define a structure
prior P(G) over the different graph structures and a parameter
prior P(qkG) over the parameters once the graph is given. The
particular choice of the priors P(G) and P(qkG) determines the
exact Bayesian score. Our score evaluates the posterior
probability of the graph given the data:

ScoreBðG:DÞ 0 log PðDkGÞþ log PðGÞ ðEq: 18Þ

where P(DkG) takes into consideration our uncertainty over the
parameters by averaging the probability of the data over all
possible parameter assignments to G,

PðDkGÞ 0
Z

PðDkG;qÞPðqkGÞ dq ðEq: 19Þ

The Bayesian score inherently handles the problem of over-
fitting a small sample to a complex model. Because of the
integration over all possible parameters, structures with many
parameters (that is, many parents for each variable) are
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penalized, unless the probability of the true parameters is very
peaked (which happens when the sample size is large).
Although the Bayesian score is biased to more simple
structures, as more data accumulate, the score will support
more complex structures (when the generating distribution is
indeed complex). We explain this intuition with the following
thought experiment: Assume that we are playing a gambling
game on the value of X; each time we guess the correct value,
we gain /10. Assume that for /1000 we can purchase a
subscription to the value of Y and this value improves our
ability to guess X, so that each time we guess, we expect to be
correct 1 out of 5 times. For only 100 games it does not pay to
purchase Y, but for a series of 700 games it would be
advantageous to purchase Y. This is the ‘‘game’’ our scoring
function is playing. In a biological context, if we observe that Y
holds a small amount of information on X in only 100 samples,
this might be a spurious dependency, but if this remains
consistent over 1000 samples, then we begin to believe the
relationship and add the edge to our model.

We next show how to choose good priors and demonstrate
how these priors lead to desirable properties in our score. An
important characteristic of the Bayesian score is that when we
restrict ourselves to a certain class of factorized priors (10, 11),
the Bayesian score decomposes.

Definition 12: A parameter prior satisfies parameter
modularity when for any two graphs G

1
and G

2
, if Pa

i
G1 0

Pa
i
G2, then

PðqXi kPai
G1 kG1Þ 0 PðqXi kPai

G2 kG2Þ ðEq: 20Þ

This relationship means that the parameter prior depends only
on the local structure of the graph.

Proposition 4: If the prior P(qkG) satisfies global parameter
independence and parameter modularity, then

PðDkGÞ 0
Y

i

Z
qXi kPai

Y
m

PðXiEm^kPaiEm^;qXi kPai
ÞPðqXi kPai

ÞdqXi kPai

ðEq: 21Þ

Therefore, we can decompose the score into the local
contributions of each variable (denoted FamScore), where the
contribution of every variable X

i
to the total network score

depends only on the sufficient statistics of X
i
and its parents Pa

i
:

ScoreBðG:DÞ 0
X

i

FamScoreBðXi;Pai:DÞ ðEq: 22Þ

As we will see, this decomposition plays a crucial role in
our ability to efficiently search for high-scoring network
structures.

One of the big advantages of using Dirichlet priors is that
the family score has a simple closed-form formula.

Definition 13: The gamma function G(x) is defined to be an
extension of the factorial function to real-number arguments.
The gamma function is defined as the integral

GðxÞ 0
ZV
0

txj1 expðjxÞ dt ðEq: 23Þ

If n is a natural number, then G(n) 0 (n – 1)!

Theorem 2: Let G be a network structure and P(qkG) be a
parameter prior satisfying parameter independence. Further
assume conditional probability tables and Dirichlet priors with
hyperparameters {a

xi
jku}. Then

FamScoreBðXi;Pai:DÞ

0 log
Y

uZValðPaiÞ

Gðaxi kuÞ
Gðaxi ku þMEu^Þ

Y
x

j

i
ZValðXiÞ

Gða
x

j

i
ku þMEx j

i;u^Þ
Gða

x
j

i
kuÞ

ðEq: 24Þ

where G is the gamma function and

axi ku 0
X

jZValðXiÞ
a

x
j

i
ku ðEq: 25Þ

(10). A desired property is that the score reaches its optimum
on the true generating structure; that is, given a sufficiently
large number of samples, graph structures that exactly capture
all dependencies in the distribution will receive a higher score
than all other graphs (12). This means that given a sufficiently
large number of instances, learning procedures can pinpoint the
correct equivalence class of network structures.

