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Genetic Regulatory Network of Modules (Geronemo). As discussed in the 
paper, the Geronemo learning algorithm iterates over two phases: (1) assigning each gene 
into some regulatory module; (2) learning the regulation program for each module. At a 
high level, our method follows the module network approach of Segal et al. (1). However, 
as discussed in the paper, we introduced several important innovations that are keys to the 
success of the method in this new setting. Below, we review both the module network 
procedure and our extensions. 
 
(1) Regulation programs. We adopted the concept of the regulation program from Segal et 
al. (1). Briefly reviewing, a regulation program of a gene G specifies a set of contexts and 
G’s expression values in each context. A context is determined by the qualitative behavior 
of a small set of regulatory factors that control G’s expression and includes a model for G’s 
behavior in that context. This set of contexts is organized as a regression tree in which each 
path to a leaf in the tree defines a context by using the tests on the path. A regression tree is 
composed of two basic building blocks: decision nodes and leaf nodes. Each decision node 
corresponds to one of the regulatory inputs and a query on its value (for example, "is Hap1 
up-regulated?"). Each decision node has two child nodes: the right child node is chosen 
when the answer to the corresponding query is true; the left node is chosen when it is false. 
For a gene in a given array, one begins at the root node and continues down the tree in a 
path according to the answers to the queries in that particular array. Thus, each leaf 
(context) corresponds to the arrays that traverse the same path through the tree. The 
expression level of G in each context is modeled as a normal distribution; this distribution 
is encoded using a mean and variance stored at the corresponding leaf. The model 
semantics is that, given a gene G and an array A in a context, the probability of observing 
some expression value for gene G in an array A is governed by the normal distribution 
specified for that context. For a context in which the expression values are tightly regulated, 
the distribution may have a small variance; in a context where the expression values are not 
tightly regulated, the distribution may have a large variance. In the current study, we 
allowed two types of regulatory factors: the genotype of some chromosomal region defined 
by a marker, which (in our data) has two possible split values, for the two progenitor 
alleles; and the expression level of some regulator R, whose set of possible splits is the 
number of different continuous values that the regulator takes on in the expression arrays. 
 
(2) Compilation of candidate regulator set. Our candidate regulator set included two 
different types of regulators: genotype regulators and expression regulators. As expression 
regulators, we compiled a list of regulators that potentially might have transcriptional role 
in the broad sense, including: transcription factors, signaling molecules, chromatin 
modification factors, and RNA factors (degradation and RNA processing).  The list was 
derived by using Gene Ontology annotations in SGD (2) and further corrected via manual 
curation. We filtered the list to keep only those candidate regulators showing a significant 
variation in their expression levels (>90% of the expression values are present and standard 



deviation > 0.25), which resulted in 304 regulators (see Table 1). For each query node in 
the regulation programs, the learning algorithm can choose any candidate gene expression 
regulator R and construct a query “Is R’s expression level > t?” for any threshold of R’s 
expression t. We used the genotype data consisting of the genotype values (BY/RM) for 
each of 112 recombinants, measured in 2,957 genetic markers distributed over the genomes. 
We merged into a single regulator adjacent, highly correlated markers (which disagree on 
genotype values in <5 segregants), resulting in 581 merged markers. For each query node 
in the regulation programs, the learning algorithm can choose any candidate genotype 
regulator R and construct a query “Is R’s genotype BY?”. 
 
(3) Geronemo learning algorithm. Learning a Geronemo model involves two tasks: (i) 
assigning each gene into some regulatory module; (ii) learning the regulation program for 
each module. We first construct 500 modules obtained by k-means clustering. We then 
iterated over two phases: learning the regulatory program for the current modules, and 
reassigning genes to modules. In our learning procedure, we prevented genes from 
regulating the same module in which they appeared, but did not require global acyclicity 
because the real regulatory network is not acyclic. Our two-step iterative learning 
procedure attempts to search for the model with the highest score, in each step optimizing 
one of the model’s components: regulation programs or gene partition. An important 
property of our algorithm is that each iteration is guaranteed to improve the model score, 
until convergence to a local maximum of the score. We now elaborate on each of the 
components of our algorithm. 
 
