
Supporting Materials

Genetic Regulatory Network of Modules (Geronemo). As discussed in the
paper, the Geronemo learning algorithm iterates over two phases: (1) assigning each gene
into some regulatory module; (2) learning the regulation program for each module. At a
high level, our method follows the module network approach of Segal et al. (1). However,
as discussed in the paper, we introduced several important innovations that are keys to the
success of the method in this new setting. Below, we review both the module network
procedure and our extensions.

(1) Regulation programs. We adopted the concept of the regulation program from Segal et
al. (1). Briefly reviewing, a regulation program of a gene G specifies a set of contexts and
G’s expression values in each context. A context is determined by the qualitative behavior
of a small set of regulatory factors that control G’s expression and includes a model for G’s
behavior in that context. This set of contexts is organized as a regression tree in which each
path to a leaf in the tree defines a context by using the tests on the path. A regression tree is
composed of two basic building blocks: decision nodes and leaf nodes. Each decision node
corresponds to one of the regulatory inputs and a query on its value (for example, "is Hap1
up-regulated?"). Each decision node has two child nodes: the right child node is chosen
when the answer to the corresponding query is true; the left node is chosen when it is false.
For a gene in a given array, one begins at the root node and continues down the tree in a
path according to the answers to the queries in that particular array. Thus, each leaf
(context) corresponds to the arrays that traverse the same path through the tree. The
expression level of G in each context is modeled as a normal distribution; this distribution
is encoded using a mean and variance stored at the corresponding leaf. The model
semantics is that, given a gene G and an array A in a context, the probability of observing
some expression value for gene G in an array A is governed by the normal distribution
specified for that context. For a context in which the expression values are tightly regulated,
the distribution may have a small variance; in a context where the expression values are not
tightly regulated, the distribution may have a large variance. In the current study, we
allowed two types of regulatory factors: the genotype of some chromosomal region defined
by a marker, which (in our data) has two possible split values, for the two progenitor
alleles; and the expression level of some regulator R, whose set of possible splits is the
number of different continuous values that the regulator takes on in the expression arrays.

(2) Compilation of candidate regulator set. Our candidate regulator set included two
different types of regulators: genotype regulators and expression regulators. As expression
regulators, we compiled a list of regulators that potentially might have transcriptional role
in the broad sense, including: transcription factors, signaling molecules, chromatin
modification factors, and RNA factors (degradation and RNA processing). The list was
derived by using Gene Ontology annotations in SGD (2) and further corrected via manual
curation. We filtered the list to keep only those candidate regulators showing a significant
variation in their expression levels (>90% of the expression values are present and standard

deviation > 0.25), which resulted in 304 regulators (see Table 1). For each query node in
the regulation programs, the learning algorithm can choose any candidate gene expression
regulator R and construct a query “Is R’s expression level > t?” for any threshold of R’s
expression t. We used the genotype data consisting of the genotype values (BY/RM) for
each of 112 recombinants, measured in 2,957 genetic markers distributed over the genomes.
We merged into a single regulator adjacent, highly correlated markers (which disagree on
genotype values in <5 segregants), resulting in 581 merged markers. For each query node
in the regulation programs, the learning algorithm can choose any candidate genotype
regulator R and construct a query “Is R’s genotype BY?”.

(3) Geronemo learning algorithm. Learning a Geronemo model involves two tasks: (i)
assigning each gene into some regulatory module; (ii) learning the regulation program for
each module. We first construct 500 modules obtained by k-means clustering. We then
iterated over two phases: learning the regulatory program for the current modules, and
reassigning genes to modules. In our learning procedure, we prevented genes from
regulating the same module in which they appeared, but did not require global acyclicity
because the real regulatory network is not acyclic. Our two-step iterative learning
procedure attempts to search for the model with the highest score, in each step optimizing
one of the model’s components: regulation programs or gene partition. An important
property of our algorithm is that each iteration is guaranteed to improve the model score,
until convergence to a local maximum of the score. We now elaborate on each of the
components of our algorithm.