Definition 14: Assume that our model is generated by some
true model G*. We say that our score is consistent if, as M Y
V, the following properties hold with probability asymptotic to
1 (over possible choices of data set D):

& The structure G* will maximize the score.
& All structures that are not equivalent to G* will have a

strictly lower score.

Theorem 3: The Bayesian score is consistent.
Recall that given D it is impossible to distinguish between

two different networks in the same equivalence class. Thus,
another desirable property in our score is that equivalent
structures receive the same score. That is, if G

1
and G

2
are

equivalent graphs, they are guaranteed to have the same score.
Such a property is called structure equivalence. To achieve
structure equivalence, we devise a set of hyperparameters so
that our prior will not bias the score between equivalent
structures. This is achieved with the use of a BDe prior (13).
We define a probability distribution P¶ over X and an equivalent
sample size M¶ for our set of imaginary samples. The
hyperparameters are then defined to be

axi kui
0 M ¶P ¶ðxi;uiÞ ðEq: 26Þ

Theorem 4: When the data are complete and Dirichlet BDe
priors are used, the score is structure-equivalent (10).

Search algorithm for maximizing scores. Once the score is
specified and the data are given, learning amounts to finding the
structure G that maximizes the score. This problem is known to
be computationally hard (exponential in the number of
variables) to solve exactly (14); thus, we resort to a heuristic
search. We define a search space, so that each state in this space
is a network structure. We define a set of operators that
transform one network structure into another. This defines a
graph structure on the states: Neighboring states are those that
are one operator away. We start with some initial structure (for

P R O T O C O L

www.stke.org/cgi/content/full/sigtrans;2005/281/pl4 Page 7



example, the empty graph) and, using the operators, traverse
this space searching for high-scoring structures.

A natural choice of neighboring structures is a set of
structures that are identical to the base structure except for local
modifications. We use the following operators that change one
edge at each step:

& Add an edge
& Remove an edge
& Reverse an edge

Note that we only consider operations that result in allowed
networks. Networks must be acyclic and must satisfy any other
constraints we specify (for example, maximal indegree
constraints).

A local search procedure can efficiently evaluate the gains
made by adding, removing, or reversing a single edge. The
decomposition of the score is crucial for the efficiency of this
procedure. Decomposition allows us to reevaluate only those
components of the score that involve the variables affected by
our local step. For instance, if we add an edge to the variable
X

i
, we only need recalculate X

i
’s family score; the family

scores for all other variables remain unchanged.

We use the following greedy hill-climbing
algorithm for our search procedure: At each step,
we evaluate all possible local moves and perform
the change that results in the maximal gain, until
we reach a local maximum. (A sketch for such an
algorithm appears in Fig. 4.) Although this
procedure does not necessarily find a global
maximum, it does perform well in practice. A
number of heuristics can be included to overcome
some of the local maxima (for example, random
restarts). Examples of other search methods that
advance by single edge changes include beam-
search, stochastic hill-climbing, and simulated
annealing (15).

Any implementation of these search methods
involves caching of computed counts to avoid
unnecessary passes over the data. This cache also
allows us to marginalize counts. Thus, if M[X,Y] is
in the cache, we can compute M[X] by summing
over values of Y. This is usually much faster than
making a new pass over the data. One of the
dominating factors in the computational cost is the
number of passes actually made over the data.

Model Averaging
Given a flow cytometry data set, we use the learning algorithm
described above to search for the Bayesian network G that best
explains the data. A simple approach would be to accept G as a
correct model of our domain. Then we could use G to infer
relations between proteins (for example, kinase A directly
influences kinase B). Such analysis would rely on the
assumption that the network G correctly represents the
interactions in the underlying domain, but how reasonable is
this assumption? A sufficiently large number of samples
(hundreds of thousands of cells) would (almost) provide that
the network inferred is a good model of the data (12). However,
given a smaller number of training instances (thousands), there
may be many models that explain the data almost equally well.