(i) Initialization of modules. Geronemo learning procedure starts with initial modules 
obtained from k-means clustering algorithm, which initializes the clusters with k random 
points. Below, we present results testing the sensitivity of our learning procedure to the 
number of initial modules (k) and to different sets of random initial points of k-means 
clustering. 
 
(ii) Learning the regulatory program. Given a set of modules, we learned a regulatory 
association for each module by using the candidate expression (e) and genotype (g) 
regulators. As described above, the association between the genetic regulators and the 
expression of genes can be represented as a regression tree. The regulation program is 
learned via a combinatorial search over the space of trees. The tree is grown from the root 
to its leaves by using a recursive procedure. At any step, the algorithm considers splitting a 
node that is currently a leaf, by evaluating each possible query at that leaf. We consider all 
candidate regulators and split values. The different possible queries are evaluated relative to 
the extent to which they increase the model score, and subsequently accepted or rejected by 
using an FDR test. A query that is chosen splits the leaf into two distinct contexts, and then 
the process repeats. The process terminates when no query that improves the score can be 
found.   
 
Importantly, the candidate genetic regulators for Geronemo consist of both continuous-
valued e regulators and discrete-valued g regulators. The continuous-valued candidate 



regulators have more possible split values than the discrete-valued ones; therefore, it is 
possible that e regulators can be captured more often than g regulators because of the 
spurious correlation with the genes in the module. We extended our learning scheme to 
correct for these effects. When considering adding a decision node to the regulatory 
program, we take the following steps. (i) We first choose the e-regulator that achieves the 
highest score among all candidate e regulators, and the g regulator with the highest score 
among all candidate g regulators. (ii) For each of the highest-scoring e and g regulator, we 
calculate a P value by using false discovery rate (FDR); see below. (iii) We select either the 
e or g regulator with the lower FDR. If the chosen FDR is >0.05, we select the next highest 
scoring regulator, and repeat. If the top three regulators in e and g regulator groups have 
FDR >0.05, the process terminates. Evaluating the split by using FDR serves two purposes.  
First, it ensures only statistically significant splits are included in the regulation tree. 
Second, it ensures that an expression regulator is chosen only when it is significantly more 
predictive of its targets than the best genotype regulator.  
 
We performed the FDR test as follows: for the regulator being tested, we generate 1,000 
permutations, randomly permuting the values of the regulator across individuals. Thus, the 
composition of values for the regulator remains unchanged, but the order is random and 
independent of the target genes. We calculated the score for each of the permutations, for g 
regulators based in the two discrete values and for the e regulators based on the highest 
scoring split value. The FDR is the frequency with which the score is higher than the 
original one among the 1,000 random permutations. To ensure that it is the expression 
value of an e regulator which is predictive, and not its genotype, we permute its expression 
values within each of its genotypes separately. This ensures that if there is a different 
distribution of expression values between the two genotypes, the randomization preserves 
this difference.   
 
(iii) Learning the module assignment. Given the inferred regulation programs, we 
determine the module whose associated regulation program best predicts each gene's 
behavior. Specifically, we iterate over all genes one at a time, for each gene g, computing 
the change in score of the model obtained by moving g from its current module, into every 
other possible module M. We then move g into the module M that provides the highest 
improvement in the score. However, we take care not to assign a regulator gene to a module 
in which it is also a regulatory input, as it is not surprising that a gene can predict its own 
expression. This step is guaranteed to improve the score, or leave it the same (if the gene is 
not moved). We repeated this reassignment process for all genes three times.  Importantly, 
after this step, some modules become empty, at which point they are removed from the 
algorithm.   
  
To allow for cis-regulation effects, in which a polymorphism in the regulatory region of a 
gene changes the expression of that gene, we introduced a step that allows genes to “break 
off” from their module and create a new one. When the module assignment is stabilized to 
some extent (when the number of genes moved <200), we considered a singleton decision 
step for each gene gi,. In this step, we consider whether gi might be better described as a cis 



linked gene, as follows: Let Mj be the current module of gi; we consider breaking Mj into 
two modules – a module Si containing only gi, and a module Mj’ containing the rest of the 
genes in Mj. To avoid over-fitting, in the post-split model, the regulation trees of Si and Mj’ 
(required for computing the score) are learned using only the regulators and their split 
values used in the regulation program of Mj, and, for Si, also allowing gi’s genotype as a 
parent. We then accept the new split only if it improves the overall score. After this 
singleton decision step is considered for all genes and the new singleton modules are 
formed, we repeat our module reassignment step. After the module reassignment process is 
completed, our model generally has a different number of modules.   
 