(i) Initialization of modules. Geronemo learning procedure starts with initial modules
obtained from k-means clustering algorithm, which initializes the clusters with k random
points. Below, we present results testing the sensitivity of our learning procedure to the
number of initial modules (k) and to different sets of random initial points of k-means
clustering.

(ii) Learning the regulatory program. Given a set of modules, we learned a regulatory
association for each module by using the candidate expression (e) and genotype (g)
regulators. As described above, the association between the genetic regulators and the
expression of genes can be represented as a regression tree. The regulation program is
learned via a combinatorial search over the space of trees. The tree is grown from the root
to its leaves by using a recursive procedure. At any step, the algorithm considers splitting a
node that is currently a leaf, by evaluating each possible query at that leaf. We consider all
candidate regulators and split values. The different possible queries are evaluated relative to
the extent to which they increase the model score, and subsequently accepted or rejected by
using an FDR test. A query that is chosen splits the leaf into two distinct contexts, and then
the process repeats. The process terminates when no query that improves the score can be
found.

Importantly, the candidate genetic regulators for Geronemo consist of both continuous-
valued e regulators and discrete-valued g regulators. The continuous-valued candidate

regulators have more possible split values than the discrete-valued ones; therefore, it is
possible that e regulators can be captured more often than g regulators because of the
spurious correlation with the genes in the module. We extended our learning scheme to
correct for these effects. When considering adding a decision node to the regulatory
program, we take the following steps. (i) We first choose the e-regulator that achieves the
highest score among all candidate e regulators, and the g regulator with the highest score
among all candidate g regulators. (ii) For each of the highest-scoring e and g regulator, we
calculate a P value by using false discovery rate (FDR); see below. (iii) We select either the
e or g regulator with the lower FDR. If the chosen FDR is >0.05, we select the next highest
scoring regulator, and repeat. If the top three regulators in e and g regulator groups have
FDR >0.05, the process terminates. Evaluating the split by using FDR serves two purposes.
First, it ensures only statistically significant splits are included in the regulation tree.
Second, it ensures that an expression regulator is chosen only when it is significantly more
predictive of its targets than the best genotype regulator.

We performed the FDR test as follows: for the regulator being tested, we generate 1,000
permutations, randomly permuting the values of the regulator across individuals. Thus, the
composition of values for the regulator remains unchanged, but the order is random and
independent of the target genes. We calculated the score for each of the permutations, for g
regulators based in the two discrete values and for the e regulators based on the highest
scoring split value. The FDR is the frequency with which the score is higher than the
original one among the 1,000 random permutations. To ensure that it is the expression
value of an e regulator which is predictive, and not its genotype, we permute its expression
values within each of its genotypes separately. This ensures that if there is a different
distribution of expression values between the two genotypes, the randomization preserves
this difference.

(iii) Learning the module assignment. Given the inferred regulation programs, we
determine the module whose associated regulation program best predicts each gene's
behavior. Specifically, we iterate over all genes one at a time, for each gene g, computing
the change in score of the model obtained by moving g from its current module, into every
other possible module M. We then move g into the module M that provides the highest
improvement in the score. However, we take care not to assign a regulator gene to a module
in which it is also a regulatory input, as it is not surprising that a gene can predict its own
expression. This step is guaranteed to improve the score, or leave it the same (if the gene is
not moved). We repeated this reassignment process for all genes three times. Importantly,
after this step, some modules become empty, at which point they are removed from the
algorithm.

To allow for cis-regulation effects, in which a polymorphism in the regulatory region of a
gene changes the expression of that gene, we introduced a step that allows genes to “break
off” from their module and create a new one. When the module assignment is stabilized to
some extent (when the number of genes moved <200), we considered a singleton decision
step for each gene gi,. In this step, we consider whether gi might be better described as a cis

linked gene, as follows: Let Mj be the current module of gi; we consider breaking Mj into
two modules – a module Si containing only gi, and a module Mj’ containing the rest of the
genes in Mj. To avoid over-fitting, in the post-split model, the regulation trees of Si and Mj’
(required for computing the score) are learned using only the regulators and their split
values used in the regulation program of Mj, and, for Si, also allowing gi’s genotype as a
parent. We then accept the new split only if it improves the overall score. After this
singleton decision step is considered for all genes and the new singleton modules are
formed, we repeat our module reassignment step. After the module reassignment process is
completed, our model generally has a different number of modules.