Figure 5 shows five high-scoring networks in relation to
data set D. The networks vary in structure, but their scores are
almost the same. In our example, G

3
is the highest scoring

network. In a simple approach, we would infer a direct
interaction between the proteins A and C (because the edge
AYC exists in G

3
), but the edge is absent from the other high-

scoring networks. Therefore, it is more likely that the
dependence between A and C is a spurious artifact in D. Thus,

Input

 D //  a data set
 Go // initial network structure

Output

 G // final network structure

Greedy-structure-search

 Gbest = Go
 repeat // apply best possible operator to G in each iteration
  G = Gbest
  foreach operator o // (each edge addition, deletion, or reversal on G)
   Go = o(G) // apply to G
   if Go is cyclic continue
   if scoreBDe(Go : D) > scoreBDe(Gbest : D)
    Gbest = Go

 
 until G == Gbest // no change in structure improves score

Fig. 4. Outline of greedy search algorithm.

Fig. 5. An ensemble of high-scoring networks. Five different Bayesian networks are shown; the score of the network with respect to the
data set D is listed below each network. G3 is the highest scoring network, but the other networks are almost as likely. The edge AYC
exists in G3, but is absent from all other high-scoring networks. On the other hand, all five networks agree on the edge EYA.
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we cannot depend on a single network to provide an accurate
description of the relations in our biological domain.

Instead of querying a single structure, we search for
common features that most of the high-scoring network
structures agree on. For example, the ensemble of high-scoring
networks in Fig. 5 all agree on the edge EYA. Therefore, it is
likely to represent a real biological signal. We find such
features by examining the posterior probability of the feature
given the data. A network feature is a property such as ‘‘XYY
is in the network’’ or ‘‘d – sep

G
(X;YkZ) is in the network.’’ We

associate the feature f with an indicator function, f(G), that has
the value 1 when G satisfies the feature and value 0 otherwise.
The posterior probability of f is defined as

PE f ðGÞkD^ 0
X
G

f ðGÞPðGkDÞ ðEq: 27Þ

This probability reflects our confidence in f given D.
The straightforward way of calculating Eq. 27 is by enu-

merating all high-scoring networks. Unfortunately, the number
of such networks can be exponential in the number of variables,
so exact computation of the posterior probability is not feasible.
Instead, we can estimate this posterior probability by sampling
representative networks and then estimating the fraction that
contain the feature of interest. Ideally, we would like to sample
networks from P(GkD) and use the sampled networks to es-
timate this quantity. The general solution to this problem is to
build a Markov chain Monte Carlo sampling procedure (16).
Unfortunately, this sampling procedure is also computationally
costly.

Instead, we use an effective and relatively simple bootstrap
method (17) as an approximation of the posterior probability.
Our networks are generated using nonparametric bootstrap
(18). We generate ‘‘perturbed’’ versions of the original data set
and learn a Bayesian network structure from each of them. In
this way, we collect many networks, all of which are fairly
reasonable models of the data. These networks reflect the effect
of small perturbations to the data on the learning process. We
use the following procedure:

& For i 0 1, I, m, construct a data set D
i

by sampling, with
replacement, M instances from D. Then, apply the learning
procedure on D

i
to induce a network structure G

i
.

& For each feature f of interest, calculate

confð f Þ 0 1

m

Xm

i01

f ðGiÞ ðEq: 28Þ

[See (19) for an evaluation of this bootstrap approach on
simulated data.] These simulation experiments show that
features induced with high confidence are rarely false positives,
even in cases where the data sets are small relative to the size
of the system being learned.

Interventions and Causality
Causality. Recall that a Bayesian network is a model of de-
pendencies between multiple variables. However, we are also
interested in modeling the mechanisms that generated these
dependencies. Thus, we want to model the causality in the sys-
tem of interest (for example, protein X activates protein Y). A
causal network is a model of such causal processes. Having a

causal interpretation facilitates predicting the effect of an in-
tervention in the domain.