Although many of the search steps in this algorithm are heuristic (generally inevitable when 
searching over a large combinatorial space), the algorithm is nevertheless principled, as it is 
consistently optimizing a wellfounded, Bayesian scoring function (see below). The key to 
the performance of this algorithm is its sequential nature, which guarantees that each step 
taken can only improve the score or leave it unchanged. Our algorithm terminates when it 
can no longer improve the score. Due to the complexity of the likelihood landscape, our 
search does not guarantee a global maximum; it converges to a local maximum, where no 
single assignment change can improve the score. 
 
(iv) Score function. We use a wellfounded Bayesian scoring approach, which tries to 
maximize the overall joint probability of both the data and of the model structure. Let S 
represent the “structure” of a model, which includes the assignment of genes into modules 
(denoted by A) and the regulation trees of the modules (denoted by T). The joint log-
likelihood of the model can be expressed as log P(D|S) + log P(S), where D represents the 
data. This score consists of two parts: (i) log P(D|S): the log of the data marginal-likelihood 
given the structure, and (ii) P(S): the prior probability distribution of the model structure. 
 
We use a Bayesian approach for computing the data log-likelihood term. We model the 
prior distribution over the parameters of the structure S (denoted by Sθ ) by using a normal-
gamma distribution. Here, Sθ  means the random variable representing the expression 
level in each context of the regulation program. Therefore, the data log-likelihood can be 
computed as: 
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function (pdf) of normal-gamma distribution. 
 
We consider two kinds of prior distribution for S: a general complexity prior on a 
regulation program T and a biologically motivated prior on S. The complexity prior 
penalizes the number of regulators (or number of leaves) in a regulation program. We use 
the exponential distribution over the total number of leaves (denoted by LT) in a regulation 
tree T, which leads to TLβ−=P(T) log . We also consider a prior for S that can bias the 
model in favor of more biologically plausible regulation programs, which imposes a sparse 
prior (i) on the number of targets of each regulator and (ii) on the number of distinct split 



values that a regulator has. The sparse prior on i encourages the algorithm to choose a small 
set of candidate regulators as expression regulators, thereby avoiding over-fitting when 
there are a number of candidate regulators many of which are not relevant. The prior on ii 
encourages the expression regulators to have small number of split points in the regulation 
program, which can reduce overfitting caused by the flexibility of choosing the split point 
of the expression regulators. This prior takes the form of a power-law distribution on the 
number of trans-targets of a regulator r, and on pairs of r and its split value vr. Denoting by 
R all regulators,  
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where w(R,V) represents the number of trans-regulated targets of the regulator R with the 
split value V, and ∑= v
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Overall, the scoring function is expressed as: 
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The parameters of the score ( β , x and y) were determined by optimizing the log-likelihood 
of test data through 5-fold cross-validation test. 
 
(v) Module dynamics and stop condition. In summary, each iteration of the Geronemo 
learning procedure performs one of the three operations: (i) learning the regulatory 
programs, (ii) learning module assignment and (iii) learning module assignment with 
singleton decision step. Basically, Geronemo runs i once and then ii three times. Once we 
achieve approximate convergence, so that each of the three consecutive runs of ii moves 
<200 genes, it performs iii. It iterates this process (a global iteration) until convergence. 
The stop condition is defined as: the sum of the number of genes moved in ii or iii in one 
global iteration is <10% of the total number of genes. The number of genes that change 
their module assignment, and the score in each iteration is illustrated in Fig. 5.  
 