Although many of the search steps in this algorithm are heuristic (generally inevitable when
searching over a large combinatorial space), the algorithm is nevertheless principled, as it is
consistently optimizing a wellfounded, Bayesian scoring function (see below). The key to
the performance of this algorithm is its sequential nature, which guarantees that each step
taken can only improve the score or leave it unchanged. Our algorithm terminates when it
can no longer improve the score. Due to the complexity of the likelihood landscape, our
search does not guarantee a global maximum; it converges to a local maximum, where no
single assignment change can improve the score.

(iv) Score function. We use a wellfounded Bayesian scoring approach, which tries to
maximize the overall joint probability of both the data and of the model structure. Let S
represent the “structure” of a model, which includes the assignment of genes into modules
(denoted by A) and the regulation trees of the modules (denoted by T). The joint log-
likelihood of the model can be expressed as log P(D|S) + log P(S), where D represents the
data. This score consists of two parts: (i) log P(D|S): the log of the data marginal-likelihood
given the structure, and (ii) P(S): the prior probability distribution of the model structure.

We use a Bayesian approach for computing the data log-likelihood term. We model the
prior distribution over the parameters of the structure S (denoted by Sθ) by using a normal-
gamma distribution. Here, Sθ means the random variable representing the expression
level in each context of the regulation program. Therefore, the data log-likelihood can be
computed as:

∫=
S

SSS dPSD
θ

θθθ)(),|(P logS)|P(D log , where)(SP θ is the probability density

function (pdf) of normal-gamma distribution.

We consider two kinds of prior distribution for S: a general complexity prior on a
regulation program T and a biologically motivated prior on S. The complexity prior
penalizes the number of regulators (or number of leaves) in a regulation program. We use
the exponential distribution over the total number of leaves (denoted by LT) in a regulation
tree T, which leads to TLβ−=P(T) log . We also consider a prior for S that can bias the
model in favor of more biologically plausible regulation programs, which imposes a sparse
prior (i) on the number of targets of each regulator and (ii) on the number of distinct split

values that a regulator has. The sparse prior on i encourages the algorithm to choose a small
set of candidate regulators as expression regulators, thereby avoiding over-fitting when
there are a number of candidate regulators many of which are not relevant. The prior on ii
encourages the expression regulators to have small number of split points in the regulation
program, which can reduce overfitting caused by the flexibility of choosing the split point
of the expression regulators. This prior takes the form of a power-law distribution on the
number of trans-targets of a regulator r, and on pairs of r and its split value vr. Denoting by
R all regulators,

∑∑ ∈∈∈
+−+−=

Rr
rwyvrwxSP }1)(log{}1),(log{)(log

rvvR,rfor v}{r, ,

where w(R,V) represents the number of trans-regulated targets of the regulator R with the
split value V, and ∑= v

vRwRw),()(.

Overall, the scoring function is expressed as:

)(log)|(log),(log SPSDPSDP +=

∑∫ −=
T TSSS LdPSDP

S

βθθθ
θ

)(),|(log

 { } { }∑∑ +−+−
rvr

rwyvrwx 1)(log1),(log
 },{

The parameters of the score (β , x and y) were determined by optimizing the log-likelihood
of test data through 5-fold cross-validation test.

(v) Module dynamics and stop condition. In summary, each iteration of the Geronemo
learning procedure performs one of the three operations: (i) learning the regulatory
programs, (ii) learning module assignment and (iii) learning module assignment with
singleton decision step. Basically, Geronemo runs i once and then ii three times. Once we
achieve approximate convergence, so that each of the three consecutive runs of ii moves
<200 genes, it performs iii. It iterates this process (a global iteration) until convergence.
The stop condition is defined as: the sum of the number of genes moved in ii or iii in one
global iteration is <10% of the total number of genes. The number of genes that change
their module assignment, and the score in each iteration is illustrated in Fig. 5.