Although at first glance there would seem to be no direct
connection between probability distributions and causality,
causal interpretations for Bayesian networks have been pro-
posed (8, 20). A causal network is mathematically represented
similarly to a Bayesian network, a DAG where each node
represents a random variable along with a local probability mod-
el for each node. However, causal networks have a stricter in-
terpretation on the meaning of edges: The parents of a variable
are its immediate causes.

A causal network models not only the distribution of the
observations, but also the effects of interventions. If X causes Y,
then manipulating the value of X affects the value of Y. On the
other hand, if Y causes X, then manipulating X will not affect Y.
Thus, although XYY and X@Y are equivalent Bayesian
networks, they are not equivalent causal networks.

A causal network can be interpreted as a Bayesian network
when we are willing to make the causal Markov assumption,
which states that given the values of a variable’s immediate
causes, it is independent of its earlier causes. When the causal
Markov assumption holds, the causal network satisfies the
Markov independencies of the corresponding Bayesian
network. But when can we derive a causal network from data?
This issue has received a thorough treatment in the literature
(8, 21, 22); we briefly review some relevant results [for a more
detailed treatment of the topic, see (20, 23)].

First, it is important to distinguish between an observation
(a passive measurement of our domain; that is, a sample from
X) and an intervention [setting the values of some variables
with the use of forces outside the causal model, such as
chemical inhibition or small interfering RNA (siRNA)].
Interventions are an important tool for inferring causality, but
occasionally some causal relations can be inferred from
observations alone.

To learn causality, we require several assumptions. First,
we require a modeling assumption: We assume that the
(unknown) causal structure of the domain satisfies the causal
Markov assumption. Thus, we assume that causal networks
can provide a reasonable model of the domain. The second
assumption is that there are no latent or hidden variables
that affect several of the observable variables. Unfortunately,
neither assumption holds in our domain. Thus, causal con-
clusions from our learning procedure must be treated with
caution.

If we do make these two assumptions, then we essentially
assume that one of the possible DAGs over the domain
variables is the ‘‘true’’ causal network. However, as discussed
above, observations alone do not permit us to distinguish
between causal networks that specify the same independence
properties (i.e., belong to the same equivalence class). Thus, at
best we can hope to learn a description of the equivalence class
that contains the true model. In other words, we will learn a
PDAG description of this equivalence class.

Once we identify such a PDAG, we are still uncertain about
the true causal structure in the domain. However, we can draw
some causal conclusions. For example, if there is a directed
path from X to Y in the PDAG, then X is a causal ancestor of Y
in all the networks that could have generated this PDAG,
including the ‘‘true’’ causal model. Thus, in this situation we
can recover some of the causal directions.
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Modeling interventions. To infer the causal direction of
more edges, we need to apply external interventions to the data.
These interventions can be genetic mutations, siRNA, small
chemical interventions (inhibitors or activators), or any other
intervention that directly influences one of the molecules
observed in the data. The use of data containing external inter-
ventions contradicts a basic assumption made by our Bayesian
network learning algorithm: that each data instance was
sampled from the same underlying distribution. For instance,
using a small chemical to inhibit X, we replace the original
molecular control on X’s activity by an external one. Thus,
any consequent measurement (in which X’s value is constantly
set to 0) will behave differently from X’s conditional dis-
tribution on its parents in observational data. Therefore, it is
important to explicitly model this intervention into our learning
algorithms.

Formally, we model an intervention, denoted do(X 0 x), as
an ideal intervention (20) that deterministically sets the value
of X to x. This intervention disables the natural causal
mechanisms that affect X and replaces them with an external
deterministic mechanism. In addition, we assume that the
intervention only affects X’s causal mechanism and leaves
intact all other causal mechanisms in the model; that is, all
other variables behave according to their respective conditional
distribution. More formally, given a causal network G, an ideal
intervention defines a new causal network G

do(X0x)
, identical to

G except that all incoming edges into X are removed. In
G

do(X0x)
, X becomes a root node associated with the probability

distribution Pr(X 0 x) 0 1 (Fig. 6). Note that X’s outgoing edges
are not affected by such an intervention. When a number of
different variables are manipulated in the same sample, we
remove the edges incoming to each of these variables.