(vi) Final set of modules. Applied to our data set, Geronemo converged to a set of 198 
regulatory modules. However, not all genes were wellexplained by the resulting model.  
Specifically, a small number of modules did not represent a coherent expression profile, 
indicating that they did not provide a good explanation of the data, and therefore were less 
likely to represent true biological relationships. We defined the coherence of a module as 
the average Bayesian score of the genes in the module (averaged over the number of genes).  
Based on this module coherence score, we filtered out the 33 least coherent modules – 



those whose average score per gene was lowest, resulting in 165 modules that we 
subsequently evaluated.  
 
(vii) Robustness of Geronemo to initialization. As the initialization of Geronemo is done 
from the output of a randomly initialized k-means clustering, we tested the robustness of 
the results obtained both to the value of k and to the randomly selected starting point for k-
means. To test sensitivity to the number of initial modules k, we initialized Geronemo by 
using various values of k values ranging from 100 to 900. Fig. 10 presents the results of this 
evaluation.  
 
While the final number of modules in the module network procedure shows obvious 
dependence on k, Geronemo exhibits very little sensitivity to k, especially when k>400. For 
lower values of k, Geronemo also shows more invariance to k than module network, which 
is mainly due to the module breaking procedure. We conclude that the Geronemo learning 
procedure that actively merges and breaks a module makes it possible to automatically 
determine the number of final modules if it starts with enough number of initial modules. 
We chose k=500 for the analysis in the paper. 
 
We then evaluated the sensitivity of our learning procedure to the random initialization of 
k-means clustering. Fixing k = 500, we generated 100 different sets of initial modules from 
100 different initial points of k-means clustering and compared each of the 100 resulting 
models with the model analyzed in the paper. To perform the comparison, we first needed 
to map modules in two runs, one of the 100 models from the new runs and our target model, 
analyzed in the paper. This mapping was defined by mapping each module M in a new run 
to a module M’ in the target run that contained >50% of the genes in M (if one existed). 
Then, we computed the fraction of genes in a new run that are assigned to the 
corresponding module in the target model. Among 100 runs, the fraction of genes in a new 
run that are assigned to the corresponding module in the analyzed model ranges from 
66.18% to 71.83% (mean = 68.85%, stdev = 0.974). As a control experiment, we tried 100 
sets of clusters from 100 different runs of k-means clustering. In this control experiment, 
the fraction ranges from 39.94% to 47.36% (mean = 43.9%, stdev = 2.8). We also 
computed the fraction of cis-genes in a new run that are also cis-genes in the analyzed 
model. The fraction ranges from 78.52% to 91.6% (mean = 83.4%, stdev = 2.327) among 
100 models.  Overall, our results indicate that the results obtained by Geronemo are very 
robust to the initial starting point. 
 
Enrichment Analysis for Number of Polymorphisms in a Gene Group. As 
discussed in the paper, we applied an enrichment analysis of polymorphisms for several 
groups of genes: cis-genes, regulators in the vicinity of markers selected as parents, and the 
genes in the Swi/Snf complex. For coding sequences, we evaluated enrichment for 
nonsynonymous SNPs, and for promoter regions, we evaluated enrichment for any SNPs, 
taking the regions to include the 500 bp upstream of the transcription start site. In either 
case, we computed enrichment of the polymorphisms in a gene group of interest (case 



group) by comparing the distribution of the number of polymorphisms between the group 
and a control group. The control group consisted of the genes that are adjacent (one 
upstream and one downstream) to the genes in the group of interest. The distribution of the 
number of polymorphisms is far from any standard distribution used in general statistical 
hypothesis tests. Therefore, we devised a nonparametric FDR correction method that 
evaluates significance by using 1,000 permutation tests. In each case group S, we computed 
the hyper-geometric enrichment of the case group, relative to the control group, for genes 
that contain >n polymorphisms. We varied n such that the P value based on the hyper-
geometric distribution is minimized. If such minimum P value is smaller than 0.01, we 
performed 10,000 permutation tests to verify the significance. In each permutation test i, we 
chose a “random case group” Si with the same number of genes as S, and defined the 
control group to be the genes adjacent to Si. We then varied the cutoff n in the same way, 
and calculated the P value. The FDR-corrected P value is the fraction of permutation tests 
where the P value of the random case group Si is smaller than that of S. 
 