(vi) Final set of modules. Applied to our data set, Geronemo converged to a set of 198
regulatory modules. However, not all genes were wellexplained by the resulting model.
Specifically, a small number of modules did not represent a coherent expression profile,
indicating that they did not provide a good explanation of the data, and therefore were less
likely to represent true biological relationships. We defined the coherence of a module as
the average Bayesian score of the genes in the module (averaged over the number of genes).
Based on this module coherence score, we filtered out the 33 least coherent modules –

those whose average score per gene was lowest, resulting in 165 modules that we
subsequently evaluated.

(vii) Robustness of Geronemo to initialization. As the initialization of Geronemo is done
from the output of a randomly initialized k-means clustering, we tested the robustness of
the results obtained both to the value of k and to the randomly selected starting point for k-
means. To test sensitivity to the number of initial modules k, we initialized Geronemo by
using various values of k values ranging from 100 to 900. Fig. 10 presents the results of this
evaluation.

While the final number of modules in the module network procedure shows obvious
dependence on k, Geronemo exhibits very little sensitivity to k, especially when k>400. For
lower values of k, Geronemo also shows more invariance to k than module network, which
is mainly due to the module breaking procedure. We conclude that the Geronemo learning
procedure that actively merges and breaks a module makes it possible to automatically
determine the number of final modules if it starts with enough number of initial modules.
We chose k=500 for the analysis in the paper.

We then evaluated the sensitivity of our learning procedure to the random initialization of
k-means clustering. Fixing k = 500, we generated 100 different sets of initial modules from
100 different initial points of k-means clustering and compared each of the 100 resulting
models with the model analyzed in the paper. To perform the comparison, we first needed
to map modules in two runs, one of the 100 models from the new runs and our target model,
analyzed in the paper. This mapping was defined by mapping each module M in a new run
to a module M’ in the target run that contained >50% of the genes in M (if one existed).
Then, we computed the fraction of genes in a new run that are assigned to the
corresponding module in the target model. Among 100 runs, the fraction of genes in a new
run that are assigned to the corresponding module in the analyzed model ranges from
66.18% to 71.83% (mean = 68.85%, stdev = 0.974). As a control experiment, we tried 100
sets of clusters from 100 different runs of k-means clustering. In this control experiment,
the fraction ranges from 39.94% to 47.36% (mean = 43.9%, stdev = 2.8). We also
computed the fraction of cis-genes in a new run that are also cis-genes in the analyzed
model. The fraction ranges from 78.52% to 91.6% (mean = 83.4%, stdev = 2.327) among
100 models. Overall, our results indicate that the results obtained by Geronemo are very
robust to the initial starting point.

Enrichment Analysis for Number of Polymorphisms in a Gene Group. As
discussed in the paper, we applied an enrichment analysis of polymorphisms for several
groups of genes: cis-genes, regulators in the vicinity of markers selected as parents, and the
genes in the Swi/Snf complex. For coding sequences, we evaluated enrichment for
nonsynonymous SNPs, and for promoter regions, we evaluated enrichment for any SNPs,
taking the regions to include the 500 bp upstream of the transcription start site. In either
case, we computed enrichment of the polymorphisms in a gene group of interest (case

group) by comparing the distribution of the number of polymorphisms between the group
and a control group. The control group consisted of the genes that are adjacent (one
upstream and one downstream) to the genes in the group of interest. The distribution of the
number of polymorphisms is far from any standard distribution used in general statistical
hypothesis tests. Therefore, we devised a nonparametric FDR correction method that
evaluates significance by using 1,000 permutation tests. In each case group S, we computed
the hyper-geometric enrichment of the case group, relative to the control group, for genes
that contain >n polymorphisms. We varied n such that the P value based on the hyper-
geometric distribution is minimized. If such minimum P value is smaller than 0.01, we
performed 10,000 permutation tests to verify the significance. In each permutation test i, we
chose a “random case group” Si with the same number of genes as S, and defined the
control group to be the genes adjacent to Si. We then varied the cutoff n in the same way,
and calculated the P value. The FDR-corrected P value is the fraction of permutation tests
where the P value of the random case group Si is smaller than that of S.