Such interventions can be used for causal inference. We
illustrate this point with the following thought experiment:
Consider the pair of networks XYY and YYX. As Bayesian
networks, the two are equivalent and cannot be distinguished
on the basis of observational data alone. If we inhibit X [i.e.,
do(X 0 x)], then, as causal models, we expect each of the two
models to respond differently. If the causal model is XYY, then
Y’s causal mechanism remains intact.

Therefore, the same conditional distribution is measured in
both the observed and inhibited samples: P[Ykdo(X 0 x)] 0
P(YkX 0 x). On the other hand, if YYX is the causal model,
the inhibition of X disables the causal mechanism responsible

for the dependency between the two variables. When X is
inhibited, the variables X and Y become independent:
P[Ykdo(X 0 x)] 0 P(Y). Therefore, we expect to measure a
different conditional distribution in the observational and
inhibited samples. Whereas we could not distinguish between
the two models with the use of observations alone, we can
differentiate between them with the use of interventional
data.

The global nature of our reasoning allows us to reach a
causal conclusion upstream of an intervention. In the above
example, if we inhibit X and observe a different conditional
distribution—P[Ykdo(X 0 x)] m P(YkX 0 x)—we infer that the
causal mechanism between X and Y has been disrupted.
Because inhibition of X disrupts the mechanism of its direct
incoming causes, we infer that Y causes X, or in our termi-
nology, Y regulates X.

Scoring with interventions. The Bayesian scoring function
described above assumes that all samples are drawn from the
same network structure. We adapt that score to properly handle
interventions (under the model of an ideal intervention). In
such data sets, the underlying Bayesian network associated
with each sample differs depending on the perturbation
administered to the sample.

Similarly to (24), we make the following set of assumptions:

& Our samples are independent random samples from a causal
network. This causal network represents both the probability
distribution sampled and the causal relationships in the data.
We note that this assumption does not hold in our domain, as
this assumes acyclicity of the generating network.

& Each perturbation is an ideal intervention; that is, it disables
the normal causal mechanism of the inhibited/activated
protein and an independent causal mechanism determinis-
tically sets its value. Furthermore, this intervention does not
directly affect the causal mechanism of any other protein.

& The data are complete; there are no missing or hidden
variables.

& Global and local parameter independence (Definitions 10
and 11).

& Parameter modularity (Definition 12).
& The prior distribution of all parameters is Dirichlet.

We define M[m] as the set of interventions occurring in the mth
sample. Let M be the collection of all sets of interventions

Fig. 6. Example of ideal intervention. Assume that the variable X (green oval) is inhibited in G. We construct the corresponding Gdo(X0x)

by removing all edges incoming from PaX (red edges).
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occurring in D. Then, GM is the set of all graphs derived from
G based on M, that is,

GM 0
�

GdoðMEm^Þ
�M

m01
ðEq: 29Þ

One of the key properties of the Bayesian scoring function is
that the score decomposes into a product of local entities, each
depending only on X and Pa

X
. Unfortunately, when D contains

interventions, the instances are not associated with a single
structure. The probability of each sample m is calculated using
the appropriate graph, G

do(X0x)
. Therefore, at first glance, such

a decomposition might seem problematic.
We briefly sketch how this problem can be overcome [see

(19) for a full derivation of the appropriate Bayesian score
under interventions]. The assumptions of parameter indepen-
dence and parameter modularity allow us to calculate the
contribution of each variable independently, without being
affected by the choice of parent sets for other variables. Thus,
the expression for each variable X

i
decomposes as a separate

integral that depends only on its parents in G
do(X0x)

and the
associated parameters. The key point to notice is that although
GM might contain many different graphs, if we focus our
attention on a single variable X

i
, we find only two possible sets

of parents: Pa
i
G for samples where X

i
is not intervened, and

a root node in samples where it is intervened (Fig. 6).
Furthermore, the parameters of X

i
in the nonintervened samples

are independent of the intervened samples.
When assuming Dirichlet priors, this leads to the same

closed-form formula derived in Eq. 24. The only difference is
that the counts M[u] and M[x

i
j,u] are tallied only over the

samples X
i
u M[m]:

FamScoreBðXi;Pai:DÞ

0 log
Y

uZValðPaiÞ

Gðaxi kuÞ
Gðaxi kuþMEu^Þ

Y
x

j

i
ZValðXiÞ

Gða
x

j

i
kuþMEx j

i;u^Þ
Gða

x
j

i
kuÞ

ðEq: 30Þ

Inferring causality with interventions. The score of Eq. 30
is not structure-equivalent: The score of two equivalent graphs
G and G¶ is no longer necessarily the same. This should not
come as a surprise, because the score was derived with the
intent of using interventional data to differentiate between
equivalent graphs. We use the equivalent graphs XYY and YYX
to demonstrate this point. As an example, assume that our
domain contains the variables (X,Y) and we measure the samples

D 0 fð0;0Þ; ð0;1Þ; ð1;1Þ; ð1;1Þ; ð1;0Þ; ð0;0Þ; EdoðX 0 1Þ;1^;
EdoðX 0 1Þ;1^; EdoðX 0 1Þ;0^; EdoðX 0 0Þ;0^g

ðEq: 31Þ

For these data, the score for the graph structure XYY is –6.46. In
contrast, the score for the graph structure YYX is –6.78. Because
the score for XYY is better, we conclude that it is more likely
that X causes Y.

Although interventions help us to determine the causal
direction of some edges, usually these leave the causal direc-
tion of the others undetermined. This motivates the develop-

ment of a notation of equivalence suited for the interventional
setting.

Definition 15: For a set of interventions M, the graphs G1

and G2 are M-equivalent if, for any set of interventions m Z M
(always including m 0 ;), the graph structures G1

do(m)
and G2

do(m)

are equivalent.
Using the empty set of interventions, M-equivalence implies

equivalence as defined in Definition 8. The notion of M-
equivalence is a more restrictive refinement of Definition 8 in
which a larger set of edges are compelled.

Definition 16: An edge XYY in G is M-compelled for a set
of interventions M if all graphs that are M-equivalent to G
contain the directed edge XYY.

Theorem 5: The following edges are M-compelled in G:

1. All edges participating in a v-structure in G.
2. For each set of interventions m Z M, all edges entering or

leaving any variable X intervened in m.
3. All edges compelled by the repeated application of the

propagation rules specified in Fig. 3.

We can use Theorem 5 to identify the edges that can be given
a causal interpretation when interventional data are used (19).
Even when the criteria specified by Theorem 5 are met, care
must be taken in their causal interpretation. Signaling networks
do not meet all the assumptions required for the correctness of
Theorem 5. For example, the underlying signaling network is
not acyclic. Although some assumptions do not hold, these
criteria do work well in practice. For example, in the network
derived in (1), the correct directionality was inferred for all
edges except one. It is interesting to note that all edges, except
for this reversed edge, met the criteria of Theorem 5.

Conclusion
The task of inferring signaling pathway architectures is an
important challenge of the postgenomic era, and the method
described here is only a small step toward this goal. There are
many ways in which the basic framework proposed here can be
extended and developed further.

The method described infers an acyclic network and does
not consider the timing of signaling events. Given appropriate
time-series data, both of these limitations can be overcome by
the use of dynamic Bayesian networks (25, 26). Another
important area for improvement is to develop more realistic
local probability distributions that are capable of modeling the
actual kinetics of interactions between signaling molecules
(27, 28). Finally, one of the advantages of probabilistic graphic
models is that these can be explicitly used to model unobserved
variables and infer their structure and activity (29, 30). This
feature could be used to discover previously unknown com-
ponents as well as potential drug targets.
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