Proportion of Genetic Variance Explained by Genetic Regulators. We 
estimated the percentage of genetic variance (PGV) explained by the identified genetic 
regulators, using the same method used by Brem and Kruglyak (3) in analyzing the eQTL 
approach. We randomly divided the data of 112 segregants into two sets of the same size 
(56 segregants): the detection set and the estimation set. Using the detection set, we 
identified the regulation program through our procedure (Fig. 6). Then, we used the 
estimation set to calculate the PGV on the basis of the identified regulation programs. The 
PGV of a gene G is defined as 
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squared correlation coefficient between the expression values of G in the estimation set (eG) 
and the expression values for G by using a single-factor ANOVA, where the factors are the 
contexts in the regulation program learned from the detection set (gG).  Specifically, the 
predicted expression values are computed as follows: for each context (leaf) in the 
regulation tree, we compute the average expression, in the estimation set, over all of the 
arrays in the context and all of the genes in the module.  The adjusted squared correlation 
coefficient is now defined using the correction described by Utz et al. (4):  
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where R2 is the square correlation coefficient between eG and gG, z is the number of 
contexts of the regulation program, and N is the number of expression values in the 
estimation set, which is the product of the number of individuals in the estimation set times 
the number of genes in the module.  There are significant differences between the 
complexity of the Geronemo model and of the eQTL model:  On the one hand, the 
Geronemo model allows more parameters per regulatory program, by allowing 
combinatorial regulation and therefore more than two contexts.  On the other hand, the 
module-based approach forces sharing of parameters between all of the genes in a module.  
The formula for R2

adj corrects both for the number of contexts in the regulatory programs 
(by the z term) and for the use of module-based models (by the N term).  We note that, 
overall, the Geronemo model had significantly fewer parameters: an average of <0.6 
contexts per linked gene, compared to the standard 2 contexts per linked gene found in 
eQTL. 
 
We repeated this detection/estimation process 10 times with different random splits of data.  
As in the work of Brem and Kruglyak (3), if the PGV was <0, we assigned it to be 
identically 0, if it was >1, we excluded it; genes with estimated heritabilities <0 were also 
excluded.  We computed the PGVg for each gene by taking the average of PGV of the 
gene over 10 runs. If the gene is not assigned a regulatory program in a run, we considered 
its PGV in that run to be 0. In Fig. 1, we plotted PGVg (y axis) of 3,152 genes (x axis) used 
in our analysis and sorted by their PGVgs. We also plotted the result reported by Brem and 
Kruglyak (3) who conducted the same experiment to calculate the PGVs in 10 runs, each of 
which detected a linkage for 1,038 genes on average, and presented the fraction of PGVs in 
the given ranges (red boxes in Fig. 1). 
 
 



Validation relative to additional data sources. We evaluated the biological 
relevance of each regulatory module in the context of other genomic data sets. We used 
the hypergeometric P value to test for functional enrichment of 1,601 GO categories 
taken from SGD (5). To associate transcription factors (and sometimes their known 
upstream signaling molecule) to targets, we used ChIP binding data for transcription 
factors (6) and chromatin modifying factors (7, 8) and used a P value < 0.001 cutoff to 
define a target set for each regulator. For the Isw2 protein (8), we considered the genes 
whose log2 ratio of IP/input >1 to be Isw2 targets. We also used a map of putative TF 
binding sites (motifs) for 65 motifs from the Fraenkel lab web site (6). We took the 
union of binding sites conserved in at least two other yeast species and binding sites that 
match the Harbison et al. (6) binding data. We used the resulting motif map both to test 
for enrichment in our modules and for the actual location of the predicted binding site to 
mark SNPs potentially perturbing a transcription factor binding site. As an additional 
resource for associating regulators to (not necessarily direct) targets we used 
differentially expressed genes (DEGs) from deletion mutants of different regulators in 
(9-11). For each deletion we defined a threshold for differentially expressed as described 
in (12). For the full set of annotations (function, binding data and DEG targets), we 
removed all annotations associated with less than five genes from our gene set. For each 
module and each annotation, we counted the number of predicted target genes associated 
with that particular annotation, and calculated a P value by using the hypergeometric 
distribution. We carried out a FDR correction for multiple independent hypotheses and 
took values of Pcorrected < 0.005 to be significant.  
 