Proportion of Genetic Variance Explained by Genetic Regulators. We
estimated the percentage of genetic variance (PGV) explained by the identified genetic
regulators, using the same method used by Brem and Kruglyak (3) in analyzing the eQTL
approach. We randomly divided the data of 112 segregants into two sets of the same size
(56 segregants): the detection set and the estimation set. Using the detection set, we
identified the regulation program through our procedure (Fig. 6). Then, we used the
estimation set to calculate the PGV on the basis of the identified regulation programs. The
PGV of a gene G is defined as

100
ĥ

)g,e(
PGV

2

2
adj ×=

G

GG
G

R
.

The denominator 2

Gĥ is the heritability of G, defined as 2
s

2
p

2
s

2)/-(ĥ σσσ= , where 2
sσ and

2
pσ are the variance among its expression values in the segregants and its pooled variance

among parental measurements, respectively. The numerator)g,e(GG
2
adjR is the adjusted

squared correlation coefficient between the expression values of G in the estimation set (eG)
and the expression values for G by using a single-factor ANOVA, where the factors are the
contexts in the regulation program learned from the detection set (gG). Specifically, the
predicted expression values are computed as follows: for each context (leaf) in the
regulation tree, we compute the average expression, in the estimation set, over all of the
arrays in the context and all of the genes in the module. The adjusted squared correlation
coefficient is now defined using the correction described by Utz et al. (4):

)1)(
1

()g,e(22
GG

2
adj R

zN
zRR −
−−

−= ,

where R2 is the square correlation coefficient between eG and gG, z is the number of
contexts of the regulation program, and N is the number of expression values in the
estimation set, which is the product of the number of individuals in the estimation set times
the number of genes in the module. There are significant differences between the
complexity of the Geronemo model and of the eQTL model: On the one hand, the
Geronemo model allows more parameters per regulatory program, by allowing
combinatorial regulation and therefore more than two contexts. On the other hand, the
module-based approach forces sharing of parameters between all of the genes in a module.
The formula for R2

adj corrects both for the number of contexts in the regulatory programs
(by the z term) and for the use of module-based models (by the N term). We note that,
overall, the Geronemo model had significantly fewer parameters: an average of <0.6
contexts per linked gene, compared to the standard 2 contexts per linked gene found in
eQTL.

We repeated this detection/estimation process 10 times with different random splits of data.
As in the work of Brem and Kruglyak (3), if the PGV was <0, we assigned it to be
identically 0, if it was >1, we excluded it; genes with estimated heritabilities <0 were also
excluded. We computed the PGVg for each gene by taking the average of PGV of the
gene over 10 runs. If the gene is not assigned a regulatory program in a run, we considered
its PGV in that run to be 0. In Fig. 1, we plotted PGVg (y axis) of 3,152 genes (x axis) used
in our analysis and sorted by their PGVgs. We also plotted the result reported by Brem and
Kruglyak (3) who conducted the same experiment to calculate the PGVs in 10 runs, each of
which detected a linkage for 1,038 genes on average, and presented the fraction of PGVs in
the given ranges (red boxes in Fig. 1).

Validation relative to additional data sources. We evaluated the biological
relevance of each regulatory module in the context of other genomic data sets. We used
the hypergeometric P value to test for functional enrichment of 1,601 GO categories
taken from SGD (5). To associate transcription factors (and sometimes their known
upstream signaling molecule) to targets, we used ChIP binding data for transcription
factors (6) and chromatin modifying factors (7, 8) and used a P value < 0.001 cutoff to
define a target set for each regulator. For the Isw2 protein (8), we considered the genes
whose log2 ratio of IP/input >1 to be Isw2 targets. We also used a map of putative TF
binding sites (motifs) for 65 motifs from the Fraenkel lab web site (6). We took the
union of binding sites conserved in at least two other yeast species and binding sites that
match the Harbison et al. (6) binding data. We used the resulting motif map both to test
for enrichment in our modules and for the actual location of the predicted binding site to
mark SNPs potentially perturbing a transcription factor binding site. As an additional
resource for associating regulators to (not necessarily direct) targets we used
differentially expressed genes (DEGs) from deletion mutants of different regulators in
(9-11). For each deletion we defined a threshold for differentially expressed as described
in (12). For the full set of annotations (function, binding data and DEG targets), we
removed all annotations associated with less than five genes from our gene set. For each
module and each annotation, we counted the number of predicted target genes associated
with that particular annotation, and calculated a P value by using the hypergeometric
distribution. We carried out a FDR correction for multiple independent hypotheses and
took values of Pcorrected < 0.005 to be significant.

Identifying Orthologous Genes Between BY and RM. We downloaded the
genome sequences of S288C (isogenic to BY) and RM from the Saccharomyces Genome
Database (5) and Broad Institute of Fungal Genome Initiative (www.broad.mit.edu),
respectively (sequences were retrieved on 12 January 2005). In order to define orthologous
genes between BY and RM, we used reciprocal best BLAST hit (13) (protein sequences of
S288C were download from SGD (5) on 12 January 2005). We retrieved the genomic
sequences, 500 bp upstream of each orthologous pair, and aligned them by using LAGAN
(14). Out of 6,683 genes in 16 nuclear chromosomes, 6,292 (94.1493%) have reciprocal
best matches between the two strains.

Positive Selection Test for Regulatory GO Categories. We checked the
enrichment for the genes that are likely to be under positive selection in 38 GO categories
related to various regulatory roles (see list in table below). We collected 1,097 genes with
dN>dS from the dN/dS test (15) (listed in Table 3) in these 38 regulatory categories. For
each category, we computed the P values representing the significance of the overlap
between the genes with dN>dS and the genes belonging to the category. We sorted the
categories by P value, as listed below. As we discussed in the paper, the Swi/Snf complex
is the only category with the P value <0.01.

Gene Ontology category P value No. of
genes
with
dN>dS
in (i)

(i)
GO
genes

No. of
genes
with
dN>dS
in (ii)

(ii)
Others

SWI/SNF complex 0.001471 6 11 1091 5726
Regulation of meiosis 0.015522 5 12 1092 5725
Regulation of transcription from RNA
polymerase II promoter 0.015599 20 69 1077 5668
Specific RNA polymerase II transcription
factor activity 0.037232 12 41 1085 5696
Chromatin remodeling complex 0.04219 4 11 1093 5726
Histone acetyltransferase complex 0.050093 5 15 1092 5722
Transcriptional activator activity 0.069418 9 32 1088 5705
Rho protein signal transduction 0.088299 5 17 1092 5720
Protein tyrosine phosphatase activity 0.105621 3 10 1094 5728
SAGA complex 0.111913 5 18 1092 5719
Specific transcriptional repressor activity 0.141865 3 11 1094 5726
H4/H2A histone acetyltransferase
complex 0.141865 3 11 1094 5726
Histone deacetylase complex 0.211988 4 17 1093 5720
Chromatin remodeling 0.23467 11 50 1086 5687
Protein serine/threonine kinase activity 0.287139 7 33 1090 5704
Transcriptional repressor activity 0.295709 2 10 1095 5727
Regulation of transcription, DNA-
dependent 0.311781 6 29 1091 5708
Protein kinase activity 0.327968 10 49 1087 5688
General RNA polymerase II transcription
factor activity 0.3505 8 40 1089 5697
Chromatin silencing at telomere 0.381095 8 41 1089 5696
Regulation of cyclin dependent protein
kinase activity 1 2 14 1095 5723
Chromatin silencing at ribosomal DNA 1 0 12 1097 5725
Transcription factor activity 1 7 57 1090 5680
RNA polymerase II transcription factor
activity 1 1 17 1096 5720
Transcription coactivator activity 1 1 11 1096 5726
Transcription corepressor activity 1 3 16 1094 5721
GTPase activity 1 10 57 1088 5681
Histone acetyltransferase activity 1 1 14 1096 5723
Histone deacetylase activity 1 2 11 1095 5726
Signal transducer activity 1 3 23 1094 5714