 
Identifying Orthologous Genes Between BY and RM. We downloaded the 
genome sequences of S288C (isogenic to BY) and RM from the Saccharomyces Genome 
Database (5) and Broad Institute of Fungal Genome Initiative (www.broad.mit.edu), 
respectively (sequences were retrieved on 12 January 2005). In order to define orthologous 
genes between BY and RM, we used reciprocal best BLAST hit (13) (protein sequences of 
S288C were download from SGD (5) on 12 January 2005). We retrieved the genomic 
sequences, 500 bp upstream of each orthologous pair, and aligned them by using LAGAN 
(14). Out of 6,683 genes in 16 nuclear chromosomes, 6,292 (94.1493%) have reciprocal 
best matches between the two strains. 
 
Positive Selection Test for Regulatory GO Categories. We checked the 
enrichment for the genes that are likely to be under positive selection in 38 GO categories 
related to various regulatory roles (see list in table below). We collected 1,097 genes with 
dN>dS from the dN/dS test (15) (listed in Table 3) in these 38 regulatory categories. For 
each category, we computed the P values representing the significance of the overlap 
between the genes with dN>dS and the genes belonging to the category. We sorted the 
categories by P value, as listed below. As we discussed in the paper, the Swi/Snf complex 
is the only category with the P value <0.01.  
 



Gene Ontology category P value No. of 
genes 
with 
dN>dS 
in (i) 

(i) 
GO 
genes 

No. of 
genes 
with 
dN>dS 
in (ii) 

(ii) 
Others

SWI/SNF complex 0.001471 6 11 1091 5726 
Regulation of meiosis 0.015522 5 12 1092 5725 
Regulation of transcription from RNA 
polymerase II promoter 0.015599 20 69 1077 5668 
Specific RNA polymerase II transcription 
factor activity 0.037232 12 41 1085 5696 
Chromatin remodeling complex 0.04219 4 11 1093 5726 
Histone acetyltransferase complex 0.050093 5 15 1092 5722 
Transcriptional activator activity 0.069418 9 32 1088 5705 
Rho protein signal transduction 0.088299 5 17 1092 5720 
Protein tyrosine phosphatase activity 0.105621 3 10 1094 5728 
SAGA complex 0.111913 5 18 1092 5719 
Specific transcriptional repressor activity 0.141865 3 11 1094 5726 
H4/H2A histone acetyltransferase 
complex 0.141865 3 11 1094 5726 
Histone deacetylase complex 0.211988 4 17 1093 5720 
Chromatin remodeling 0.23467 11 50 1086 5687 
Protein serine/threonine kinase activity 0.287139 7 33 1090 5704 
Transcriptional repressor activity 0.295709 2 10 1095 5727 
Regulation of transcription, DNA-
dependent 0.311781 6 29 1091 5708 
Protein kinase activity 0.327968 10 49 1087 5688 
General RNA polymerase II transcription 
factor activity 0.3505 8 40 1089 5697 
Chromatin silencing at telomere 0.381095 8 41 1089 5696 
Regulation of cyclin dependent protein 
kinase activity 1 2 14 1095 5723 
Chromatin silencing at ribosomal DNA 1 0 12 1097 5725 
Transcription factor activity 1 7 57 1090 5680 
RNA polymerase II transcription factor 
activity 1 1 17 1096 5720 
Transcription coactivator activity 1 1 11 1096 5726 
Transcription corepressor activity 1 3 16 1094 5721 
GTPase activity 1 10 57 1088 5681 
Histone acetyltransferase activity 1 1 14 1096 5723 
Histone deacetylase activity 1 2 11 1095 5726 
Signal transducer activity 1 3 23 1094 5714 



DNA-directed RNA polymerase II, core 
complex 1 1 11 1096 5726 
Chromatin silencing 1 1 16 1096 5721 
Transcription 1 3 29 1094 5708 
Transcription from RNA polymerase II 
promoter 1 4 40 1093 5697 
Signal transduction 1 5 36 1092 5701 
Small GTPase mediated signal 
transduction 1 4 21 1094 5717 
Ras protein signal transduction 1 1 14 1096 5723 
Chromatin modification 1 3 19 1094 5718 
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