DNA-directed RNA polymerase II, core
complex 1 1 11 1096 5726
Chromatin silencing 1 1 16 1096 5721
Transcription 1 3 29 1094 5708
Transcription from RNA polymerase II
promoter 1 4 40 1093 5697
Signal transduction 1 5 36 1092 5701
Small GTPase mediated signal
transduction 1 4 21 1094 5717
Ras protein signal transduction 1 1 14 1096 5723
Chromatin modification 1 3 19 1094 5718

References

1. Segal, E., Shapira, M., Regev, A., Pe'er, D., Botstein, D., Koller, D. & Friedman, N.

(2003) Nat. Genet. 34, 166-176.
2. Cherry, J. M., Ball, C., Weng, S., Juvik, G., Schmidt, R., Adler, C., Dunn, B.,

Dwight, S., Riles, L., Mortimer, R. K. & Botstein, D. (1997) Nature 387, 67-73.
3. Brem, R. B. & Kruglyak, L. (2005) Proc. Natl. Acad. Sci. USA 102, 1572-1577.
4. Utz, H. F., Melchinger, A. E. & Schon, C. C. (2000) Genetics 154, 1839-1849.
5. Balakrishnan, R., Christie, K. R., Costanzo, M. C., Dolinski, K., Dwight, S. S.,

Engel, S. R., Fisk, D. G., Hirschman, J. E., Hong, E. L., Nash, R., Oughtred, R.,
Skrzypek, M., Theesfeld, C. L., Binkley, G., Dong, Q., Lane, C., Sethuraman, A.,
Weng, S., Botstein, D. & Cherry, J. M. (2005) Nucleic Acids Res. 33, D374-D377.

6. Harbison, C. T., Gordon, D. B., Lee, T. I., Rinaldi, N. J., Macisaac, K. D., Danford,
T. W., Hannett, N. M., Tagne, J. B., Reynolds, D. B., Yoo, J., Jennings, E. G.,
Zeitlinger, J., Pokholok, D. K., Kellis, M., Rolfe, P. A., Takusagawa, K. T., Lander,
E. S., Gifford, D. K., Fraenkel, E. & Young, R. A. (2004) Nature 431, 99-104.

7. Lieb, J. D., Liu, X., Botstein, D. & Brown, P. O. (2001) Nat. Genet. 28, 327-334.
8. Gelbart, M. E., Bachman, N., Delrow, J., Boeke, J. D. & Tsukiyama, T. (2005)

Genes Dev. 19, 942-954.
9. Bernstein, B. E., Tong, J. K. & Schreiber, S. L. (2000) Proc. Natl. Acad. Sci. USA

97, 13708-13713.
10. Hughes, T. R., Marton, M. J., Jones, A. R., Roberts, C. J., Stoughton, R., Armour, C.

D., Bennett, H. A., Coffey, E., Dai, H., He, Y. D., Kidd, M. J., King, A. M., Meyer,
M. R., Slade, D., Lum, P. Y., Stepaniants, S. B., Shoemaker, D. D., Gachotte, D.,
Chakraburtty, K., Simon, J., Bard, M. & Friend, S. H. (2000) Cell 102, 109-126.

11. Sudarsanam, P., Iyer, V. R., Brown, P. O. & Winston, F. (2000) Proc. Natl. Acad.
Sci. USA 97, 3364-3369.

12. Pe'er, D., Regev, A., Elidan, G. & Friedman, N. (2001) Bioinformatics 17, Suppl 1,
S215-S224.

13. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. &
Lipman, D. J. (1997) Nucleic Acids Res. 25, 3389-3402.

14. Brudno, M., Do, C. B., Cooper, G. M., Kim, M. F., Davydov, E., Green, E. D.,
Sidow, A. & Batzoglou, S. (2003) Genome Res. 13, 721-731.

15. Nei, M. & Gojobori, T. (1986) Mol. Biol. Evol. 3, 418-426.
16. Hereford, L. M., Osley, M. A., Ludwig, T. R., 2nd, & McLaughlin, C. S. (1981)

Cell 24, 367-375.

